Monitoring devices

E. DOLD \& SÖHNE KG

PO Box 125I • D-78II4 Furtwangen
Telephone (+49) 77236540 • Telefax (+49) 7723654356 dold-relays@dold.com•www.dold.com

Austria

IPR Industrieprodukte e.U.
Rosenleiten 84
A-4101 Feldkirchen
Phone +437233662111
Fax +437233662121
e-mail office@ipr.or.at
www.ipr.or.at

Belarus

Advanced Systems Baltic OÜ
Punane 73
EE-13619 Tallinn, Estonia
Phone +372 26228220
Fax +372 26228221
e-mail info@asb.ee
www.asb.ee

Belgium

Tempolec S.A.
Route de Biesme 49
B-6530 Thuin

Phone +32 71590039

Fax $\quad+3271590161$
e-mail purchasing@tempolec.be
www.tempolec.be

Elipse nv

Wijtschotbaan 5
B-2900 Schoten
Phone +32 3545180
Fax $\quad+323545184$
e-mail info@elipse.eu
www.elipse.eu

Bosnien-Herzegovina

ProElektronika d.o.o.
Stefanovecka 10
HR-10 040 Zagreb
Phone +38512916103
Fax +38515585538
e-mail dario.novak@proelektronika.hr
www. proelektronika.hr

Croatia

ProElektronika d.o.o.
Stefanovecka 10
HR-10 040 Zagreb
Phone +385 12916103
Fax +38515585538
e-mail dario.novak@proelektronika.hr
www. proelektronika.hr

Czech Republic

OS-KOM spol.s.r.o
Zdikovská 22
CZ-150 00 Praha 5
Phone +420257210114
Fax $\quad+420257211935$
e-mail oskom@oskom.cz
www.oskom.cz

Denmark

ICS A/S
Holkebjergvej 79
DK-5260 Odense SV
Phone +4566171074
Fax $\quad+4566171065$
E-mail ics@ics-as.dk
www.ics-as.dk

England

Dold Industries Ltd.
11 Hamberts Rd. Blackall Ind.Estate,
South Woodham Ferrers
GB-Essex, CM 3 5UW
Phone +44 1245324432
Fax $\quad+441245325570$
e-mail admin@dold.co.uk
www. dold.co.uk

Estonia

Advanced Systems Baltic OU
Punane 73
EE-13619 Tallinn, Estonia
Phone +3726228220
Fax $\quad+3726228221$
e-mail info@asb.ee
www.asb.ee

Finland

Sähkölehto OY
Holkkitie 14
FI-00880 Helsinki
Phone +35897746420
Fax +35897591071
e-mail office@sahkolehto.fi
www. sahkolehto.fi

France

Dold Electric S.A.R.L
8 rue Renouvier
F-67600 Selestat
Phone +33 388929864
Fax $\quad+33388929701$
e-mail m.riou@dold.fr d.palese@dold.fr
www.dold.fr

Greece

DOLD FRAKO Hellas
Stenimachou Str. 4
GR-10443 Sepolia-Athen
Phone +30 2105139501
Fax $\quad+302105139502$
e-mail info@theodoropoulos.com.gr
www. theodoropoulos.com.gr

Hungary

NTK Ipari Elektronikal ès Kereskedelmi Kft
Gesztenyefa ut 4.
HU-9027 Györ

Phone +36 96523268
 Fax $\quad+3696430011$
 e-mail info@ntk-kft.hu

www.ntk-kft.hu

Ireland

Dold Industries Ltd.
11 Hamberts Rd. Blackall Ind.Estate,
South Woodham Ferrers
GB-Essex, CM 3 5UW
Phone +44 1245324432
Fax $\quad+441245325570$
e-mail admin@dold.co.uk
www.dold.co.uk

Italy

Dold Italia S.r.I.
Via Fra' Pampuri 9
I-20141 Milano
Phone +39 3462570556
e-mail a.lupi@dold.it
www.dold.com

Latvia

Advanced Systems Baltic OÜ
Punane 73
13619 Tallinn, Estonia
Phone +372 6228220
Fax +3726228221
e-mail info@asb.ee
www.asb.ee

Lithuania

Advanced Systems Baltic OÜ
Punane 73
EE-13619 Tallinn, Estonia
Phone +372 6228220
Fax +3726228221
e-mail info@asb.ee
www.asb.ee

Netherlands

forTop
Automation \& Energy Control
Grote Kranerweerd 53
NL-8065 PE Zwartsluis
Phone +31 38-337 2700
Fax $\quad+31$ 38-337 2709
e-mail info@fortop.nl
www.fortop.nl

Norway

J.F. Knudtzen AS

Postboks 160
N-1378 Nesbru

Phone +4766983350
Fax +4766980955
e-mail firmapost@jfknudtzen.no
www.jfk.no

Poland

TEXIM SP. zo. o.
ul. Wyspianskiego 66
PL-83 000 Pruszcz Gdanski
Phone +48586823684
Fax $\quad+48586833260$
e-mail texim@texim.pl
www.texim.pl

Portugal

MVA Electrotécnia, Lda.
Rua Inacio Duarte, 9-A
PT-2790-226 Carnaxide
Phone +351214879000
Fax $\quad+351214879007$
e-mail rui@mva.pt
www.mva.pt

Romania

SIV Electro Concept Srl.
Bd. Theodor Pallady 40S
RO-032266 Bucharest
Phone +40 742149100
e-mail adrian.stroescu@sivelectro.ro
www. sivelectro.ro

Russia

Electromatica
Cvetochnaya ul. 16K
RU-196084 St. Petersburg
Phone +7812 313-41-70
Fax $\quad+7812$ 313-41-80
e-mail info@electromatica.ru
www.electromatica.ru Industrial
Electric Systems
Leninskij Prospekt 12111, Korp. 2
RU-119571 Moskau
Phone +74957810098
Fax $\quad+74957810098$
e-mail info@indels-ru
www.indels.ru

Serbia

ProElektronika d.o.o.
Stefanovecka 10
HR-10 040 Zagreb
Phone +38512916103
Fax +38515585538
e-mail dario.novak@proelektronika.hr
www. proelektronika.hr
Slovak Republic
OS-KOM spol.s.r.o.
Zdikovská 22
CZ-150 00 Praha 5
Phone +420 257210114
Fax +420 257211935
e-mail oskom@oskom.cz
www. oskom.cz

Slovenia

KOLEKTOR SYNATEC d.o.o.
Vojkova ulica 8b
SL-5280 Idrija p.p. 50
Phone +38653720650
Fax +38653720660
e-mail synatec@kolektor.com
www.kolektor.com

Spain

CONTAVAL S.L.
Parque Tecnológico
C/Benjamin Franklin no. 22
E-46980-Paterna, Valencia
Phone +34 963843700
Fax $\quad+34963840658$
e-mail contaval@contaval.es
www.contaval.es

Sweden

Power Automation Sweden AB
Cylindervägen 8
SE-131 52 Nacka Strand
Phone +46 84020450
Fax \quad +4684020459
e-mail info@powerautomation.se
www.powerautomation.se

Switzerland

AWAG Elektrotechnik AG
Sandbüelstr. 2
CH-8604 Volketswil
Phone +41449081919
Fax $\quad+41449081999$ e-mail info@awag.ch www.awag.ch

Turkey

Dönüsüm
Endüstri ve Otomasyon Mamülleri
Atakoy 11. Kisim,
2. Etap Konutlari Zambak

Apt. C Blok, No. 22
34156 Bakirkoy-Istanbul
Phone +90 2126618742
Fax $\quad+902126618726$
e-mail import@donusumtr.com
www.donusumtr.com

Ukraine

Advanced Systems Baltic OU
Punane 73
13619 Tallinn
Phone +372 26228220
Fax +372 26228221
e-mail info@asb.ee
www.asb.ee

Brazil
Choice Group
Rua Alfonso Fruet, 131
Fazendinha
BR-81.320-020 Curitiba - Parana
Phone +55 4130157953
Fax +55 1188091467
e-mail mario@choicetech.com.br
www.choicetec.com.br

China

Dold Electric Taicang Co., Ltd.
Rm. 316, Fuhua Building W,
\#6 West Beijing Rd.
Taicang City, Juangsu Province
CN-P.R. China
Phone $\quad+8651253206226$
Fax +8651253206228
e-mail x.zhao@dold.com.cn
www. dold.com.cn
www. dold.com.cn

Egypt

Eagle Co. For Engineering Services
23, Fawzy Moaaz Str., Semohaa
P.O. Box 432, Alexandria

EG-Alexandria-Egypt
Phone +20 34257061
Fax +20 34257011
e-mail eagle.co@tedata.net.eg

Korea

Kumsan M \& E Co. Ltd
\# 506, Saehan Venture World Bldg.
113-15 Shiheung - Dong, Kumcheon-ku KR-Seoul

Phone +82 28049666
Fax +82 28049664
e-mail seanian@kumsanmne.com
www. kumsanmne.com

Hong Kong

Peter, Charles \& Co.
2nd Floor, China Aerospace Centre
143 Hoi Bun Road, Kwun Tong
HK-Kowloon, Hong Kong
Phone +852 23694050
Fax +852 27224080
e-mail bonnie@pcc.com.hk
johnson@pcc.com.hk
www. pcc.com.hk

India

Dold Electric India Pvt Ltd
B-3 Vishranti Heritage,
Gotri Road,
I-Vadodara-390 021
Mrugit Diwanji
Phone +919909001585
e-mail m.diwanji@dold.in
www.dold.com

Iran
Mehr Kanaz Co.
No. 31, Koosha St. Shariati Ave.
P.O. Box 19395

IR-4481 Teheran
Phone +98 2122226994
Fax +982122227851
e-mail nn@mehr-kanaz.com

Israel

A.U. Shay Ltd.

Imber Street 23/25, St. Kiriat-Arieh
P.O. Box 10049

IL-49222 Petach - Tikva
Phone +972 39233601
Fax +97239234601
e-mail shay@uriel-shay.com
www.uriel-shay.com

Malaysia

Amptronic Instruments Sdn. Bhd
11 A-G, Jalan PJS 11/2
Taman Subang Indah
Petaling Jaya,
MY-46000 Selangor Darul Ehsan
Phone +60 356328411
Fax +60 356328412
e-mail business@amptron.com.my
www.amptron.com.my

Mexico

Telux S.A. de C.V.
Giotto No. 29
Col. Mixoac Del. Benito Juárez
MX-C.P. 03910 México, D.F.

Phone +52 56110110
 Fax $\quad+5256110110$
 e-mail jlbeato@telux.com.mx
 www.telux.com.mx
 New Zealand
 Kraus \& Naimer Ltd.
 Customer Services Manager
 Loren Stepkowski
 42 Miramar Avenue
 P.O. Box 15-009
 NZ-6243 - Miramar-Wellington

Phone +6443809888 or 0800736522
Fax +6443809877
e-mail loren.stepkowski@krausnaimer.com
www.krausnaimer.com

Pakistan

ZEB Traders
Suite \# D-E, 1st Floor, Kiran Plaza,
28-M, Civic Centre,
Model Town Extn.
PK-54700 Lahore

Phone +92 42 352119074-75-76
 Fax +92 42352119077
 e-mail zebtr@Ihr.comsats.net.pk

www.comsats.net.pk

Russia

Electromatica
Cvetochnaya ul. 16K
RU-196084 St. Petersburg

```
Phone +7 812 313-41-70
Fax \(\quad+7812\) 313-41-80
e-mail info@electromatica.ru
www.electromatica.ru
```

Industrial Electric Systems
Leninskij Prospekt 12111, Korp. 2
RU-119571 Moskau
Phone +74957810098
Fax $\quad+74957810098$
e-mail info@indels-ru
www.indels.ru

Saudi Arabia

Middle East Trading Co.
Marco Building, 2-Floor
Exit. \#2, Nhakil-Area
Near Prince Turkey Palace
P.O. Box 3577

SA-Riyadh 11481
Phone +96611400056 \& 112255383
Fax +966 1140028792255383
e-mail metco@metco.com.sa
www.metco.com.sa

Singapore

Amptron Instruments Pte.Ltd.
10 Kaki Bukit View
Tech Park II
SG-Singapore 415946
Phone +65 3478800
Fax +65 3478808
e-mail business@amptron.com.sg
www.amptron.com.sg

South Afrika

Radel Electrical \& Electronic Components
P.O. Box 4364

ZA-2118, Cresta
Phone +27118886696
Fax +27118882390
e-mail info@radel.co.za
www. radel.co.za

Taiwan

Hunglin Technology Co., Ltd.
466, Tong Hsin Rd., Sec. 1
TW-408 Taichung Taiwan, R.O.C
Phone +886-4-24712177
Fax +886-4-2471-3165
e-mail marco@hunglin.com
www.hunglin.com

Thailand

Karl Müller Asia Co., Ltd.
11/24 Moo 3, Nongplalai,
Banglamung, Chonburi
TH-Thailand, 20150

Phone +66 038248112

Fax +66038248115
e-mail karl.mueller@karlmueller-asia.com www.karlmueller-asia.com

United Arab Emirates

Golden Sands Trading Co.L.L.C.
Level 35, Citadel Tower
Business Bay, Burj Khalifa
P.O. Box 26820

AE-Dubai
Phone +97144572122
Fax +97144572144
Mobil: +971506220503
e-mail sales@goldensandstrading.ae
www.golden-sand.net

USA

Industrial Safety Controls Inc.
4112 Sheridan Road
USA-Kenosha, WI 52141
Phone +1 2626528660
Fax $\quad+12626521388$
e-mail safetysensing@earthlink.net
www.industrialsafetysales.com

Vietnam

ANS Vietnam
Anh Nghi Son Service Trading Co. Ltd.
D3, Dinh Tien Hoang Street
Mieu Noi Resident Area, Ward 3,
Binh Thanh Dist
VN-Ho Chi Minh City
Phone +84835170401/02
Fax +84835170403
e-mail sang.ans@ansvietnam.com
www.ansvietnam.com

DOLD

Safety devices

Safety switchgears
Multifunction and modular safety systems
Wireless safety systems
Safety switches
Safety interlocks
Safety switch- and key interlock system

Monitoring devices

- Insulation monitors
- Equipment for insulation fault location
- Residual current monitors
- Measuring and monitoring relays
- Fault annunciators and fault annunciator systems
- SMS-Telecontrol module

Power electronics

Semiconduciors, relays/- contactors

- Reversing contactors
- Softstarters
- Motor brake relays
- Softstarters with DC-Brake
- Intelligents motor control units

Control devices

- CANopen field bus components
- CANopen PLC
- Interface and switching relays
- Interface relays with positive guided contacts

Timers

Multeifunction relays

- Time relays
- operate delay $\quad=$ Fleeting action relays
- release delay - Pulse extender

Star delta timers
Safety time relays

Installation electronics

- Time switches

- Remote switches
- Specific installation electronics
- Time, control and monitoring relays

- Machinery and plant
- Power generation/distribution
- Oil and gas industry
- Automation
— Transport and material handling systems
- Rail technology
- Aviation/marine industry
- Paper and printing industry
- Food industry
- Rubber/plastics industry
- Heating and refrigeration
- Automotive
- Mining/metal working
- Chemical/pharmaceutical applications
- Medical technology
- Water/waste water treatment
- Cable cars/ski lifts

We can cover your industrial applications as well!

DOLD =
 Solutions for you

The DOLD philosophy, "Our experience. Your safety" constitutes our program: Offering solutions based on over 80 years of experience with a workforce of more than 400 employees, we manufacture high quality products using state-of-the-art production plant at our Furtwangen facility in Germany.

The comprehensive product range includes relay modules, safety relays with positively-driven contacts and electronic housings with virtually unparalleled production detail. The combination of know-how, innovation and experience makes us one of the leading worldwide manufacturers.

Apart from standard solutions, we are also the right partner when individual industrial solutions with that special touch are required.

Staying in close contact with our customers is very important to us. We listen, analyze and act by offering flexible, custom high-tech solutions, from a single source.

Thanks to our own development laboratory, highly automated production facilities with a modern tool \& die shop in addition to injection moulding facility togehter with a well organized sales and marketing department, we guarantee high quality and short delivery times. Your benefits: Increased plant and machine availability, planning reliability and low production costs.

VARIMETER IMD - Electrical safety for power supplies

An unplanned machine or system downtime due to insulation faults can have serious consequences. Through early recognition of such faults in ungrounded networks (IT networks), DOLD insulation monitors in the series VARIMETER IMD prevent failures in electric systems and guarantee a higher level of operational and system safety.

VARIMETER EDS

 - Fault localization during ongoing operationsIn large industrial facilities, localizing insulation faults can be both expensive and time consuming. The VARIMETER EDS insulation fault search system localizes insulation faults quickly and safely in complex, ungrounded AC/DC networks.

Electrical Safety Solutions

DOLD offers a comprehensive selection of measuring and monitoring relays for your unique needs. The devices detect and provide early notification if critical limits of electrical variables such as current, voltage, power, insulation resistance, et cetera are violated. This allows dangers to people and machinery to be reliably avoided. In addition, the availability of your
machines and systems will be increased and production outages will be minimized. DOLD's portfolio ranges from standard devices for the monitoring of individual variables to multifunctional devices to flexible error message systems

In grounded networks, DOLD differential current monitors in the VARIMETER RCM series ensure reliable residual current monitoring. The differential current sensors can be used universally, as they can detect both direct and alternating current.

- Signalling instead
of shutdown
Function Page Function Page
General
Dold - Agents
- Europe 5
- Worldwide 7
Product range 9
DOLD - The Company 10
News 12
Table of contents 14
Alphabetical index 16
Product selections / Forewords
- Insulation monitors 19
- Measuring relays 22
- Fault annunciators, SMS-Telecontrol modules 29
Accessories 445
Dimensions 447
General technical definitions 454
Further available devicesFunction index.457 Current monitor240
General Conditions
for the supply of products and services 459
Insulation monitors
single and 3-phase AC-systems, non-earthed 19
Insulation monitor 81
- for switched off consumers, non-earthed 20
Insulation monitor for inplant generator systems 119
- for mixed systems, non-earthed (AC / DC / 3 AC)19
Insulation monitor 39
- for special applications 27
Insulation monitor. 94 Asymmetry relays- Insulation fault location system20
Locating current injector 102
Insulation fault locator 106
Residual current transformer 113
for earthed systems 20
Residual current monitor (RCM, Type A) 113
Residual current monitor,
universal-current-sensitiv (RCM, Type B) 119
Test and indication panel 456
Measuring relays
Multifunctional relays VARIMETER PRO 21
Multifunctional relay 126
Phase monitor 134
- with motor protection 144
Over and undervoltage relay 149
Voltage monitoring VARIMETER 22
Voltage relays 160
Overvoltage relays 179
Undervoltage relays 183
Battery symmetry monitors 196
Current monitoring VARIMETER 23
Current relays 202
Over- / undercurrent relays 214
Overcurrent relays 220
456 Undercurrent relays 231
Current-assymmetry-relays 242
Load monitoring VARIMETER 24
Motor load monitors 244
Underload monitors 261
Reverse power monitoring 272
Mains monitoring VARIMETER 25
Undervoltage relays 277
Phase indicators 279
Phase monitors 134
289
Phase-sequence relays297
Frequency relays 304
Neutral monitors 311
Fuse monitors 313
Mains frequency monitors 335
Measuring relays for special applications VARIMETER 27
Voltage and frequency monitors for generator sets on public grid 341
Mains frequency monitor for self-production plant. 335
Undervoltage relays f. med. areas acc. to DIN VDE 0100-710 *
Over- / undervoltage relays for self-production plant 149
Battery symmetry monitors 196
Valve monitor 364
Transformer protection *
Function Page
Monitoring physical values VARIMETER 28
Stand-still monitors 366
Speed monitors 372
Level sensing relays 387
Temperature relays 391
Thermistor motor protection relays 397
Valve Monitor 364
Accessories for measuring relais 28
Noise filter 409
Fault annunciators, SMS-Telecontrol module
Fault annunciators. 29
Fault annunciator systems 411
Fault monitoring system INFOMASTER B
System overview 419
Common Alarm Annunciators, bus connection 421
New- / first- / common signal annunciators, bus connection. 426
Text display unit, bus connection 431
GSM Module.
SMS Telecontrol module 440
Accessories for fault annunciators
Lamp tester. 444

Type Function Page Type Function Page
IL 9075 Fuse monitor 316
IL 9077................Over- and undervoltage relay 149
IL 9079................Undervoltage relay to tetect auto-reclosing 199
IL 9086 Phase monitor with
thermistor motor protection 144
IL 9087 Phase monitor 147
IL 9094 Temperature monitoring relay 393
IL 9144 Standstill monitor 368
IL 9151 Level sensing relay 387
IL 9163 Thermistor motor protection relay 399
IL 9171 Undervoltage relay, 3-phase 188
IL 9176 Undervoltage relay, 3-phase with test key 277
IL 9270 Overcurrent relay 220
IL 9271 Undercurrent relay 231
IL 9277 Over- and undercurrent relay 214
IL 9837 Frequency relay 308
IN
IN 5880/710Insulation monitor 94
IN 5880/711Insulation monitor 94
INFOMASTER B...System overview 419IP 5880Insulation monitor81
IP 5882.48 Residual current monitor Type A
with forcibly guided indicator contacts *
IP 5880/711 Insulation monitor 94
IP 9075 Fuse monitor 316
IP 9077 Over- and undervoltage relay 149
IP 9109.17/107 ...Undervoltage relay *
IP 9109.27/107 ...Undervoltage relay *
IP 9110/107Undervoltage relay*
IP 9111/107 Transformer protection *
IP 9270 Overcurrent relay 220
IP 9271Undercurrent relay. 231
IP 9277 Over- and undercurrent relay 214
IP 9278Current asymmetry relay with integrated 242
IRIR 5882Residual current monitor113
LGLG 5130..............Noise Filter409
LK
LK 5894 Insulation monitor 71
LK 5895 Insulation monitor 66
LK 5896 Insulation monitor 59
MH
MH 5880 Insulation monitor 85
MH 9055 Speed monitor 381
MH 9055N/5_0 ...Speed monitor
MH 9064 Voltage relay 160
MH 9143.............Mains rrequency monitor 335
MH 9300.............Multifunction measuring relay 126
MH 9397Motor load monitor 244
MH 9837N Frequency relay 325
MH 9837/5_0Frequency relay 330
MK
MK 5130N...........Noise Filter 409
MK 5880N............Insulation monitor 85
MK 9003-ATEX... Thermistor motor protection relay 405
MK 9040N...........Asymmetry relay 299
MK 9053N...........Current relay 206
MK 9054NVoltage relay 166
MK 9055N...........Speed monitor 381
MK 9055N/5_0....Speed monitor
MK 9056N...........Phase sequence relay 291
MK 9064NVoltage relay 160
MK 9065 Underload monitor. 265
MK 9143N........... Mains frequency monitor 335
MK 9151N...........Level sensing relay 387
MK 9163N...........Thermistor motor protection relay 401
MK 9163N-ATEX..Thermistor motor protection relay 401
MK 9300N...........Multifunction measuring relay 126
MK 9397N...........Motor load monitor 244
MK 9837N...........Frequency relay 325
MK 9837N/5 0 ...Frequency relay 330
MK 9994Lamp tester 444
MK 9995Lamp tester 444
ND
ND 5015 Residual current transformer 122
ND 5016Residual current transformer 116
ND 5017 Residual current transformer 110
ND 5018 Residual current transformer 123
ND 5019 Residual current transformer 117
OA
OA 9059 Phase sequence module 286
RK
RK 9169 Phase monitor 284
RK 9179..............Phase sequence monitor /-relay. 295
RK 9871..............Undervoltage relay 194
RK 9872 Phase monitor 281
RL
RL 9836Voltage relay 152
RL 9853..............Current relay 202
RL 9854..............Voltage relay 156
RL 9075..............Fuse monitor 313
FunctionPage
SL 5990 Fault annunciator system 415
SL 5991 Fault annunciator system 415
SL 9055 Speed monitor. 375
SL 9059Phase sequence module 286
SL 9065Underload monitor $(\cos \varphi)$ 268
SL 9069 .Neutral monitor 311
SL 9071Undervoltage relay 192
SL 9075 Fuse monitor 316
SL 9077 Over- and undervoltage relay 149
SL 9079Undervoltage relay to tetect auto-reclosing 199
SL 9086Phase monitor with thermistor motor protection 144
SL 9087 .Phase monitor 147
SL 9094Temperature monitoring relay 393
SL 9144 .Standstill monitor 368
SL 9151 Level sensing relay 387
SL 9163Thermistor motor protection relay 399
SL 9171Undervoltage relay, 3-phase 188
SL 9270Overcurrent relay 220
SL 9270CTOvercurrent relay 220
SL 9271Undercurrent relay 231
SL 9271CT Undercurrent relay 231
SL 9277 Over- and undercurrent relay 214
SL 9277CTOver- and undercurrent relay 214
SL 9837Frequency relay 308
SP
SP 5880 Insulation monitor 81
SP 9075..............Fuse monitor 316
SP 9077..............Over- and undervoltage relay 149
SP 9270..............Overcurrent relay 220
SP 9270CT.........Overcurrent relay 220
SP 9271..............Undercurrent relay 231
SP 9271CTUndercurrent relay 231
SP 9277..............Over- and undercurrent relay 214
SP 9277CT Over- and undercurrent relay 214
SP 9278CTCurrent asymmetry relay with integrated current transformer up to 100 A 242
UG
UG 9075 Fuse monitor 320
UHUH 5892Insulation monitor77

Monitoring devices

Product selection

Insulation monitors for non-earthed systems VARIMETER IMD

Following product are also available: AI 897, AI 898, EH 5878
The data sheets are available at www.dold.com

Monitoring devices

Product selection

Equipment for insulation fault location VARIMETER EDS

Residual current monitors for earthed systems VARIMETER RCM

* Data sheet can be ordered

Monitoring devices

Product selection

Multifunctional relays VARIMETER PRO

$\mathrm{C} / \mathrm{O}=$ changeover contact

* Data sheet can be ordered

Product selection

Voltage monitoring VARIMETER

so s								Å	$Q^{\text {® }}$
Voltage relay	1	DC 250 V	$1 \mathrm{C} / \mathrm{O}$	+		Switch cabinet	35	RL 9836	152
Voltage relay	1	AC 300 V	$1 \mathrm{C} / \mathrm{O}$	+		Switch cabinet	35	RL 9854	156
Voltage relay, digital	1	AC/DC 300 V	$1 \mathrm{C} / \mathrm{O}$	+	+	Switch cabinet	22.5	MK 9064N	160
Voltage relay, digital	1	AC/DC 600 V	$\begin{gathered} 2 \times 1 \\ \mathrm{C} / \mathrm{O} \end{gathered}$	+	+	Switch cabinet	45	MH 9064	160
Voltage relay	1	AC/DC 1000 V	$2 \mathrm{C} / \mathrm{O}$	+	+	Switch cabinet	45	BA 9054, MK 9054N	166
Voltage relay	1	AC 660 V	$\begin{aligned} & 1 \mathrm{C} / \mathrm{O} ; \\ & 2 \mathrm{C} / \mathrm{O} \end{aligned}$	+		Switch cabinet	45	BA 9036	172
Voltage relay	1	AC 690 V	$2 \mathrm{C} / \mathrm{O}$	+		Switch cabinet	45	BA 9037	175
Voltage relay undervoltage, overvoltage, residual ripple	1	DC 24 V	$\begin{aligned} & 1 \mathrm{C} / \mathrm{O} ; \\ & 2 \mathrm{C} / \mathrm{O} \end{aligned}$	+		Distribution board	17.5	IK 9044, IK 9046	177
Overvoltage relay	3	AC 440 V	$\begin{aligned} & 1 \text { C/O; } \\ & 2 \mathrm{C} / \mathrm{O} \end{aligned}$	+		Distribution board Switch cabinet	$\begin{aligned} & 17.5 \\ & 17.5 \end{aligned}$	IK 9170, SK 9170	179
Overvoltage relay	1	AC 230 V	$\begin{aligned} & 1 \mathrm{C} / \mathrm{O} ; \\ & 2 \mathrm{C} / \mathrm{O} \end{aligned}$	+		Distribution board Switch cabinet	$\begin{aligned} & 17.5 \\ & 17.5 \end{aligned}$	IK 9172, SK 9172	181
Over- and undervoltage relay	3	AC 480 V	$\begin{aligned} & 2 \mathrm{C} / \mathrm{O} ; \\ & 4 \mathrm{C} / \mathrm{O} \end{aligned}$	+		Distribution board Switch cabinet	$\begin{aligned} & 35 ; 70 \\ & 35 ; 70 \end{aligned}$	$\begin{aligned} & \text { IL 9077, IP } 9077 \text {, } \\ & \text { SL } 9077, \text { SP } 9077 \end{aligned}$	149
Undervoltage relay	3	AC 690 V	$2 \mathrm{C} / \mathrm{O}$	+		Switch cabinet for front panel mounting	45	BA 9043, AA 9943	183
Undervoltage relay, detection of short-time phase failures	1	AC 230 V	$\begin{aligned} & 1 \mathrm{C} / \mathrm{O} ; \\ & 2 \mathrm{C} / \mathrm{O} \end{aligned}$	+		Switch cabinet	22.5	BC 9190N	186
Undervoltage relay	3	AC 500 V	$\begin{aligned} & 1 \mathrm{C} / \mathrm{O} ; \\ & 2 \mathrm{C} / \mathrm{O} \end{aligned}$	+		Distribution board Switch cabinet	$\begin{gathered} 17.5 \\ 35 \end{gathered}$	IK 9171, IL 9171, SK 9171, SL 9171	188
Undervoltage relay	1	AC 400 V	$1 \mathrm{C} / \mathrm{O}$	+		Distribution board Switch cabinet	$\begin{aligned} & 17.5 \\ & 17.5 \end{aligned}$	IK 9173, SK 9173	190
Undervoltage relay	3	AC 440 V	$2 \mathrm{C} / \mathrm{O}$	+		Distribution board Switch cabinet	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	IL 9071, SL 9071	192
Undervoltage relay	3	AC 400 V	$\begin{aligned} & 1 \mathrm{C} / \mathrm{O} ; \\ & 2 \mathrm{C} / \mathrm{O} \end{aligned}$			Distribution board	17.5	RK 9871	194
Undervoltage relay to detect auto-reclosing	3	AC 500 V	$2 \mathrm{C} / \mathrm{O}$	+		Distribution board Switch cabinet	$\begin{gathered} 35 \\ 17.5 \end{gathered}$	IL 9079, SL 9079	199
Undervoltage relay for rooms used for medical purposes	1	AC 230 V	$2 \mathrm{C} / \mathrm{O}$	+		Distribution board	70	IP 9109.27/107	*
Undervoltage relay for rooms used for medical purposes	3	AC 400 V	$\begin{aligned} & 1 \mathrm{NO}, \\ & 2 \mathrm{NC} \end{aligned}$	+		Distribution board	70	IP 9110/107	*
Undervoltage relay for rooms used for medical purposes	1	AC 230 V	$\begin{aligned} & 2 \mathrm{NO}, \\ & 2 \mathrm{NC} \end{aligned}$	+		Distribution board	70	IP 9109.17/107	*
Battery symmetry monitor	1	0,12 ... 1,2 V DC	$2 \mathrm{C} / \mathrm{O}$	+	+	Switch cabinet	45	$\begin{aligned} & \text { BA 9054/331 } \\ & \text { BA } 9054 / 332 \end{aligned}$	196

NO = normally open contact, NC = normally closed contact, C/O = changeover contact
Following product are also avaible: IL 9070 ; The data sheet are available at www.dold.com

* Data sheet can be ordered

Monitoring devices

Product selection

Current monitoring VARIMETER

$\mathrm{NO}=$ normally open contact, $\mathrm{C} / \mathrm{O}=$ change-over contac; / = optional
Following product are also available: ML 9701 ; The data sheet are available at www.dold.com

Monitoring devices

Product selection

Load monitoring VARIMETER

$\mathrm{NO}=$ normally open contact, $\mathrm{C} / \mathrm{O}=$ change-over contact
Following product are also available : BA 9067 ; The data sheet are available at www.dold.com

Monitoring devices

Product selection

Mains monitoring VARIMETER

$\mathrm{NC}=$ normally closed contact, $\mathrm{C} / \mathrm{O}=$ change-over contact

* Other measuring ranges on request

Monitoring devices

Product selection

Mains monitoring VARIMETER

$\mathrm{NC}=$ normally closed contact, $\mathrm{C} / \mathrm{O}=$ change-over contact

* Other measuring ranges on request

Monitoring devices

Product selection

Measuring relays for special applications VARIMETER

$\mathrm{NO}=$ normally open contact, $\mathrm{NC}=$ normally closed contact, $\mathrm{C} / \mathrm{O}=$ change-over contac
Following product are also available: Al 940 ; The data sheet are available at www.dold.com

* Data sheet can be ordered

Monitoring devices

Product selection

Monitoring physical values VARIMETER

					$\underset{\text { E }}{\substack{\text { 气 } \\ \text { ミ }}}$	A巳	$\underset{Q^{\mathscr{O}}}{\mathscr{O}}$
Stand－still monitor		$\begin{aligned} & 2 \text { NO, } \\ & 2 \text { NC } \end{aligned}$		Switch cabinet	45	BD 5936	366
Stand－still monitor	300000 IPM	$1 \mathrm{C} / \mathrm{O}$	＋	Distribution board	17．5； 35	IK 9144，IL 9144 SK 9144；SL 9144	368
Speed monitor	10000 IPM	$1 \mathrm{C} / \mathrm{O}$	＋	Switch cabinet	45	BA 9055， AA 9050	372
Speed monitor	600000 IPM	$1 \mathrm{C} / \mathrm{O}$	＋	Distribution board Switch cabinet	$\begin{aligned} & 17.5 ; 35 \\ & 17.5 ; 35 \end{aligned}$	IK 9055，IL 9055， SK 9055，SL 9055	375
Speed monitor	120000 IPM	$2 \mathrm{C} / \mathrm{O}$		Distribution board	22．5； 45	MK 9055N， MH 9055	381
Speed monitor	120000 IPM	$2 \mathrm{C} / \mathrm{O}$		Distribution board	22．5； 45	MK 9055N／5＿0， MH 9055／5＿0	＊
Level sensing relay	$450 \mathrm{k} \Omega$	$\begin{gathered} 2 \times 1 \\ \mathrm{C} / \mathrm{O} \end{gathered}$	＋	Distribution board Switch cabinet	$\begin{gathered} 35 \\ 22.5 ; 45 \end{gathered}$	IL 9151，SL 9151， MK 9151N	387
Temperature relay	$600{ }^{\circ} \mathrm{C}$	$\begin{gathered} 1 \mathrm{C} / \mathrm{O}, \\ 1 \mathrm{NO} \end{gathered}$		Switch cabinet	35	BA 9094	391
Temperature relay	$300{ }^{\circ} \mathrm{C}$	$1 \mathrm{C} / \mathrm{O}$		Distribution board Switch cabinet	$\begin{aligned} & 17.5 ; 35 \\ & 17.5 ; 35 \end{aligned}$	IK 9094，IL 9094， SK 9094，SL 9094	393
Thermistor motor protection relay	$>3.8 \mathrm{k} \Omega$	$2 \mathrm{C} / \mathrm{O}$		Switch cabinet	45	BA 9038, $\text { AI } 938$	397
Thermistor motor protection relay	$>3.8 \mathrm{k} \Omega$	$2 \mathrm{C} / \mathrm{O}$		Distribution board Switch cabinet	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { IL } 9163, \\ & \text { SL } 9163 \end{aligned}$	399
Thermistor motor protection relay	$>3.8 \mathrm{k} \Omega$	$2 \mathrm{C} / \mathrm{O}$		Switch cabinet	22.5	MK 9163N， MK 9163N－ATEX	401
Thermistor motor protection relay	$>3.1 \mathrm{k} \Omega$	$2 \mathrm{C} / \mathrm{O}$		Switch cabinet	22.5	MK 9003－ATEX	405
Transformer protection： Current and temperature monitoring	$\begin{gathered} 5 \ldots 50 \mathrm{~A} ; \\ >3.8 \mathrm{k} \Omega \end{gathered}$	$\begin{gathered} 2 \times 2 \\ C / O \end{gathered}$		Distribution board	70	IP 9111／107	＊
Valve monitor：current and broken conductor monitoring	$<0.7 \mathrm{~A}$	$1 \mathrm{C} / \mathrm{O}$		Distribution board Switch cabinet	$\begin{aligned} & 17.5 \\ & 17.5 \end{aligned}$	IK 9076， SK 9076	364

$\mathrm{NO}=$ normally open contact，C／O＝change－over contact
＊Data sheet can be ordered

Accessories for measuring relays

Monitoring devices

Product selection

Fault annunciator systems INFOMASTER, accessories

$\mathrm{NO}=$ normally open contact
Following product are also available : AI 990, AI 991, AI 992, AI 998, UP 5864

Monitoring hardware

DOLD's monitoring relays such as insulation monitors, differential-current monitors and measuring relays reliably monitor electrical quantities such as current, voltage, power, resistance, etc. and annunciate fault conditions and disturbances. Thus, these products protect also complex systems and ensure an optimal production flow. LEDs on the front provide visual status indications. Output contacts or interfaces for bus systems allow a further transmission of information from these devices, e.g. to fault annunciators.

Monitoring electrical quantities : System

Phase

- Voltage
- Phase failure / Asymmetrie
- Broken neutral wire
- Frequency
- Insulation failures

Monitoring electrical quantities: Load

Load

- Current
- $\cos \varphi$
- Effective power
- Current relays
- Underpower monitors
- Load monitors, overload monitors, load transformers

Monitoring physical quantities : Processes

Installations

- Speed
- Temperature
- Level
- Undervoltage and overvoltage relays, voltage monitors, single- and trhee-phase
- Phase-sequence relays, phase monitors, phase indicators
- Unbalance relays
- Neutral monitors
- Frequency relays
- Insulation / differential-current monitors

Monitoring of multiple quantities / special applications

- Multifunctional relays
- Measuring relays for specific applications

Insulation monitor

Non-earthed (IT) systems

Insulation monitor

Insulation monitors are used in non-earthed systems (IT systems). They measure the insulation resistance against earth of the system to be monitored. Such systems are protected by insulation monitors the use of them in IT systems is required by law by the norm "Safety of Machinery" DIN EN 60204-1 or DIN VDE 0100-410.
Thanks to the deliberately kept simple functionality of insulation monitors from DOLD customers benefit from a considerable cost advantage combined with the high quality standard accustomed from DOLD. Insulation monitors are used to avoid accidents and downtimes in the case of insulation failures and to protect against fire and accidents.
For insulation monitoring in earthed systems, differential-current monitors are used.

Problem:

- The standards DIN VDE 0100-410 and DIN EN 60204-1 require the use of an insulation monitor in non-earthed systems. Our objective is to meet this standard as cost-effective as possible.
- Ensure protection againstfire and accidents by early detection of earth fault currents and slowly evolving insulation faults, e.g. safeguarding fire/explosion-prone areas
- Prevent unscheduled downtimes due to earth faults in medical areas.

Solution:

DOLD insulation monitors are available for d.c. and three-phase systems, a.c. systems and mixed systems. Further, our insulation monitors can be used to monitor switched off loads, mobile power supply units, d.c. systems and rooms used for medical applications.

Earthed (TN) systems

Differential-current monitors

Differential-current monitors are used in earthed systems (TN systems). They monitor the fault current on the basis of the differential-current measurement and are mainly used to prevent expensive downtimes and fire risk that is latently present due to evolving insulation faults. They guarantee an increased safety of operating and installations.
For insulation monitoring in non-earthed systems, insulation monitors are used.

Problem:

- Avoid the risk offire and accidents due to slowly evolving insulation faults: High-resistance faults to exposed conductive parts and to earth are present if the conductive connection of the fault location includes resistances. There is just a risk of fire when the power loss on the fault location is 60 W . This corresponds to a fault current of 260 mA at 230 VAC. Overcurrent devices would not operate in this case.
- Avoid costly downtimes, get an information lead to ensure high operational reliability between maintenance intervals

\mathbf{R}_{F} : Fault resistance (insulation fault)
I_{F} : Fault current
DW : Differential-current monitor
W : Energy consumption on the fault location

Solution:

In their standard variant, DOLD differential-current monitors can be used for d.c. systems or pulsating d.c. systems, and a universal-current-sensitive variant is available for mixed systems.

Basics of monitoring technology in low voltage systems

What means asymmetry (unbalance) in three-phase systems?

The most common system is the 400 V three-phase system (fig. 1) formed from three alternating voltages that are displaced in time by $120^{\circ} \mathrm{el}$. (fig. 2) Between the phases L1, L2, and L3, there are 3 phase-to-phase voltages $U_{1-12}, U_{12-13}, U_{13-1 /}$ that are also referred to as line-to-line voltages. Graphically represented in a phasor diagram, these voltages result in an isosceles triangle (fig. 3). This type of representation is common in electrical engineering to easily illustrate sinusoidal alternating quantities. The 3 voltages against the neutral N of the transformer are the star voltages (phase-to-neutral voltages) $\mathrm{U}_{\mathrm{L} 1-\mathrm{N}}, \mathrm{U}_{\mathrm{L} 2-\mathrm{N}}, \mathrm{U}_{\mathrm{L} 3-\mathrm{N}}$ which can also be drawn in the isosceles triangle.

Under normal conditions in a three-phase system, all voltages are equal in their magnitude and all angles are $120^{\circ} \mathrm{el}$. An deviation from this is called asymmetry (unbalance). How this affects connected loads is described below.

There are two types of asymmetry:
Case 1: Given a stiff system, i.e. the phase-to-phase voltages are constant, the phase-to-neutral voltages on the load (measuring point A) can change without changing the outer symmetry (fig. 4). This is the case with asymmetric loads in star connections and interrupted neutral conductor, i.e. with open neutral (star) point.

Case 2: However, if the phase-to-phase voltages change, this will always cause a change of the phase-to-neutral voltages too. This occurs with motive-power loads when one phase fails (fig. 1b). The motor windings U and V induce a voltage in the disconnected winding W , which does no longer correspond to the original system voltage. Therefore, the threephase system downstream of the fuses on the measuring point B now became asymmetric. This is referred to as reverse power.

To detect an asymmetry in a system, for the 1st case, the 3 phase-
to-phase voltages against the star point (neutral conductor N) must be measured and compared to each other. Even the smallest voltage differences cause an asymmetry. It can be calculated by

Asymmetry (Unbalance) $=\left(\frac{\text { Highest voltage }}{\text { Lowest voltage }}-1\right) * 100$ in (\%) Eq.(1)
In the second case it is enough to compare the magnitude of the phase-to-phase voltages and to determine the asymmetry (unbalance) with equation (1).

Consequences of asymmetry (unbalance) in three-phase systems

1. Neutral conductor interruption

Fig. 2:
Sinusoidal time characteristic

Fig. 1a: Ohmic load

Fig. 1b:
Motive-power load

Fig. 3: Phasor diagram

Fig. 4
Asymmetrical star voltages

Fig. 5:
Asymmetrical phase-to-phase voltages

Measuring relays

At first, the case of a broken neutral conductor is considered. As shown in fig. 4, the phase-to-neutral voltages can reach dangerously high values, up to the magnitude of the phase-to-phase voltage in extreme cases. It is clear that this would damage or destroy connected loads. Such overvoltages are a consequence of a severe unbalance as is encountered frequently in private or commercial systems. This is due to the fact that the electrical devices used there are mainly single-phase consumers with different power consumptions.

Although attention is paid in building installations to symmetrically distribute loads to all 3 phases unsymmetrical loading cannot be avoided in the daily use of electric equipment. An example for a highly unsymmetrical loading may be a washing machine (2000 W) on phase L1, bulbs (100 W) on phase L2 and a radio (20W) on phase L3 (fig. 6b).

In normal system operation, the correct system voltage (230 V) is applied to allloads. However, ifthe neutral conductor is inadvertently not reconnected after work on the installation, for example, and the system is reconnected, the voltage on small loads can reach very high values. In our example, the radio would be at a high risk (power pack would be damaged) and the bulbs would burn out.

It should be the objective to signal even the smallest unbalances by means of measuring relays and to disconnect loads if required before dangerous conditions can evolve. Conventional over/undervoltage relays are not suited for an early detection. To detect an asymmetry of 5%, for example, according to equation (1) only by the use of voltage relays they had to be set to a value of 2.5% overvoltage or undervoltage. However, this would be not useful as there is no need to disconnect at an undervoltage of only 2.5%.

Therefore, DOLD's neutral monitor IL 9069 would be a suited measuring device for this case because it detects an asymmetry of the phase-to-neutral voltages. As the phase-to-neutral voltages can reach high values in case of a fault, as mentioned above, the measuring relay must be rated for this to prevent it from being damaged. Figure 6 a shows an example how the neutral monitor IL 9069 can protect an installation against overvoltage.

Figure 6a
Neutral monitor

2. Reverse voltage

Reverse voltage, often also called reverse feeding, becomes an issue whenever a conductor is interrupted in the electrical installation. Such an interruption can be caused by a blown fuse, a broken conductor or a contact failure in a switching device, for example (Fig. 1b). However, a reverse voltage only occurs when a three-phase motor or transformer is present. Because motors running on two phases due to an interruption have the characteristic to regenerate the missing system phase by themselves. However, magnitude and angle of this voltage do not match with the original system voltage. Therefore, the three-phase system became asymmetrical downstream of the interruption point (measuring B, Fig. 1b). The extent of asymmetry depends on the type, size and loading of the motor.

In the past, the above behaviour was deliberately used to generate a three-phase system from an existing single-phase system. Today, in the age of power electronics, this is no longer necessary. In our case, it would be even detrimental when a phase fails in systems with electrical drives. The problem is that a single-phase operation cannot be immediately detected because the drives continue to operate without changes for the moment. Only when the operating condition is deliberately changed it would be detected, but then it may be too late. Three-phase motors cannot start on a single-phase system, for example.

Also a reversal of the rotational direction by plugging is no longer possible because the motor would continue to run in its original direction even after plugging. This may be dangerous if a reversal is needed for safety reasons such as with presses and calenders. Also motors for elevators and cranes would start in the opposite direction due to the pulling load.

Again, asymmetry (unbalance) relays can be used to prevent conditions of this type. But in this case, devices are needed that compare the three phase-to-phase voltages and evaluate them according to equation 1. As described for the neutral conductor, smallest amounts of asymmetry are detected, which cannot be detected by normal voltage relays.

Figure 7 represents the correct connection of a motor feeder, as an example. The undervoltage relay with integrated unbalance detection IL $9071 / 011$ is used here. Please note that the section between asymmetry relay and motor is not monitored. If this is required for safety reasons, the undercurrent relay IP 9271 must be additionally looped in the motor feeder. With this measure, the whole drive is then optimally protected against phase failure and broken conductor.

Note: For the detection of asymmetry, also the BA 9040 would be suitable, and the broken conductor relay AI 940 for undercurrent detection. However, devices from the I range have been selected for reasons of uniformity.

Fig. 7:
Monitoring for broken conductor and unbalance

Measuring relays

Monitoring of electrical systems for undervoltage and overvoltage

1. Function principle of voltage measuring relays

The considerations below are not only restricted to voltage monitoring but also apply correspondingly to the monitoring of current, $\cos \varphi$, power, temperature, frequency, etc.

Once we have discussed above a special case of under/overvoltage, namely asymmetry (unbalance), we now deal with the normal case, i.e. the monitoring of electrical systems for under/overvoltage.

In sytems where reverse feeding is not to be expected a standard voltage measuring relay is sufficient for monitoring. All DOLD measuring relays and in particular the voltage measuring relays work on the basis of the same principle, no matter whether they operate with or without auxiliary voltage U_{H}. In the following, the function principle is described in more detail on the example of an undervoltage relay.

With the use of an undervoltage relay, the user wants to detect a downward deviation from the nominal voltage, which underruns the permissible tolerance, e.g. 20%. Given a 230 V AC system, this is an undervoltage of 184 V .

The device has two switching points, an upper and a lower. To prevent confusing we speak of upper and lower switching points below.

In a three-phase measuring relay, the upper switching point must at first exceeded in all three phases at the same time in order to enable the device with the undervoltage feature to go to the "good state". That means in our example that the upper switching point must be set to approx. 228 V to allow the device to pick up at a system voltage of 230 V .

If then the voltage drops to a value just under 228 V , the device will not respond to it for the moment. Only when the lower switching point is underrun the relay reports a fault. For this, it is enough that only one of the three voltages drops under the lower switching point.

The difference between both switching points is called hysteresis and is specified either as an absolute value in Volt or relatively in percent (\%) related to the threshold. In the example above, the device must have the lower switching point at 184 V resulting in a hysteresis of 44 V or 19.3%. Figure 8 shows the connections described above in graphical form.

Fig. 8:
Function diagram for undervoltage relay with auxiliary supply

Measuring relays may have two different response principles when the measured value has over/underrun a switching point. In the open-circuit principle, the signal relay in the output only picks up when the fault, e.g. overvoltage occurs. With the closed-circuit principle, the output relay is permanently picked up (energized) in the "good range" of the measured quantity and will only drop out in case of a fault.

To prevent short-time voltage dips from causing an undesired alarm the output relay can be operated with a time delay. If the system voltage reaches again its original value within the delay time t_{1} the output relay will not operate. Likewise, a time delay t_{1} can be realized when the measured voltage returns to the "good range" (refer to Fig. 8).

Due to the measurement principle used, namely the arithmetic averaging, a system-specific delay time ${ }_{0}$ results in the measuring input. At each variation of the measured voltage, small capacitances in the device are caused to charge and discharge. Depending on the amount of the voltage jump, it takes between 100 ms and 1 s before the new measurement internally tunes in.

Now, the five most important parameters are known that can be set together or individually on a voltage measuring relay by the user or are fixed set in the factory These parameters include:

Upper switching point, lower switching point, response principle, delay time t_{1}, and delay time t_{2}. In a block diagram, figure 9 shows the general working principle of a voltage measuring relay.

The considerations above do not only apply to three-phase system but can be also translated to single-phase and direct current systems. It is clear that there is an abundance of design variants for such devices alone from the above mentioned combination options. This wealth of variants can be arbitrarily extended by fitting the devices with further extra functions such as unbalance detection, phase angle measurement, etc.

Fig. 9:
Simplified block diagram of a voltage measuring relay

Measuring relays

2. Practical application of voltage measuring relays

After the theoretical preliminary consideration, we now come to the applications of measuring devices in practice. In particular, discrete devices shall be selected from the general case (figure 9).

In principle, it would be possible to combine all conceivable functions and options, e.g. over/undervoltage, unbalance, phase sequence, current, overload, time delays, etc. in a single device. However, this is not useful in practice as such a device would be too expensive on the one hand and difficult to handle on the other hand because all making conditions would have to be met at the same time to allow the device to report a faultless state at all.

Therefore, form the abundance of measuring and evaluation options, only those are selected that are really required and useful for a certain monitoring task. From these specifications, a device with specific features is then created.

IK 9171 (or alternatively BA 9043)

In the first example, following device features are required: threephase undervoltage measurement, nominal voltage 400 V , N connection option, lower switching point $0.85 \mathrm{U}_{\mathrm{N}}$ and closed-circuit principle. The solution is our standard type:
IK 9171/200 3AC 400/230 V 0,85 U

What can this device do?

Once the system voltage is applied it goes to the "good condition" and the output contact closes. When the system voltage in only one of the phases drops under the lower switching point the output relay drops out (figure 10) and thus it signals the fault condition (closed-circuit principle). When the system voltage increases above the upper switching point again the device detects this and the output contact closes without time delay.

What's this device for?

It is suited for simple monitoring tasks to detect undervoltage in particular in control voltage systems. Also, it is approved for applications according to VDE 0108 (emergency power supply).

Variant

Now, we add the time delay t_{2} to the above device and change the switching point to $0.7 \mathrm{U}_{\mathrm{N}}$. All remaining specifications remain the same. So, you get the device IK 9171/240.

What can this device do?

Same functionality as above. The only difference is that the output contact only closes after the time t_{2} (figure 11) adjustable between 5 and 15 minutes when the voltage exceeds the upper switching point and the device detects this.

What's this device for?

The above device, in particular the single-phase model IK 9173/240, was designed for applications in southern (warmer) countries. The majority of houses there are equipped with air-conditioning systems. In the case of power failures, that occur frequently due to weak and unreliable systems, the cooling compressors must not restart immediately after restoration of supply. This is because the refrigerant must be allowed to return in the compressor firstly, and secondly, it must be prevented that all air-conditioning units start at the same time on the weak system, which would cause a new collapse. They must be started in a coordinated (time-staggered) manner by differently set delay times.

IL 9071

For the second example, there are following requirements: Threephase undervoltage measurement, nominal voltage 400 V , N connection option, lower switching point $0.85 \mathrm{U}_{\mathrm{N}}$, and unbalance detection. This leads to the IL 9071/010.

What can this device do?

In principle, it has all features as the IK 9171/200 plus unbalance detection (figure 11).

What's this device for?

It can not only be used for simple undervoltage detection but also for phase failure detection. Thanks to the built in unbalance detection, it can reliably detect a phase failure also in systems with motive-power load as the phenomenon of reverse voltage is considered.

Fig. 11:
Function diagram for undervoltage relay IL 9071

Measuring relays

IL 9079

For the third example, we opt for following features: three-phase undervoltage measurement, very short response time t_{0}, time delay t_{2} and closed-circuit principle for the device IL 9079.

What can this device do?

Once the system voltage is applied it goes to the "good condition" and the output contact closes (closed-circuit principle). When the system voltage drops under the lower switching point the device immediately responds within $t_{0}=20 \mathrm{~ms}$ and the output contact drops out. When the system voltage recovers the output contact only closes after a time that is adjustable between 0.2 and 2 sec . (figure 12).

What's this device for?

The IL 9079 was designed for the detection of automatic reclosings in three-phase systems. As such rapid auto-reclosures have a duration of only approx. 100 ms a very short response time t_{0} of the device matters. These rapid auto-reclosures can confuse contactor control systems. Using the IL 9079 the control system is shut down and restarted in a controlled way. With a connection trick it is possible to configure the device with reclosing lockout (figure 13).

The three examples above should be enough to demonstrate what an abundance of devices and variants are possible in the field of voltage measurement - only by smart combination of individual functionalities.

Fig. 12:
Function diagram for undervoltage relay IL 9079

Fig. 13:
Application example for IL 9079

Measuring relays

3. General

The last section of the preface deals with general recurring issues with respect of measuring relay use.

Neutral connection

When to use the devices with and without neutral conductor? The basic principle is: If a 4-wire system with neutral conductor is available, you should use a measuring relay that has an N -connection, even when a three-phase connection would be enough. Because such devices are able to measure and compare all 3 phase voltages against N they are more accurate and sensitive than devices with only 3 terminals which use one phase as reference phase and can only measure and compare 2 voltages.

Phase terminals

Basically, three-phase devices with N terminal can also be connected to a single-phase system by bridging all 3 terminals for the phases with each other.

Response principle

In principle, the measuring relays can be designed for open-circuit or closed-circuit mode on the user's request. However, a fitting with opencircuit mode is not useful for an undervoltage relay without auxiliary voltage supply. Because the output relay must be energized in case of a fault (undervoltage) owing to the response principle. But when the voltage drops under the permissible tolerance or a total power failure occurs the output relay can no longer pick up because there is no more energy. Therefore, the closed-circuit principle is the only correct selection for such an application.

Protection of measuring circuits by fuses

One recurring question is how to correctly connect measuring relays with respect to their protection against short-circuits. The standard DIN VDE 0100 Part 430 provide information on this. Section 6.4 .3 says that protective devices are not necessary when (1) the conductor or cable is made so that the risk of a short-circuit is reduced to a minimum and (2) the conductor or cable is not located close to combustible materials. Generally, this is called short-circuit-proof installation.

What does this mean in practice?
To connect a voltage relay to a busbar, for example, considerably smaller conductor cross sections are allowed. But this is only allowed when they are laid separately, equipped with reinforced insulation and shorter than 3 m . The purpose of this is to prevent any contact to each other and thus to prevent a short-circuit. If it happens against expectation, the line must be additionally routed so that it can burn out without danger.

If the user does not want to take care of the above regulations, he must install a protection device directly at the loaction of cross section transition (busbar to measuring conductor) as is required by the cross section and conductor laying. Then, a short-circuit on the supply conductor is cut out by the fuse without any risk. The user does not need to consider the measuring relay in this respect because a short-circuit occuring there is automatically interrupted. It goes without saying that the device can no longer be used after this.

4. Further applications

4.1. Reverse-power protection relay IR 9140

If reverse power to the system is to be prevented, the reverse-power protection relay IR 9140 can be used. It monitors the direction of energy transport in an electrical system. This can be required at connection points to the power grid or industrial systems, for the operation of emergency power units, for generator operation of driving motors, etc.

4.2. Small power stations

An example of the use of different DOLD measuring relays can be encountered in small power stations. Here, over/undervolgage relays with unbalance detection, frequency relays, reverse-power protection relays and speed relays or level sensing relays are used. For a more detailed application description for these devices please refer to our project folder P1 "Small power stations operated in parallel with the system".

4.3. Hospitals

A further application of our measuring relays is the voltage switching and monitoring of the IT system in rooms used for medical applications. Here, undervoltage relays, insulation monitors, current and temperature monitors are used. For more information please refer to our associated project folder P1 "Rooms used for medical applications".

Fault annunciators

Systems and installations become more and more complex due to increased automation, rationalization and growing use of control electronics in machinery and plants. Maintenance expenditures increase and human intervention becomes more and more difficult So, not only the safety but also the service life of such installations is of major importance.

Avoiding failures by preventive maintenance or safely correcting failures within a shortperiod oftime helps to reduce costs. The use of fault annunciators pays off evermore because lost production time can hardly be recovered.

Requirements and field of application

In the course of time, changes have taken place just with respect to detection and processing of faults. In the past, single components from relays, auxiliary contactors and interval time-delay relays were used besides pushbuttons for acknowledgement, horn and indicator lamps to process fault signals. Today, a single module is enough to fulfill this task.

In the meantime, function and annunciating sequences have been standardized by the standard DIN 19 235. Apart from simple electrical group fault, new-value and first-up annunciators, electronic clear text fault annunciating systems are available for complex applications.

Precisely, when using PLC or control system technology it is indispensable to install a fault alarm acquisition independent of the process level to keep control when the plant control fails and thus a damage may occur.

Typical application fields for fault annunciators include:

Industry:

Monitoring of production sequences and processes, monitoring of the production plant, monitoring of machine functions such as V-belt breaking, filter blocking, dry-running of pumps, etc. and the specification of maintenance intervals for preventive maintenance.

Buildings:

Monitoring of heating, ventilation and air-condition systems, doors, gates and windows as well as monitoring of transport and conveying systems.

Environment:

Monitoring of sewage treatment plants, waste incineration plants and power stations.

Group fault, new-value and firt-up annunciators have normally acoustic and visual indicators and are designed for DIN rail mount-
ing or for front panel mounting.
Group fault annunciators are availabel for 6 or 12 (extendable) signals that energize a relay when a fault signal occurs. Such a relay can be de-energized by an acknowledging key. A visual (flash lamp) or an acoustic (horn) transducer is connected to this relay output.

New-value and first-up annunciators are used where the chronology of fault signals is essential.

The new-value annunciator highlights those alarms among a number of alarms the status of which has changed after the last acknowledgement. New-value annunciations are indicated by a flash lamp and after acknowldgement as permanent light until the fault is cleared

The first-up annunciator highlights that alarm among a number of alarms the status of which has changed first after the last acknowledgement. The first occurred fault is indicated by a flashing lamp and consequential faults by permanent light.

Text fault annunciator systems

Text annunciator systems echo the correct sequence of the arrived fault signals. Stored alarms can be called up and viewed on the display. Text fault annunciator systems can be operated as new-value and also as first-up annunciators.

Text fault annunciators have outputs for group annunciation, horn and system readiness. Inputs and outputs are metallically isolated and thus ensure a maximum of interference immunity.

A printer can be used for logging, i.e. for printing out the fault date, time and text.

With an appropriate programming software also other settings such as closed-circuit and open-circuit principle as well as time delay of inputs can be defined apart from the message texts.

A decentralized fault alarm acquisition in complex installations can be configured with up to 30 modules with $8,16,24$ or 32 inputs each. Via a separate module, these modules are connected to a two-wire line which is connected to the central fault annunciator. A maximum of 255 fault alarms can be acquired with this. Additional remote control stations complete the system.

Product Description

The insulation monitor RN 5897/010 of the VARIMETER IMD family provides best and up to date insulation monitoring of modern IT systems in an optimum and state of the art way fulfilling the relevant standards. The device can be used in the most flexible way for AC, DC and AC/DC systems even with large leakage capacity to earth (PE). The adjustment of the setting values is simple and user friendly done on 2 rotary switches on the front of the device. Via display and LEDs the measured value, device parameters and device status are indicated easy to read. With a sealable transparent cover the device is protectet against manipulation.

Function Diagram

Your Advantages

- Preventivefire and system protection
- Detection of symmetric and asymmetric insulation faults
- Quick fault localisation through selective earth fault detection to L_{+} and L-
- Universal application in non-earthed AC, DC, AC/DC networks with up to 300 V nominal voltage
- Easy adjustment of response values and setting parameter via rotational switch and menu display
- Suitable for large leakage capacitances up to $1000 \mu \mathrm{~F}$
- Optimised reaction time for large leakage capacitances
- Monitoring also with voltage-free mains
- Measuring circuit $\mathrm{L}(+) / \mathrm{L}(-)$ with broken wire detection (can be switched off)
- Protective conductor PE1/PE2 with broken wire detection (can't be switched off)

Features

- Insulation monitoring according to IEC/EN 61557-8
- With connection facility of an external coupling device RP 5898 for voltages up to 1000 V
- Trigger output for insulation fault locating system
- 2 separate adjustable response thresholds (using e.g. for pre-Alarm and Alarm)
- Setting range of 1st response value (Pre-Alarm): 2011 ... $2 \mathrm{M} \Omega$
- Setting range of 2 nd response value (Alarm): $1 \mathrm{l} \Omega \ldots 250 \mathrm{k} \Omega$
- 2 changeover contacts für insulation failures-Pre-Alarm and -Alarm
- Energized or de-energized on trip can be selected for indicator relay
- Display for indication of measured value, device parameters and device status
- Setting the maximum leakage capacitance to shorten the response time
- Automatic and manual device self-test
- Alarm storage selectable
- Protection against manipulation by sealable transparent cover
- External control input for combined Test-/Reset-button
- 3 wide voltage input for auxiliary voltage
- Width 52.5 mm

Approvals and Markings

$C \in A C / D C$

Applications

Insulation monitoring of:

- Non-earthed AC, DC, AC/DC networks
- UPS systems
- Networks with frequency inverters
- Battery networks
- Networks with direct current drives
- Hybrid and battery-powered vehicles
- Mobile generator sets

Function

The device is supplied with DC auxiliary voltage via terminals A1(+) / A2. Switching on the auxiliary voltage (Power-On) is followed by an internal self-test for 10 sec (see „Device test functions"). The test process is visible in the display. After this, measurement of the insulation resistance in the measuring circuits begins and the the colour of the backlight changes into green.

Measuring circuit

(Insulation measurement between terminals L(+) / L(-) and PE1/PE2)
The insulation monitor RN 5897 can be operated either with or without coupling device. Max. mains voltage and connection diagrams have to be observed!
If the insulation monitor is operated without coupling device the terminals $\mathrm{L}(+)$ and $\mathrm{L}(-)$ have to be connected directly to the voltage system to be monitored. and the terminals VSG1/L(+) and VSG2/L(-) each have to be bridged (see also operation with coupling device).
A broken wire detection that can be disabled provides a fault signal if both terminals $\mathrm{L}(+)$ and $\mathrm{L}(-)$ are not linked by the connected network.
The type of network (AC, DC, 3NAC) has to be selected.
Also the terminals PE1 and PE2 have to be connected with 2 separate wires to the protective earth. An interruption of a wire also causes a fault signal (see section "Behavior on faulty connection"). The monitoring of the PE connection cannot be de-activated.
To measure the insulation resistance an active measuring voltage with changing polarity is connected between $\mathrm{L}(+) / \mathrm{L}(-)$ and PE1/PE2.The momentary polarity of the measuring cycle is shown on the display by 2 curser segments („MP+" for positive phase and „MP-" for negative phase). The duration of the positive and negative measuring phase depends on the setting of the max. leakage capacity („CE[$\mu \mathrm{F}]$ " in programming mode), the actual leakage capacity of the monitored system and in DC systems also on the level and duration of possible voltage variations. This allows a correct and fast measurement in different network conditions.
At the end of a measuring cycle the actual insulation resistance is produced and indicated. The actual value is shown on the display. The relays for alarm K1 and pre-alarm K2 switch when dropping under the adjusted response values. In addition the backlight of the display changes to orange color on pre-alarm or to red color on alarm. An asymmetric earth fault either to „+" or „"" is also indicated on the display (only in DC- systems, or with a fault on the DC-side of a system).

Manual reset of fault message

Using the display menu in programming mode, the manual reset function for insulation failures can be selected. If manual reset is activated the insulation fault signals of the measuring circuit are stored when dropping under the adjusted response values also if the insulation resistance goes back to healthy state. The minimum value is stored and can be shown on the display. Pressing the "Reset" button on the front side, the alarm signal and the stored minimum value are reset if the actual insulation resistance is in healthy state.

Indicator relay for insulation fault signal

For the indicator relays K1 (contacts 11-12-14, for alarm) and K2 (contacts 21-22-24, for pre-alarm) the function can be set in programming mode to energized on trip or de-energized on trip when the insulation resistance drops below the adjusted response value.
The status of the indicator relays is shown on the display with the two cursor segments "K1" and "K2". When the relay is energized, the corresponding curser lights up.

Trigger output for insulation fault locating system

There is an additional trigger output for an insulation fault detection system on the insulation monitor RN 5897/010.
This trigger output (Y1-Y2) can be coupled with the trigger input $\mathrm{Y} 1-\mathrm{Y} 2$ of RR 5886 to initiate automatic fault location with the insulation fault locating system, consisting of RR 5886 and RR 5887. The trigger output is activated when the measuring value drops under the alarm response value $\left(R_{E}<\right.$ R_{A}). As long as it stays under the response value or an alarm is stored, the trigger output $\mathrm{Y} 1-\mathrm{Y} 2$ remains active.

Function

Broken wire detection

As described in section "Measuring circut", the measuring circuits $L(+) / L(-)$ and the protective conductors PE1/PE2 are constantly monitored for wire breaks - not only at Power-On or a manual or occasional automatic test. The response time of monitoring is only a few seconds. Broken wire detection between $\mathrm{L}(+)$ and $\mathrm{L}(-)$ is performed via coupled alternating voltage. This alternating voltage is short-circuited if the terminals are connected to the connected mains at low-resistance. The device detects that the mains to be monitored is properly connected.
Since this broken wire detection is carried out with alternating voltage, large capacitances should be avoided between $\mathrm{L}(+)$ and $\mathrm{L}(-)$, since the capacitive reactance of these capacitances also short-circuits this alternating voltage. The device would no longer detect a connection fault on $L(+) / L(-)$. Especially parallel lines should be prevented over larger distances.
If larger capacitances between $L(+) / L(-)$ cannot be avoided or if the coupled alternating voltage interferes with the system, the broken wire detection can be de-activated using the display menu in programming mode. Monitoring deactivated, monitoring only during device test or continuous monitoring (every 2 minutes for 10 sec) are the possible options. If the broken wire detection on $L(+) / L(-)$ is de-activated no AC voltage is injected.
The broken wire detection on PE1/PE2 cannot be de-activated.

Device test functions

Principally, 2 different test functions are implemented: The "self-test" and the "expanded test":
The self-test of the device is performed automatically after Power-On and every full operating hours. It can also be triggered manually at any time by pressing the "Test" button at the device front for 2 sec.
With the self-test, contrary to the expanded test, the status of the Indicator relays is not affected; the sequence is as follows:
The display backlight colour changes into orange. For approx.. 2 s all pixels and segments of the LCD are shown. After that the text "Test1" comes up and the measuring pulse is switched for approx. 4 s to negative test phase. The polarity of the test voltage is also indicated on the display by curser segments. Within these 4 s the internal measuring circuit is checked for failures. Then the measuring pulse is switched for approx.. 4 s to positive test phase and more internal tests take place. If no failures turned up and had been recognized, the measurement continuous. The extended test procedure is started when during or at the end of the above described self-test the test button is pressed again for 2 s .
The sequence is similar to the self-test (2 measuring phases of 4 s each) but in addition the output relays go in alarm stated. The display shows "Test2". The test phases of the extended test will be repeated continuously. Pressing the reset button again for 2 s will stop the extended test immediately. The device starts the insulation measurement again.

Behaviour with internal device faults

If internal device faults were detected during the test function, the display backlight changes into red and an error messages (failure code: „Int.1") is indicated. The indicator relays K1 and K2 switch to the alarm state.

Behavior on faulty connection

When detecting broken wire on terminals $L(+) / L(-)$, the measurement is disabled. The reaction time could be up to 2 min . The monitoring relays K1 and K2 go in alarm state, the backlight changes to red. The display shows the fault message "L+/L-". After removing the interruption the fault is automatically reset (max. reaction time up to 2 min) and the measurement of the insulation resistance is continued.
Stored alarm values remain stored. An interruption of the protective earth connections PE1/PE2 causes the same reaction as interrupting the measuring circuit, only the display shows „PE1-PE2".

External control input

To terminals X1/X2 an external combined Test-/Reset button can be connected. If the terminals X1/X2 are bridged for approx.. 1 s the test mode is started. This has the same function as pressing the internal test button. When bridging X1/X2 for > 3 s , a stored alarm will be reset. This has the same function as pressing the internal reset button.

Function

Connection of an external coupling device

An external coupling device RP 5898 can be connected to extend the input voltage range of the monitored voltage system on RN 5897/010. The terminals with the same legend of the insulation monitor and the coupling device (VSG1, VSG2, L(+), L(-)) are connected together. The network to be monitored is connected to terminals L1(+) und L2(-) on the coupling device. Using the display menu in programming mode the connection of the coupling device has to be selected and activated. The broken wire detection is active on the terminals $\mathrm{L} 1(+) / \mathrm{L} 2(-)$ on the coupling device. A broken wire between coupling device and insulation monitor cannot be detected immediately but the measured values on interruption of 1 or 2 wires between coupling device and insulation monitor are much lower as the real values, which will cause an early response of the device.

Programming/setting of parameters/set-up of the insulation monitor

The response values for alarm and pre-alarm can be adjusted via 2 rotary switches „ R_{A} " and „ $R_{p A}$ " on the front of the device. New setting are immediately active and do not require a restart of the unit. More settings can be done with the 3 buttons and the display menu in programming mode. To start the programming mode, the button „Set/ESC" has to be pressed for approx. 2 s . To avoid unauthorized manipulation, this button as well as the rotary switches " R_{A} " and „ R_{pA} " are located behind a sealable transparent cover. When the device changes to programming mode, the measurement is stopped, the display back light changes to orange color and the first parameter is displayed. To scroll the different parameters, the button „Set/ ESC" has to be pressed short. With the 2 scroll buttons (Scroll-Up „ " and Scroll-Down „,") the settings can be modified.
The first parameter is the broken wire detection in the measuring circuit "BrWiD". Possible setting are continuously on („on"), continuously off („oFF") or only active during self-test. The default is "on".
The second parameter is alarm memory "Mem.". Here are 2 options available manual reset („on") und auto reset („oFF"). The default value is „oFF". The third parameter is the relay operation principle „Rel." Settings are: de-energized on trip („n.c.") and energized on trip („n.o."). The default value is „n.c.".
The fourth parameter is the type of network connection "Net". Selection are AC Network („Ac"),DC-Network („dc") or 3NAC-Network („3nAc"). The default value is „Ac".
The fifth parameter ist the setting oft the maximum leakage capacity („CE[$\mu \mathrm{F}]$ "). This can be adjusted to $30 \mu \mathrm{~F}$ („30"), $100 \mu \mathrm{~F}$ („100"), $300 \mu \mathrm{~F}$ („300") and $1000 \mu \mathrm{~F}$ („ 1000 "). The default value is „ 30 ".
The device allow the connection of a coupling device, the sixth parameter activates („on") or de-activates („oFF") the coupling device.
The leave the programming mode the button „Set/ESC" has to be pressed for 2 s . The settings will be activated and stored permanently. After that the device makes a restart similar to power on.

Default-Setting of Parameters		
Nr.	Parameter	Default-Set
1	Broken wire detect in measuring circuit "Broken Wire Detect"	on
2	Storing insulation fault message "Memory"	off
3	Switching mode of output relays "Relay"	n.c. (normally closed) de-energized on trip
4	Power supply type "Net"	AC
5	Max. line capacitance "CE[$\mu \mathrm{F}] "$	30
6	Ext. coupling device "VSG"	off

Circuit Diagram

M11455

Connection Terminals
Terminal designation Signal designation A1(+), A2 Auxiliarx voltage AC or DC L(+), L(-), VSG1, VSG2 Connection for measuring ciruit or Connection for coupling device PE1, PE2 Connection for protective conductor X1, X2 Control input (combined external Test- and Reset-input) Y1, Y2 Alarm trigger output for insulation fault locating system $11,12,13$ Alarm signal relay K1(1 changeover contact) $21,22,23$ Prewarning signal relay K2 (1 changeover contact)

RN 5897/010

Indicators

The colour of the backlight indicates the operating status of the device.
Off: No auxiliary voltage connected
Green: Normal operation (Insulation resistance in healthy state)
Red: Alarm (measured value below alarm response value, device failure, connection failure)
Orange: Warning (measured value below pre-alarm response value, test mode, Parameter set-up mode)

Actual value display

The actual insulation resistance „ $R_{E}[k \Omega]$ " is displayed. If the actual value is $R_{E}<10$ kohm, the value in kohm is displayed with 1 decimal place With values $10 \mathrm{kOhm} \leq R_{E}<500 \mathrm{kOhm}$ the display shows the value without decimal place, with values $500 \mathrm{kOhm} \leq R_{E}<1 \mathrm{MOhm}$ the value is rounded to 10 kOhm . Insulation resistance values $1 \mathrm{MOhm} \leq R_{E}<2$ MOhm are displayed in MOhm with one decimal place. If the resistance is $R_{E}>2 \mathrm{MOHm}$ the display indicates ---- showing the value is higher the 2 MOhm .
In a DC Network an asymmetric insulation resistance to „+" or „"" is indicated by displaying „ $\mathrm{R}_{\mathrm{E}}+[\mathrm{k} \Omega]^{4}$ or ${ }_{\text {„ }}^{\mathrm{E}} \mathrm{R}_{\mathrm{E}}-[\mathrm{k} \Omega]^{4}$
By pressing the scroll buttons (Scroll-Up „्" und Scroll-Down „『") more measured values can be shown. Another value is the mains voltage on $\mathrm{L}(+) / \mathrm{L}(-)$. This is indicated with " $\mathrm{U}_{\mathrm{N}}\left[\mathrm{V}_{\mathrm{AC}}\right]$ " or " $\mathrm{U}_{\mathrm{N}}\left[\mathrm{V}_{\mathrm{DC}}\right]$ " in V depending on the type of network and voltage. If the unit is connected single pole to a 3NAC network the mains voltage cannot be measured. With this setting the voltage value is not displayed. When manual reset is selected, the display shows the minimum stored value of the resistance " $\mathrm{R}_{M}[\mathrm{M} \Omega$]" or " $\mathrm{R}_{M}[\mathrm{k} \Omega]$ " after the value dropped below the response value also when the value goes back to healthy state. The stored minimum value will only be reset when acknowledging the stored Alarm signal (with the reset button). Also the firmware version can be displayed.

Indicators

Display－Indication	Measuring－resp．display value
	Insulating resistance in $\mathrm{k} \Omega$ resp． $\mathrm{M} \Omega$ （，，－－－＂complies RE $\geq 2 \mathrm{M} \Omega$ ）
	Asymmetrical insulating resistance in $\mathrm{k} \Omega$ against L＋or L－at DC－mains
	Measured mains voltage in V at AC－or DC－mains
	Stored min．insulating resistance in $\mathrm{k} \Omega$ resp． $\mathrm{M} \Omega$
	Latest firmware－version

Error Indication

$\left.\left.\begin{array}{|l|c|c|}\hline \text { Display－Indication } & \text { Failure cause } & \text { Failure recovery } \\ \hline \text { Broken wire detection } \\ \text { on } \mathrm{L}(+) / \mathrm{L}(-) .\end{array} \begin{array}{c}\text { Check } \\ \text { measuring circuit } \\ \mathrm{L}(+) \text { and } \mathrm{L}(-)\end{array}\right] \begin{array}{c}\text { Check } \\ \hline \text { Broken wire detection } \\ \text { on PE1／PE2．}\end{array} \quad \begin{array}{c}\text { protective conductor } \\ \text { connections } \\ \text { PE1 and PE2 }\end{array}\right]$

Display－Indication	Test function
嘼㓭或	Display－Test
	Selftesting （measuring switching，measuring voltage， internal tests）
Test2	Advanced Test （additional control of indicator relay）

Notes

In one voltage system only one insulation monitor can be used. This has to be observed when interconnecting two separate systems.

Device terminals PE1 and PE2 must always be connected via separate lines to different terminal points of the protective-conductor system.

The main measuring circuit can be connected with its terminals $\mathrm{L}(+)$ and L-- both to the DC and also AC side of a mixed network; it is done most practically where the primary incoming power supply takes place e.g. with battery networks with connected inverters on the DC side, with Generators/ Transformers with connected Rectifiers or inverters on the AC-side. To monitor a 3NAC system the device can be connected single pole, (L(+) and $\mathrm{L}(-)$ are bridged, to the neutral of the $3 p 4 w$ system. The 3 phases have a low-ohmic (approx. 3-5 Ohm) connection via the transformer windings so also insulation failures of the not directly connected phases are detected. Via the display menu in programming mode the correct type of network needs to be selected (see „Connection Examples").

The measuring circuit of the RN 5897/010 are designed for leakage capacities up to $1000 \mu \mathrm{~F}$. The measurement of the insulation resistance will not be influenced but for the measuring phases longer time periods are necessary as with smaller capacities. If the max. possible leakage capacity is known, the device can be adjusted to the required lower level, which will reduce the response time and measurement time.

Please do not connect external voltage to terminals X1/X2. The control must only be made by bridging X1 and X2.

The trigger output $\mathrm{Y} 1 / \mathrm{Y} 2$ at $\mathrm{RN} 5897 / 010$ is galvanic separated from the rest of the circuit. It determined to be connected to a DOLD insulation fault location system RR5886 and RR5887. Please do not connect external voltages.

ATTENTION !

The device must not be operated without PE1/PE2 connection!

Before checking insulation and voltage, disconnect the monitoring device RN 5897 from the power source!

The device monitors HIGH-VOLTAGE!
Caution High-Voltage when working on the device! Disconnect all power supplies before servicing equipment!

Technical Data

Measuring ciruit L(+)/L(-) to PE1/PE2 (without coupling device)

Voltage range U_{N} :
Frequency range:
Max. line capacitance:
Internal resistance (AC
Measuring voltage
Max. mesured curren
mesured current ($R_{E}=0$): $<1,10 \mathrm{~mA}$
Response inaccuracy: $\pm 15 \% \pm 1.5 \mathrm{k} \Omega \quad$ IEC 61557-8
Response value hysteresis: approx. $+25 \%$; min. $+1 \mathrm{k} \Omega$
On delay
at $\mathrm{C}_{\mathrm{E}}=1 \mu \mathrm{~F}$
R_{E} of ∞ to 0,5 * response value: $<30 \mathrm{~s}$
Measuring time:
At $C_{E}=1 \ldots 1000 \mu \mathrm{~F}$,
R_{E} from ∞ to $1000 \mathrm{k} \Omega$,
R_{E} from ∞ to $100 \mathrm{k} \Omega$,
R_{E} from ∞ to $1 \mathrm{k} \Omega$:
see characteristics
Response values
Pre-warning (,, $\left.\mathrm{R}_{\mathrm{PA}}{ }^{\prime}\right)$:

k ,	20	30	50	100	250	500	1000	2000
Alarm („, $\mathrm{R}_{\mathrm{A}}{ }^{\prime \prime}$)								
$k \Omega$:	1	2	10	20	50	100	150	250

each adjustable via rotational switches

Response value broken
wire detection L(+)/L(-):
Response value broken-
wire detection PE1/PE2:
> approx. $90 \mathrm{k} \Omega$
$>$ approx. $0.5 \mathrm{k} \Omega$
Measuring ciruit L1(+)/L2(-) to PE1/PE2 (with coupling device RP 5898)

Voltage range U_{N} :
Frequency range:
Max. line capacitance:
Innenwiderstand (AC / DC):
Messspannung:
Response inaccuracy: $\pm 15 \% \pm 1.5 \mathrm{k} \Omega \quad$ IEC 61557-8
Response value hysteresis: approx. + 25%; min. $+1 \mathrm{k} \Omega$
On delay
at $C_{E}=1 \mu \mathrm{~F}$
R_{E} of ∞ to $0,5^{*}$ response value: $<30 \mathrm{~s}$
Measuring time:
At $C_{E}=1 \ldots 1000 \mu \mathrm{~F}$,
R_{E} from ∞ to $1000 \mathrm{k} \Omega$,
R_{E} from ∞ to $100 \mathrm{k} \Omega$,
R_{E} from ∞ to $1 \mathrm{k} \Omega$: see characteristics
Response values
Pre-warning (,, $\left.\mathrm{R}_{\mathrm{PA}}{ }^{\prime}\right)$:

$\mathrm{k} \Omega:$	20	30	50	100	250	500	1000	2000
Alarm („$\left.{ }_{\mathrm{H}}{ }^{\prime \prime}\right)$								
$\mathrm{k} \Omega:$	1	2	10	20	50	100	150	250

each adjustable via rotational switches
Response value broken
wire detection L1(+)/L2(-): > approx. $500 \mathrm{k} \Omega$
Response value broken
wire detection PE1/PE2: $\quad>$ approx. $0.5 \mathrm{k} \Omega$
Max. wire length
between insulation monitor
and coupling device: $<0,5 \mathrm{~m}$

Auxiliary voltage input A1(+)/A2

Nom. Voltage	Voltage range	Frequency range
AC/DC $24 \ldots 60 \mathrm{~V}$	AC $19 \ldots 68 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}^{*)}$
	DC $16 \ldots 96 \mathrm{~V}$	$\mathrm{~W}^{*)} \leq 5 \%$
AC/DC $85 \ldots 230 \mathrm{~V}$	AC $68 \ldots 276 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}^{*)}$
	DC $65 \ldots 300 \mathrm{~V}$	$\mathrm{~W}^{*)} \leq 5 \%$
DC $12 \ldots 24 \mathrm{~V}$	DC $9.6 \ldots 30 \mathrm{~V}$	$\mathrm{~W}^{*)} \leq 5 \%$

${ }^{\text {*) }} \mathrm{W}=$ permitted residual ripple of auxiliary supply

Technical Data

Nominal consumption:
DC $12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$:
AC 230 V :
max. 3 W
max. 3.5 VA

Control input X1/X2 for external kombinierte Test-/Reset-Taste

Current flow:
No-load operation voltage
X1 to X2:
Permissible wire length:

Activation time for test signal: approx. 1 s
Activation time for reset signal: > 3 s
Outputs
Indicator contact: 2×1 changeover contact for Alarm (K1) and Pre-Alarm (K2)
energized or de-energized on trip (programmable)
Thermal current $\mathrm{I}_{\text {th }}$: 4 A
Switching capacity
to AC 15:
NO contact:
5 A / AC 230 V
2 A / AC 230 V
IEC/EN 60 947-5-1
NC contact:
2 A / DC 24 V
IEC/EN 60 947-5-1
1×10^{5} switching cycles
4 A gL
IEC/EN 60 947-5-1
max. fuse rating:
Mechanical life:

General Data

Operating mode:
Temperature range
Operation:

Storage:
Altitude:
Clearance and creepage

distances

Rated insulation voltage:
Overvoltage category:
rated impuls voltage /
pollution degree:
IEC 60 664-1
measuring circuit $\mathrm{L}(+) / \mathrm{L}(-)$ to
auxiliary voltage A1(+)/A2 and
indicator relay contacts K 1 , K2 and
trigger output $\mathrm{Y} 1 / \mathrm{Y} 2: \quad 4 \mathrm{kV} / 2$
auxiliary voltage A1(+)/A2 to
indicator relay contacts K 1 , K 2 und
trigger output $\mathrm{Y} 1 / \mathrm{Y} 2$: $\quad 4 \mathrm{kV} / 2$
indicator relay contact K1 to
indicator relay contacts K2: $\quad 4 \mathrm{kV} / 2$
trigger output $\mathrm{Y} 1 / \mathrm{Y} 2$ to
indicator relay contacts K1, K2: 4 kV / 2
Insulation test voltage
Routine test: AC $2,5 \mathrm{kV} ; 1 \mathrm{~s}$

EMC

Electrostatic discharge (ESD): 8 kV (air)
HF irradiation:
$80 \mathrm{MHz} \ldots 1 \mathrm{GHz}: \quad 20 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61000-4-3
$1 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}: \quad 10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61000-4-3
Fast transients:
Surge voltage
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61000-4-3

IEC/EN 61000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61000-4-6
EN 55011
Limit value classe B
IP $40 \quad$ IEC/EN 60529

P 20
IEC/EN 60529
Thermpolastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm ,
Frequency 10 ... 55 Hz, IEC/EN 60 068-2-6
$30 / 060$ / 04
IEC/EN 60 068-1

Technical Data

Terminal designation: Wire connection Cross section:

EN 50005

$0.5 \ldots 4 \mathrm{~mm}^{2}$ (AWG $20-10$) solid or $0.5 \ldots 4 \mathrm{~mm}^{2}$ (AWG 20-10) stranded wire without ferrules $0,5 \ldots 2,5 \mathrm{~mm}^{2}$ (AWG 20-10) stranded wire with ferrules
Stripping length:
Wire fixing:
Fixing torque:
Mounting:
Weight:

Dimensions

Standard Types

RN 5897.12
Article number:

- Auxiliary voltage:

RN 5897.12
Article number:

- Auxiliary voltage:

RN 5897.12
Article number:

- Auxiliary voltage:
- Outputs: 1 changeover contact for pre-warning 1 changeover contact for alarm
- Setting range pre-warning: $201 \Omega \ldots 2 \mathrm{M} \Omega$
- Setting range alarm: $\quad 1 \mathrm{k} \Omega \ldots 250 \mathrm{k} \Omega$
- Trigger output for insulation fault locating system
- With connection facility of a coupling device RP 5898
- Adjustable line capacitance
- Energized or de-energized on trip
- Selection of type of network
- Width: 52.5 mm

Ordering Example for variants

Accessories

RP5898:
Article number: 0066944

- Coupling device for RN 5897.12/010
- Extension of nominal voltage range U to DC max. 1000 V , AC max. 760 V
- Weight: approx. 110 g
- Dimensions
- Width x height x depth: $70 \times 90 \times 71 \mathrm{~mm}$

Connection Example

*1) Auxiliary voltage $U_{H}(A 1(+) / A 2)$) can also be sourced from the monitored voltage system. The voltage range of the auxiliary supply has to be taken into account.
*2) Control input X1/X2 for external combined Test-/Reset-button:

- Control approx. 1 s : Test function
- Control > 3 s: Reset function

*1) Auxiliary voltage $U_{H}(\mathrm{~A} 1(+) / \mathrm{A} 2)$) can also be sourced from the monitored voltage system. The voltage range of the auxiliary supply has to be taken into account.
*2) Control input X1/X2 for external combined Test-/Reset-button:
- Control approx. 1 s : Test function
- Control > 3 s : Reset function

Connection Example

*1) Auxiliary voltage $U_{H}(A 1(+) / A 2)$) can also be sourced from the monitored voltage system. The voltage range of the auxiliary supply has to be taken into account.
*2) Control input X1/X2 for external combined Test-/Reset-button:

- Control approx. 1 s : Test function
- Control > 3 s :
Reset function

Characteristics

VARIMETER IMD
Insulation monitor
RN 5897/300

Product Description

The insulation monitor RN 5897/300 of the VARIMETER IMD family provides best and up to date insulation monitoring of modern IT systems in an optimum and state of the art way fulfilling the relevant standards. The device can be used in the most flexible way for AC, DC and AC/DC systems. The adjustment of the setting values is simple and user friendly done on 3 rotary switches on the front of the device. Via multicolor LED the device status is indicated easy to read. With a sealable transparent cover the device is protectet against manipulation.

Your Advantages

- Preventivefire and system protection
- Detection of symmetric and asymmetric insulation faults
- Universal application in non-earthed AC, DC, AC/DC networks with up to 300 V nominal voltage
- Easy adjustment of response values and setting parameter via rotational switch
- Suitable for large leakage capacitances up to $30 \mu \mathrm{~F}$
- Monitoring also with voltage-free mains
- Measuring circuit $\mathrm{L}(+) / \mathrm{L}(-)$ with broken wire detection (can be switched off)
- Protective conductor PE1/PE2 with broken wire detection (can't be switched off)
- No additional coupling device required

Features

- Insulation monitoring according to IEC/EN 61557-8
- 2 separate adjustable response thresholds (using e.g. for pre-Alarm and Alarm)
- Setting range of 1 st response value (Pre-Alarm): $201 \Omega \ldots 1 \mathrm{M} \Omega$:
- Setting range of 2 nd response value (Alarm): $10 \mathrm{k} \Omega \ldots 250 \mathrm{k} \Omega$
- 2 changeover contacts für insulation failures-Pre-Alarm and -Alarm
- Energized or de-energized on trip can be selected for indicator relay
- LED for status indication
- Automatic and manual device self-test
- Alarm storage selectable
- Protection against manipulation by sealable transparent cover
- External control input for combined Test-/Reset-button
- 3 wide voltage input for auxiliary voltage
- Width 52.5 mm

Approvals and Markings

C \in AC/DC

Applications

Insulation monitoring of:

- Non-earthed AC, DC, AC/DC networks
- UPS systems
- Networks with frequency inverters
- Battery networks
- Networks with direct current drives
- Hybrid and battery-powered vehicles
- Mobile generator sets

Function

The device is supplied with DC auxiliary voltage via terminals A1(+) / A2. Switching on the auxiliary voltage (Power-On) is followed by an internal self-test for 10 sec (see „Device test functions"). The test process is visible in the status LED. After this, measurement of the insulation resistance in the measuring circuits begins and the the colour of the status LED changes to green.

Measuring circuit

(Insulation measurement between terminals L(+)/L(-) and PE1/PE2)
The terminals $\mathrm{L}(+)$ and $\mathrm{L}(-)$ are connected directly to the voltage system to be monitored. A broken wire detection creates a fault signal if there is no low-ohmic connection between both terminals.
The type of network (AC, DC, 3NAC) has to be selected.
Also the terminals PE1 and PE2 have to be connected with 2 separate wires to the protective earth. An interruption of a wire also causes a fault signal (see section "Behavior on faulty connection"). The monitoring of the PE connection cannot be de-activated.
To measure the insulation resistance an active measuring voltage with changing polarity is connected between $\mathrm{L}(+) / \mathrm{L}(-)$ and PE1/PE2.
The duration of the positive and negative measuring phase depends on the actual leakage capacity of the monitored system and in DC systems also on the level and duration of possible voltage variations. This allows a correct and fast measurement in different network conditions.
At the end of a measuring cycle the actual insulation resistance is produced and indicated. The relays for alarm K1 and pre-alarm K2 switch when dropping under the adjusted response values. In addition the LED changes to orange color on pre-alarm or to red color on alarm.

Manual reset of fault message

The rotary switch "UN" is devided in 2 sections. So additional to the type of voltage system also manual or autoreset can be selected. (Alarm storing: manual reset, no alarm storing: auto reset).
If manual reset is activated the insulation fault signals of the measuring circuit are stored when dropping under the adjusted response values also if the insulation resistance goes back to healthy state. Pressing the "Reset" button on the front side for 2 s , the alarm signal are reset if the actual insulation resistance is in healthy state.

Indicator relay for insulation fault signal

For the indicator relays K1 (contacts 11-12-14, for alarm) and K2 (contacts 21-22-24, for pre-alarm) the function energized on trip or de-energized on trip can be set via pre-alarm rotational switch " $R_{P A}$ " when the insulation resistance drops below the adjusted response value.

Broken wire detection

As described in section "Measuring circut", the measuring circuits L(+)/L(-) and the protective conductors PE1/PE2 are constantly monitored for wire breaks-not only at Power-On or a manual or occasional automatic test. The response time of monitoring is only a few seconds. Broken wire detection between $L(+)$ and $L(-)$ is performed via coupled alternating voltage. This alternating voltage is short-circuited if the terminals are connected to the connected mains at low-resistance. The device detects that the mains to be monitored is properly connected.
Since this broken wire detection is carried out with alternating voltage, large capacitances should be avoided between $\mathrm{L}(+)$ and $\mathrm{L}(-)$, since the capacitive reactance of these capacitances also short-circuits this alternating voltage. The device would no longer detect a connection fault on $L(+) / L(-)$.
Especially parallel lines should be avoided over larger distances.
If larger capacitances between $L(+) / L(-)$ cannot be avoided or if the coupled alternating voltage interferes with the system, the broken wire detection can be de-activated using alarm rotary switch " R_{A}. Monitoring deactivated or continuous monitoring (every 2 minutes for 10 sec) are the possible options. If the broken wire detection on $\mathrm{L}(+) / \mathrm{L}(-)$ is de-activated no AC voltage is injected.
The broken wire detection on PE1/PE2 cannot be de-activated.

Function

Device test functions

Principally, 2 different test functions are implemented: The "self-test" and the "expanded test":
The self-test of the device is performed automatically after Power-On and every full operating hours. It can also be triggered manually at any time by pressing the "Test" button at the device front for 2 sec.
With the self-test, contrary to the expanded test, the status of the Indicator relays is not affected; the sequence is as follows:
The self-test is indicated via LED with orange flash code 1. For approx. 4 s to negative test phase. Within these 4 s the internal measuring circuit is checked for failures. Then the measuring pulse is switched for approx.. 4 s to positive test phase and more internal tests take place. If no failures turned up and had been recognized, the measurement continuous. The extended test procedure is started when during or at the end of the above described self-test the test button is pressed again for 2 s .
The sequence is similar to the self-test (2 measuring phases of 4 s each) but in addition the output relays go in alarm stated. The LED shows orange flash code 2. The test phases of the extended test will be repeated continuously. Pressing the reset button again for 2 s will stop the extended test immediately. The device starts the insulation measurement again.

Behaviour with internal device faults

If internal device faults were detected during the test function, the LED flashes continuously red. The indicator relays K1 and K2 switch to the alarm state.

Behavior on faulty connection

When detecting broken wire on terminals $L(+) / L(-)$, the measurement is disabled. The reaction time could be up to 2 min . The monitoring relays K1 and K2 go in alarm state, the LED indicates the red flash code 1. After removing the interruption the fault is automatically reset (max. reaction time up to 2 min) and the measurement of the insulation resistance is continued. Stored alarm values remain stored. An interruption of the protective earth connections PE1/PE2 causes the same reaction as interrupting the measuring circuit, only the LED indicate the red flash code 2.

External control input

To terminals X1/X2 an external combined Test-/Reset button can be connected. If the terminals $\mathrm{X} 1 / \mathrm{X} 2$ are bridged for approx.. 1 s the test mode is started. This has the same function as pressing the internal test button. When bridging $\mathrm{X} 1 / \mathrm{X} 2$ for $>3 \mathrm{~s}$, a stored alarm will be reset. This has the same function as pressing the internal reset button.

Programming/setting of parameters/set-up of the insulation monitor All setting are done with 3 rotary switches on the front of the unit. To avoid unauthorized manipulation of the settings, all 3 switches are located behind a sealable transparent cover. The first rotary switch " R_{A} " sets the response value for alarm. In addition it is divided in 2 sections. If the setting position is in the first section the broken wire detection is permanent enabled, if the setting position is in the second section the broken wire detection is permanent disabled. The second rotary switch " $R_{p A}$ " sets the response value for pre-alarm. In addition it is also divided in 2 sections. If the setting position is in the first section, the relay output function is de-energized on trip, if the setting position is in the second section, the relay output function is energized on trip.
The third rotary switch "UN" selects the type of network connection. It is also divided in 2 sections. If the setting position is in the first section, the unit is on auto reset, if the setting position is in the second section, the unit is on manual reset.
New settings are accepted without restart of the device.

Function Diagram

Flashing Codes LED "ERR'

Circuit Diagram

M11454

Connection Terminals

Terminal designation	Signal designation
A1(+), A2	Auxiliarx voltage AC or DC
L(+), L(-)	Connection for measuring ciruit
PE1, PE2	Connection for protective conductor
X1, X2	Control input (combined external Test- and Reset-input)
$11,12,13$	Alarm signal relay K1 (1 changeover contact)
$21,22,23$	Prewarning signal relay K2 (1 changeover contact)

Indicators

The operational status of the device is indicated on a 3-colour LED:

Off: Green:

Red:
orange:
orange flashing: red flashing:

No auxiliary voltage connected
Normal operation (Insulation resistance in healthy state)
Alarm (measured value below alarm response value)
Warning (measured value below pre-alarm response value)
Test mode procedure (see flashing code diagramm) Failure code (see flashing code diagramm)

Flash code orange Status-LED	Description
1	Selftest (measuring circuit, measuring voltage, internal tests)
2	Advanced Test (additional control of indicator relays)

Notes

In one voltage system only one insulation monitor can be used. This has to be observed when interconnecting two separate systems.

Device terminals PE1 and PE2 mustalways be connected via separate lines to different terminal points of the protective-conductor system.

The main measuring circuit can be connected with its terminals $\mathrm{L}(+)$ and $\mathrm{L}(-)$ both to the DC and also AC side of a mixed network; it is done most practically where the primary incoming power supply takes place e.g. battery networks with connected inverters on the DC side, with Generators Transformers with connected Rectifiers or inverters on the AC-side. To monitor a 3NAC system the device can be connected single pole, (L(+) and $L(-)$ are bridged, to the neutral of the $3 p 4 w$ system. The 3 phases have a low-ohmic (approx. 3 - 5 Ohm) connection via the transformer windings so also insulation failures of the not directly connected phases are detected. Via the rotational switch "UN" the correct type of network needs to be selected (see „Connection Examples").

Please do not connect external voltage to terminals $\mathrm{X} 1 / \mathrm{X} 2$. The control must only be made by bridging X1 and X2.

ATTENTION !

The device must not be operated without PE1/PE2 connection!

Before checking insulation and voltage, disconnect the monitoring device RN 5897 from the power source!

The device monitors HIGH-VOLTAGE!
Caution High-Voltage when working on the device! Disconnect all power supplies before servicing equipment!

Technical Data

Measuring ciruit L(+) / L(-) to PE1 / PE2

Voltage range $U_{N}: \quad$ DC $0 \ldots \max .300 \mathrm{~V}$; AC $0 \ldots \max .300 \mathrm{~V}$

Frequency range:
Max. line capacitance: DC or 40 ... 1000 Hz
$30 \mu \mathrm{~F}$
Internal resistance (AC / DC): > $120 \mathrm{k} \Omega$
Measuring voltage: approx. $\pm 90 \mathrm{~V}$
Max. mesured current ($\mathrm{R}_{\mathrm{E}}=0$): $<0,80 \mathrm{~mA}$
Response inaccuracy: $\quad \pm 15 \% \pm 1.5 \mathrm{k} \Omega \quad$ IEC 61557-8
Response value hysteresis: approx. $+25 \%$; min. $+1 \mathrm{k} \Omega$
On delay
at $C_{E}=1 \mu \mathrm{~F}$,
R_{E} of ∞ to 0.5^{*} response value: $\leq 1 \mathrm{~s}$ (at setting 3 NAC)
$<5 \mathrm{~s}$ (at setting AC, DC)
Measuring time:
At $C_{E}=1 \ldots 30 \mu \mathrm{~F}$,
R_{E} from ∞ to $1000 \mathrm{k} \Omega$,
R_{E} from ∞ to $100 \mathrm{k} \Omega$,
R_{E} from ∞ to $1 \mathrm{k} \Omega$: see characteristics

Response values:

Pre-warning („ $\mathrm{R}_{\mathrm{pA}}{ }^{\prime \prime}$):

$\mathrm{k} \Omega:$	20	50	100	500	1000
Alarm $\left(, R_{\mathrm{A}}{ }^{\text {c }}\right.$)					
$\mathrm{k} \Omega:$	10	20	50	100	250

each adjustable via rotational switches

Response value broken

wire detection $L(+) / L(-)$:
Response value broken
wire detection PE1/PE2:
> approx. $30 \mathrm{k} \Omega$
$>$ approx. $0,5 \mathrm{k} \Omega$

Auxiliary voltage input A1(+)/A2

Nom. Voltage	Voltage range	Frequency range
$\mathrm{AC} / \mathrm{DC} 24 \ldots 60 \mathrm{~V}$	AC $19 \ldots 68 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}^{*)}$
	DC $16 \ldots 96 \mathrm{~V}$	$\mathrm{~W}^{*)} \leq 5 \%$
AC/DC $85 \ldots 230 \mathrm{~V}$	AC $68 \ldots 276 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}^{*)}$
	DC $65 \ldots 300 \mathrm{~V}$	$\mathrm{~W}^{\star)} \leq 5 \%$
DC $12 \ldots 24 \mathrm{~V}$	DC $9,6 \ldots 30 \mathrm{~V}$	$\mathrm{~W}^{\star} \leq 5 \%$

${ }^{*}$) $\mathrm{W}=$ permitted residual ripple of auxiliary supply

Nominal consumption:

DC $24 \mathrm{~V}, 48 \mathrm{~V}$:
max. 3 W
AC 230 V :
max. 3.5 VA
Control input X1/X2 for external kombinierte Test-/Reset-Taste
Current flow:
approx. 3 mA
No-load operation voltage
X1 to X2:
ca. 12 V
Permissible wire length:
< 50 m
Activation time for test signal: approx. 1 s
Activation time for reset signal: > 3 s
Outputs
Indicator contact:

Thermal current I_{th} :
Switching capacity
to AC 15:
NO contact:
NC contact:
to DC 13:
Electrical life
at $5 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:
Short circuit strength max. fuse rating:
Mechanical life:
2×1 changeover contact for Alarm (K1) and Pre-Alarm (K2) energized or de-energized on trip (programmable) 4 A

General Data

Operating mode:
Continuous operation
Temperature range:
Operation:
Altitude:
$-40 \ldots+70^{\circ} \mathrm{C}$

Clearance and creepage
distances
Rated insulation voltage
300 V
Overvoltage category:
III
rated impuls voltage
pollution degree:
IEC 60 664-1
measuring circuit $\mathrm{L}(+) / \mathrm{L}(-)$ to
auxiliary voltage $\mathrm{A} 1(+) / \mathrm{A} 2$ and
indicator relay contacts K1, K2: $4 \mathrm{kV} / 2$
auxiliary voltage A1(+)/A2 to
indicator relay contacts K1, K2: 4 kV / 2
indicator relay contact K1 to
indicator relay contacts K2: $\quad 4 \mathrm{kV} / 2$
EMC
Electrostatic discharge (ESD): 8 kV (air)
HF irradiation:
$80 \mathrm{MHz} \ldots 1 \mathrm{GHz}$
$1 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}: \quad 10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61000-4-3
Fast transients: $2 \mathrm{kV} \quad$ IEC/EN 61000-4-4
Surge voltage
between
wires for power supply: $\quad 1 \mathrm{kV} \quad$ IEC/EN 61 000-4-5
between wire and ground: 2 kV IEC/EN 61 000-4-5
HF-wire guided: 20
20 V
IEC/EN 61000-4-6
Interference suppression
Degree of protection
Housing:
IP 40
EC/EN 60529
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Cross section:
Stranded ferruled:
Multiple wire connection:
Stripping length:
max. fixing torque:
Wire fixing:
Mounting:
Weight:

Dimensions
Width \mathbf{x} height \mathbf{x} depth: $\quad 52.2 \times 90 \times 71 \mathrm{~mm}$

Classification to DIN EN 50155

Vibration and
shock resistance:
Category 1, Class B
IEC/EN 61373
Protective coating of the PCB: No

Standard Types

RN 5897.12/300
Article number:

- Auxiliary voltage:
- Outputs:

Setting range pre-warning.

- Setting range alarm:
- Max. line capacitance:

AC/DC $24 \ldots 60 \mathrm{~V}$
0066942
AC/DC 24 ... 60 V
1 changeover contact for pre-warning
1 changeover contact for alarm

- Energized or de-energized on trip
- Selection of type of network
- Width:
52.5 mm

RN 5897.12/300 AC/DC $85 \ldots 230$ V
Article number:

- Auxiliary voltage:

0066943
AC/DC $85 \ldots 230$ V

- Outputs:

1 Wechsler für Pre-Alarm 1 Wechsler für Alarm

- Setting range pre-warning:
- Setting range alarm:
$201 \Omega \ldots 1 \mathrm{M} \Omega$
- Max. line capacitance:
$10 \mathrm{k} \Omega .250 \mathrm{k} \Omega$
$\quad 30 \mu \mathrm{~F}$
Energized or de-energized on trip
- Selection of type of network
- Width:
52.5 mm

Connection Examples

*1) Auxiliary voltage $\mathrm{U}_{\mathrm{H}}(\mathrm{A} 1(+) / \mathrm{A} 2)$) can also be sourced from the monitored voltage system. The voltage range of the auxiliary supply has to be taken into account.
*2) Control input X1/X2 for external combined Test-/Reset-button:

- Control approx. 1 s : Test function
- Control > 3 s :
Reset function

Characteristics

M11611

VARIMETER IMD
 Insulation monitor
 LK 5896

DOLD 発

Product Description

The insulation monitor LK 5896 of the varimeter IMD family provides best and up to date insulation monitoring of modern IT systems in an optimum and state of the art way, fulfilling the relevant standards. The device can be used in the most flexible way for AC, DC and AC/DC systems even with large leakage capacity to earth (PE). The adjustment of the setting values is simple and user friendly done on 2 rotary switches on the front of the device. Via LEDs the measured value, device parameters and device status are indicated easy to read. The unit has 3 relay contacts to signal Insulation and device failures. The analogue output provides a voltage and current signal proportional to the actual insulation resistance, which can be connected to a superior control (plc), another system or external display unit. In addition the LK 5896 provides a second measuring circuit that can be used to monitor an inverter on the AC side also when the inverter is disconnected.

Connection Terminals	
Terminal designation	Signal designation
A1+, A2	DC-Auxiliary voltage
L(+), L(-)	Connection for main measuring circuit
U, V	Connection for auxiliary measuring circuit
KE, PE	Connection for protective conductor
G, R	Control input (manual/auto reset) G/R not bridged: manual reset G/R bridged: auto reset
G, T	Control input (External test input) connection option for external device test pushbutton
G, HM	Control input (main measuring circuit deactivation) G/HM not bridged: :Main measuring circuit activated G/HM bridged: Main measuring circuit deactivated
G, ZM	Control input (aux. measuring circuit deactivation) GZM not bridged: aux. measuring circuit deactivated G/ZM bridged: aux. measuring circuit activated
XA, GA, IA, UA	Analogue output XA/GA not bridged: UA-GA 0 ... 10V; IA-GA 0 ... 20mA XA/GA bridged: UA-GA 2 ... 10V; IA-GA 4 ... 20mA
Y1, Y2	Alarm trigger output for insulation fault locating system
11, 12, 14	Alarm signal relay (1 changeover contact)
21, 22, 24	Prewarning signal relay (1 changeover contact)
31, 32, 34	Device fault signal relay (1 changeover contact)

Your Advantages

- Preventivefire and system protection
- Quick fault localisation through selective earth fault detection to L+ and L-
- Universal application in non-earthed AC, DC, AC/DC networks with up to 1000 V nominal voltage
- Suitable for large leakage capacitances up to $3000 \mu \mathrm{~F}$
- Simplest setting via engaging rotary switches
- For monitoring photovoltaic system, also with thinfilm technology
- Optimised measuring times - normally shorter than with known methods
- Monitoring also with voltage-free mains
- Additional measuring circuit allows AC output monitoring even with the inverter switched off, e.g. with hybrid vehicles
- Measuring circuit with broken wire detection
- No additional coupling device required
- Trigger output for insulation fault locating system
- Analogue output for value of the insulation resistance: $0 \ldots 10 \mathrm{~V} / 0 \ldots 20 \mathrm{~mA}(2 \ldots 10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA})$

Features

- Insulation monitoring according to IEC/EN 61557-8
- Detection of symmetric and asymmetric insulation faults
- Measuring circuits can be disconnected via control terminals, e.g. for mains couplings
- 1 changeover contact each for prewarning and alarm
- 3. output relay for signalling wire break and device faults
- Prewarning threshold setting range: $20 \mathrm{I} \Omega \ldots 2 \mathrm{M} \Omega$
- Alarm threshold setting range: $1 / \Omega$... $250 \mathrm{k} \Omega$
- Energized or de-energized on trip can be selected for output relay
- Setting the maximum leakage capacitance to shorten the response time
- Simple, clearly arranged adjustment of the device with screwdriver
- LED chain to indicate the current insulation resistance
- Display of active measuring circuits
- Automatic and manual device self-test
- Alarm storage selectable
- External test and reset pushbutton can be connected
- Width: 90 mm

Approvals and Markings

$C \in A C / D C \quad P V$

Applications

Insulation monitoring of:

- Non-earthed AC, DC, AC/DC networks
- UPS systems
- Networks with frequency inverters
- Battery networks
- Networks with direct current drives
- Photovoltaic systems
- Hybrid and battery-powered vehicles

M10832 b

Function Diagram

Flashing Codes LED "ERR"

Function

The device is supplied with DC auxiliary voltage via terminals A1+ / A2; a green "PWR" LED comes on. Switching on the auxiliary voltage is followed by an internal self-test for 10 sec , where the LEDs of the indicator string light up in sequence. After this, measurement of the insulation resistance in the measuring circuits begins.

Main measuring circuit

(Insulation measurement between terminals $L(+) / L(-)$ and PE / KE)
Terminals $\mathrm{L}(+)$ and $\mathrm{L}(-)$ are connected to the mains to be monitored. Broken wire detection, constantly effective during operation, generates an error messages if both terminals are not connected with low resistance through the mains.
In addition, the two terminals PE and KE must be connected to the protective conductor system via separate lines. An error message is given here as well if a line is interrupted (see section "Actions in case of connection faults").
If the main measuring circuit is activated (terminal HM open), an active measuring voltage with alternating polarity is applied between $\mathrm{L}(+)$ / $\mathrm{L}(-)$ and PE / KE to measure the insulation resistance. During the measuring phase with positive polarity, the "HM" LED flashes with a long On-phase and with negative polarity with a short On-phase.
The "HM" LEDs goes off when the main measuring circuit is switched off through bridges of terminals HM-G. Measurement is suspended and no more measuring voltage reaches the measuring circuit, so that in case of coupling to a network where another insulation monitor is already active, no interference can occur.
The length of the positive and negative measuring phases depends on the settings on the rotary switch "CE/ $\mu \mathrm{F}$ ", the actual leakage capacitance of the monitored network and with DC networks, on the level and duration of possible mains voltage fluctuations. Correct and preferably quick measurement is thus given with different mains conditions. In the event of particularly adverse conditions and major interferences, the measuring analysis can be steadied and delayed in addition with rotary switch "tv" if necessary.
The current insulation resistance is determined and analysed at the end of each measuring phase. The LED-chain and the analogue output show the resistance determined, and the output relays for prewarning "VW" and alarm "AL" switch according to the respective response values set. If the response thresholds have been undercut, the LEDs "VW" or "AL" light according to the insulation fault location: "+", "-" or "+" and "-" simultaneously for AC faults or symmetric insulation faults.

Auxiliary measuring circuit

(Insulation measurement between terminals U/V and PE / KE)
The main measuring circuit is connected at the DC side for photovoltaic systems and hybrid vehicles. The AC side is disconnected as long as the inverter is switched off and can therefore not be monitored by the main measuring circuit for insulation faults. However, it is useful to monitor the AC side already before activating the inverter for insulation faults to PE for the inverter not to be even activated in the output circuit in case of insulation faults. For this reason, the insulation monitor LK5896 is equipped with an auxiliary measuring circuit determining the insulation resistance of the AC side to PE / KE. To this end, terminals U and V are connected to any phase preferred on the AC side. Broken wire detection is effective here as well and generates an error message if terminals U / V are not connected at low resistance, e.g. via load resistors, transformer or motor windings. The auxiliary measuring circuit is activated by bridging the device terminals ZM-G, for example, by the break contact of the (released) contactor that activates the inverter. The "ZM" LED lights when the auxiliary measuring circuit is activated.
The auxiliary measuring circuits monitors for the same response values as the main measuring circuit. The current insulation resistance in the auxiliary measuring circuit does not affect the analogue input but is displayed at values < approx. $1.7 \mathrm{M} \Omega$ on the LED-chain through corresponding LEDs, which are selected here in flashing function to distinguish from the main measuring circuit. The "ZM" LED flashes here at the same clock frequency. The LEDs of "VW" or "AL" flash if the respectively set response value is undercut only in the auxiliary measuring circuit.

Function

Storing insulation fault message

If terminal R is open, the insulation fault messages from the main and auxiliary measuring circuit are stored when the respective response value is undercut, but also when the insulation resistance returns to the OK-range. In addition, the temporary minimum values of the insulation resistance are indicated on the LED-chain through dimmed LEDs.
If the "Reset" button on the device front is pressed or terminal R is connected with G, the stored insulation fault messages are reset when the insulation resistance is again in the OK-range.

Output relay for insulation fault messages

The rotary switch "CE/ μ F Rel." allows selecting the operating current (A) or standby current (R) principle for the output relays "AL" (contacts 11-1214) and "VW" (contacts 21-22-24).

With the operating current principle, the relays respond when the response values are undercut, with the standby current principle they release when the response values are undercut.
If 2 different response values are not needed, "VW" and "AL" can be set to the same value. The output relays switch together in this case.

Analogue output

The LK 5896 features a universal analogue output to display the current insulation resistance in the main measuring circuit: Terminal UA-GA: 0 ... 10 V and terminal IA-GA: $0 \ldots 20 \mathrm{~mA}$. By bridging terminals XA-GA, the output can be switched to $2 \ldots 10 \mathrm{~V}$ and $4 \ldots 20 \mathrm{~mA}$.

Trigger output for insulation fault locating system

This trigger output (Y1-Y2) can be coupled with the trigger input Y1-Y2 of RR 5886 to initiate automatic fault location with the insulation fault locating system, consisting of RR 5886 and RR 5887. The trigger output is activated when the measuring value drops under the Alarm response value (AL). As long as it stays under the response value or an alarm is stored, the trigger output $\mathrm{Y} 1-\mathrm{Y} 2$ remains active. To prevent insulation monitor LK 5896 from affecting insulation fault locating, RR 5886 generates the deactivation signal for LK 5896 at its terminals H-G. It is applied to terminals HM-G of LK 5896 and deactivates its measuring circuit.

Broken wire detection

As mentioned above, both the main measuring circuit and the auxiliary measuring circuit are constantly monitored for wire breaks - not only at Power-On or a manual or occasional automatic test. The response time of monitoring is only a few seconds. Broken wire detection between $L(+)$ and $\mathrm{L}(-)$ is performed via coupled alternating voltage. This alternating voltage is short-circuited if the terminals are connected to the connected mains at low-resistance. The device detects that the mains to be monitored is properly connected.
Since this broken wire detection is carried out with alternating voltage, large capacitances should be avoided between $\mathrm{L}(+)$ and $\mathrm{L}(-)$, since the capacitive reactance of these capacitances also short-circuits this alternating voltage. The device would no longer detect a connection fault on $L(+) / L(-)$. Especially parallel lines should be prevented over larger distances. If larger capacitances between $L(+) / L(-)$ cannot be avoided or if the coupled alternating voltage interferes with the system, version LK 5896.13/101 (without broken wire detection on $L(+) / L(-))$ shall be used.

Device test functions

Principally, 2 different test functions are implemented: The "self-test" and the "expanded test":
The self-test of the device is performed automatically after Power-On and every 4 operating hours. It can also be triggered manually at any time by pressing the "Test" button at the device front or with an external pushbutton connected between terminals T and G .
With the self-test, contrary to the expanded test, the status of the output relays and the analogue output are not affected; the sequence is as follows:
Switching to the negative measuring phase is performed for 4 sec . The "HM" LED flashes here with a brief On-phase. The LEDs of the LED-chain are selected in sequence and the internal circuit is checked. After this, switching to the positive measuring phase is performed for 4 sec . The "HM" LED flashes here with a long On-phase. The LED-chain cycles again and additional internal tests are performed. Insulation measurement continues normally after a pause of 2 sec if no faults have occurred.

Function

The expanded test is started when the internal or external "Test" button is pressed (or is still held) at the end of the 8 sec self-test, described above. The sequence is the same as with the self-test (2 measuring phases at 4 sec + 2 sec pause); however, the output relays "AL" and "VW" as well as the associated LEDs switch to the alarm state and the analogue output proceeds to its lowest value.
If the Reset button is pressed during the 8 sec or terminals R-G are connected, the expanded test is terminated after these 8 sec . Otherwise, the phases of the expanded test are constantly repeated, where, in addition, the "ERR" LED and the fault signalling relay (contacts 31-32-34) constantly receive current. However, the expanded test is terminated as soon as the Reset button is pressed. The device switches to the OK-state and restarts insulation measurement.

Behaviour with internal device faults

If internal device faults were detected during the test function, the "ERR" LED is lit continuously and the fault signalling relay (31-32-34) responds. The main measuring circuit is deactivated internally ("HM" LED goes off). The output relays "AL" and "VW" as well as the associated LEDs switch to the alarm state. The analogue output proceeds to its lowest value and all LEDs of the LED-chain extinguish.

Behaviour with connection faults

Ilf the auxiliary measuring circuit is activated by bridging terminals ZM-G, broken wire detection in the auxiliary measuring circuit at U / V is signalled by the "ERR" LED flashing with "Error code 1" and the fault signalling relay responds. Measurement and analysis for the main measuring circuit continue normally.
Measurement is suspended if a line interruption is detected at terminals $\mathrm{L}(+)$ / L(-); the "HM" LED goes off. The state of the output relays "AL" / "VW" and associated LEDs, the display of the LED-chain and the analogue output are "frozen". This Broken wire detection is signalled by the "ERR" LED flashing with "Error code 2" and the fault signalling relay responds. Measurement of the connection insulation resistance restarts after the connection interruption has been corrected. However, stored alarm messages are preserved. If the connections PE / KE to the protectiveconductor system are interrupted, the same responses take place as with an interruption at terminals $L(+) / L(-)$, only that the "ERR" LED indicates "Error code 3".

Indicators		
green LED „PWR":	on when auxiliary supply connected	
red LED „ERR":	permanent on: flashing:	at system error at connection failure
green LED „HM":	flashing: ON-OFF-ratio pe measurement phase:	at active main measuring ciruit, long ON period during measurement phase with positiv polarity short ON period during measure ment phase with negative polarity
green LED „ZM":	permanent on: flashing:	at active auxiliary measuring circuit, ar $R E<2 M \Omega$
yellow LED-chain:	8 LEDs indicate the actual insulating resistance ($\leq 10 \mathrm{k} \Omega \ldots \geq 2 \mathrm{M} \Omega$)	
yellow LED „VW + ${ }^{\text {": }}$	permanent on: flashing:	RE lower then prewarning value to + potential for auxiliary measuring circuit
yellow LED „VW -":	permanent on: flashing:	RE lower then prewarning value to - potential for auxiliary measuring circuit
yellow LEDs „VW +" and „VW -" simultaneity	: permanent on: flashing:	AC-fault / symmetric fault for auxiliary measuring circuit
red LED „AL +":	permanent on: flashing:	tRE lower then tripping value to + potential for auxiliary measuring circuit
red LED ,AL -":	permanent on: flashing:	RE lower then tripping value to - potential for auxiliary measuring circuit
red LEDs „, AL + " ${ }_{\text {and }}$,AL -" simultaneity:	permanent on: flashing:	AC-fault / symmetric fault for auxiliary measuring circuit

Notes

Device terminals PE and KE must always be connected via separate lines to different terminal points of the protective-conductor system. The main measuring circuit can be connected with its terminals $\mathrm{L}(+)$ and $\mathrm{L}(-)$ both to the DC and also AC side of a mixed network; it is done most practically where the primary incoming power supply takes place. Selector switch "tv / UN" should be set accordingly. For photovoltaic systems and hybrid vehicles, the main measuring circuit of the LK 5896 is connected on the DC side; the auxiliary measuring circuit can then be used to monitor the (deactivated) AC side.

For the main measuring circuit, the nominal voltage range for DC is specified with 1000 V ; however, absolute values up to max. DC 1500 V are permissible.

Only one insulation monitor may be active in a network to be monitored, since the devices would otherwise influence each other. When coupling several networks or incoming feed sections, where each of them is equipped with its own insulation monitor, all of them must be deactivated except for one insulation monitor. Such deactivation can be beneficially handled via the HM-G control terminals with the LK 5896. The main measuring circuit is designed for large leakage capacitances up to 3000 $\mu \mathrm{F}$. The selection switch "CE/ FF " must be set accordingly. Measurement of the insulation resistances is not falsified by this; however, longer periods are required for the measuring phases than with small capacitances. If the maximum approximate leakage capacitance is known, the selector switch "CE/ / F" can possibly be set to smaller values, which reduces the response time further.

The measuring circuit should not be connected via longer parallel guided wires, as this may interfere with the broken wire detection. Also large capacities between $\mathrm{L}(+)$ und $\mathrm{L}(-)$ have to be avoided.

No external potentials may be connected to control terminals "ZM", "HM", "T" and "R". The associated reference potential is "G" (identical with PE), and the connection of the terminals is made via bridges to " G ".

The analogue output and trigger output $\mathrm{Y} 1-\mathrm{Y} 2$ are electrically separated from the rest of the circuitry. The trigger output is intended for connection to the DOLD insulation fault locator system, consisting of RR 5886 and RR 5887. No external voltages may be applied.

Attention !

The device must not be operated without KE/PE connection.

Before making insulation and voltage tests, the monitor LK 5896 has to be disconnected. !

The voltage of the monitored voltage system is connected to terminals $\mathrm{L}(+)$ / $\mathrm{L}(-)$. Please observe sufficient distance to terminals of neighbour devices and to the grounded metal cabinet or box (min 0.5 cm).

The device monitors HIGH-VOLTAGE Caution High-Voltage when working on the device! Disconnect all power supplies before servicing equipment!

Technical Data

Main measuring ciruit $\mathrm{L}(+) / \mathrm{L}(-)$ to $\mathrm{PE} / \mathrm{KE}$

Nominal voltage U_{N} : Voltage range:
Frequency range:
Max. line capacitance:
Internal resistance (AC / DC): > $280 \mathrm{k} \Omega$
Measuring voltage: approx. $\pm 95 \mathrm{~V}$
Max. mesured current ($\mathrm{R}_{\mathrm{E}}=0$): $<0.35 \mathrm{~mA}$
Auxiliary measuring circuit U/V to PE / KE
Nominal voltage U_{N} :
AC $0 \ldots 690 \mathrm{~V}$
Voltage range:
Frequency range:
Max. line capacitance:
0 ... $1.1 \mathrm{U}_{\mathrm{N}}$
$16 \ldots 1000 \mathrm{~Hz}$
$10 \mu \mathrm{~F}$
Internal resistance (AC / DC): approx. $2 \mathrm{M} \Omega$
Measuring voltage: approx. 12 V
Max. mesured current ($\mathrm{R}_{\mathrm{E}}=0$): approx. $6 \mu \mathrm{~A}$
Response values R_{E}
Pre-warning (,,VW"):

$\mathrm{k} \Omega$:	20	30	50	70	100	150	250	500	1000	2000
Alarm („AL")										
$\mathrm{k} \Omega$:	1	2	10	20	30	50	70	100	150	250

Response inaccuracy:
$\pm 15 \%+1.5 \mathrm{k} \Omega$
IEC 61557-8
Schaltpunkt-Hysterese
at range $10 \mathrm{k} \Omega \ldots 700 \mathrm{k} \Omega$:
approx. 25%
out of range:
approx. $40 \%+0.5 \mathrm{k} \Omega$
On delay
at $\mathrm{C}_{\mathrm{E}}=1 \mu \mathrm{~F}$,
R_{E} of ∞ to 0,5 * response value: $<10 \mathrm{~s}$
Measuring time: siehe Kennlinie
Input auxiliary voltage
DC-Input (A1+ /A2)
Nominal voltage U_{H} :
Voltage range:
Nominal consumption:
DC 24 V

Control input (between ZM, HM, T, R and G)

Current flow:
No-load voltage to G :
Permissible wire length:
Min. activation time:
approx. 3 mA
approx. 12 V
< 50 m
0.5 s

Output
Contacts:
Thermal current $\mathrm{t}_{\text {th }}$:
Switching capacity
to AC 15:
NO contact:
NC contact:
Electrical life
at $8 \mathrm{~A}, \mathrm{AC} 250 \mathrm{~V}$:
Short circuit strength
max. fuse rating:
Mechanical life:

```
\(3 \times 1\) changeover contacts for VW, AL and ERR
``` 4 A

3 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V
IEC/EN 60 947-5-1
\(1 \times 10^{4}\) switching cycles
\(4 \mathrm{AgL} \quad\) IEC/EN 60 947-5-1
\(10 \times 10^{6}\) switching cycles

Analogue output
for actual insulating value, galvanic separation
Terminals IA(+) / GA:
0 ... 20 mA (bridge XA-GA: 4 ... 20 mA); max. burden \(500 \Omega\)
Terminals UA(+) / GA: \(\quad 0 \ldots 10 \mathrm{~V}\) (bridge XA-GA: \(2 \ldots 10 \mathrm{~V}\)); max. current 10 mA

\section*{Scaling}
lower analogue value:
upper analogue value:
Middle of range:
Formula example
for 0-10V:
\[
\begin{aligned}
& \mathrm{R}_{\mathrm{E}}=0 ; \\
& \mathrm{R}_{\mathrm{E}}=\infty \\
& \mathrm{R}_{\mathrm{E}}=289 \mathrm{k} \Omega
\end{aligned}
\]
\(\mathrm{RE}=289 \mathrm{k} \Omega /(10 \mathrm{~V} / \mathrm{UA}-1)\)
for 2-10V:
\[
\mathrm{RE}=289 \mathrm{k} \Omega /(8 \mathrm{~V} /(\mathrm{UA}-2 \mathrm{~V})-1)
\]

\section*{Technical Data}

\section*{General Data}

Operating mode:
Temperature range
Operation:

Storage:
Relative air humidity:
Atmospheric pressure:

\section*{Altitude:}

Clearance and creepage
distances
rated impulse voltage /
pollution degree

\section*{Continuous operation}
\begin{tabular}{rl}
\(-25 \ldots+60^{\circ} \mathrm{C}\) & \begin{tabular}{l}
(device mounted away \\
from heat generation \\
components)
\end{tabular} \\
\(-25 \ldots+45^{\circ} \mathrm{C}\) & \begin{tabular}{l}
(device mounted without \\
distance heated by \\
devices with same load)
\end{tabular}
\end{tabular}
\(-40 \ldots+70^{\circ} \mathrm{C}\)
\(93 \%\) bei \(40^{\circ} \mathrm{C}\)
860 ... \(1600 \mathrm{mbar}(86\)... 106 kPa)
< 4.000 m
IEC 60 664-1

Main measuring ciruit \(\mathrm{L}(+) / \mathrm{L}(-)\) to
auxiliary voltage DC and
relay contacts VW, AL, ERR
and analogue output IA, UA, GA
and trigger output Y1-Y2: \(8 \mathrm{kV} / 2\)
auxiliary measuring circuit \(\mathrm{U} / \mathrm{V}\) to
auxiliary voltage DC and
relay contacts VW, AL, ERR
and analogue output IA, UA, GA
and trigger output \(\mathrm{Y} 1-\mathrm{Y} 2: \quad 8 \mathrm{kV} / 2\)
auxiliary voltage DC and
trigger output \(\mathrm{Y} 1-\mathrm{Y} 2\) to
relay contacts VW, AL, ERR
and analogue output IA, UA, GA: \(8 \mathrm{kV} / 2\)
relay contact VW to
relay contact AL to
relay contact ERR: \(\quad 4 \mathrm{kV} / 2\)
analogue output IA, UA, GA to
relay contacts VW, AL, ERR
and trigger output Y1-Y2: \(4 \mathrm{kV} / 2\)
trigger output \(\mathrm{Y} 1-\mathrm{Y} 2\) to
relay contacts VW, AL, ERR: \(4 \mathrm{kV} / 2\)
Insulation test voltage
Routine test:
AC 5 kV ; 1 s
AC \(2,5 \mathrm{kV} ; 1 \mathrm{~s}\)
EMC
Electrostatic discharge (ESD): 8 kV (air)
IEC / EN 61000-4-2
HF irradiation:
80 MHz ... \(2.7 \mathrm{GHz}:\)
Fast transients:
\(10 \mathrm{~V} / \mathrm{m}\)
IEC / EN 61000-4-3
Surge voltages
between A1-A2:
4 kV
IEC / EN 61000-4-4
between \(\mathrm{L}(+)-\mathrm{L}(-)\)
between A1, A2 - PE and
L(+), L(-) - PE:
between control line:
between control line
and earth:
HF-wire guided
Interference suppression:

Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:

Shock resistance:
Climate resistance:
Terminal designation:

1 kV
IEC/EN 61000-4-5
2 kV
IEC/EN 61000-4-5
4 kV IEC/EN 61000-4-5
IEC/EN 61000-4-5
1 kV IEC/EN 61000-4-5
10V IEC / EN 61000-4-6
Limit value class \(\mathrm{A}^{*}\)
*) The device is designed for the usage under industrial conditions (Class A, EN 55011).
When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated. To avoid this, appropriate measures have to be taken.
\begin{tabular}{|c|c|}
\hline IP 40 & EC/EN 60529 \\
\hline IP 20 & IEC/EN 6052 \\
\hline \multicolumn{2}{|l|}{Thermpolastic with V0 behaviour according to UL subject 94} \\
\hline \multicolumn{2}{|l|}{IEC/EN 60 068-2-6} \\
\hline \multicolumn{2}{|l|}{Amplitude 0.35 mm} \\
\hline \multicolumn{2}{|l|}{frequency \(10 \ldots 55 \mathrm{~Hz}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Amplitude \(\pm 1 \mathrm{~mm}\), frequency \(2 \ldots 13.2 \mathrm{~Hz}\) \(13.2 \ldots 100 \mathrm{~Hz}\), acceleration \(\pm 0.7 \mathrm{~g}_{\mathrm{n}}\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\(10 \mathrm{~g} / 111 \mathrm{~ms}\), 3 pulses IEC/EN 60068-2-27} \\
\hline 25/060/04 & C/EN 60068 \\
\hline V 50005 & \\
\hline
\end{tabular}

Thermpolastic with V0 behaviour according to UL subject 94
IEC/EN 60 068-2-6
intude 0.35 mm
frequency \(10 \ldots 55 \mathrm{~Hz}\)
. \(\pm 1 \mathrm{~mm}\),frequency \(2 \ldots 13.2 \mathrm{~Hz}\)
\(3.2 \ldots 100 \mathrm{~Hz}\), acceleration \(\pm 0.7 \mathrm{~g}_{n}\)
05/060/04 puse IEIECIEN 60 068-1 EN 50005

\section*{Technical Data}

Wire connection Screw terminals (fixed):

Insulation of wires or sleeve length:
Wire fixing:
Fixing torque:
Mounting:
Weight:

DIN 46 228-1/-2/-3/-4
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2,5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) or
\(2 \times 1,5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) DIN 46228-1/-2/-3-4 or
\(2 \times 2,5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) DIN 46228-1/-2/-3

8 mm
Plus-minus terminal screws M3,5 terminal with wire protection 0.8 Nm

DIN rail
IEC / EN 60715
approx. 584 g

\section*{Dimensions}

Width x height x depth: \(90 \times 90 \times 121 \mathrm{~mm}\)

\section*{Standard Type}

LK 5896.13/100 DC 20 ... 30 V
Article number:
- Outputs:

0065131
1 changeover contact for pre-warning 1 changeover contact for alarm 1 changeover contact for connection- / system error
- Auxiliary measuring circuit for inverter output
- Auxiliary voltage:

DC 20 ... 30 V
- Setting range pre-warning:
\(20 \mathrm{k} \Omega \ldots 2 \mathrm{M} \Omega\)
- Setting range alarm:
\(1 \mathrm{k} \Omega \ldots 250 \mathrm{k} \Omega\)
- Adjustable line capacitance
- Open- / or closed circuit operation
- Adjustable time delay / selection of AC or DC connection
- Analogue output: \(\quad 0\)... \(20 \mathrm{~mA} / 4 \ldots 2 \mathrm{~mA} ; 0 \ldots 10 \mathrm{~V} / 2 \ldots 10 \mathrm{~V}\)
- Trigger output for insulation fault locating system
- Width:

90 mm

\section*{Variant}

LK 5896.13/101:
without wire-break detection at \(\mathrm{L}(+) / \mathrm{L}(-)\)

\section*{Connection Examples}

Insulation monitoring DC-side

Insulation monitoring AC-side

Max. measuring time in response to line capacitance

VARIMETER IMD
Insulation monitor
LK 5895
DOLD 発

\section*{Product Description}

The insulation monitor LK 5895 of the varimeter IMD family provides best and up to date insulation monitoring of modern IT systems in an optimum and state of the art way fulfilling the relevant standards. The device can be used in the most flexible way for AC, DC and AC/DC systems even with large leakage capacity to earth (PE). The adjustment of the setting values is simple and user friendly done on 2 rotary switches on the front of the device. Via LEDs the measured value, device parameters and device status are indicated easy to read.

\section*{Your Advantages}
- Preventivefire and system protection
- Quick fault localisation through selective earth fault detection to \(L+\) and \(L-\)
- Universal application in non-earthed AC, DC, AC/DC networks
with up to 1000 V nominal voltage
- Suitable for large leakage capacitances up to \(3000 \mu \mathrm{~F}\)
- Simplest setting via engaging rotary switches
- For monitoring photovoltaic system, also with thinfilm technology
- Optimised measuring times - normally shorter than with known methods
- Monitoring also with voltage-free mains
- Measuring circuit with broken wire detection
- No additional coupling device required

\section*{Features}
- Insulation monitoring according to IEC/EN 61557-8
- Detection of symmetric and asymmetric insulation faults
- Measuring circuits can be disconnected via control terminals, e.g. for mains couplings
- 1 changeover contact each for prewarning and alarm
- Prewarning threshold setting range: \(201 \Omega \ldots 2 \mathrm{M} \Omega\)
- Alarm threshold setting range: \(11 / \Omega \ldots 250 \mathrm{k} \Omega\)
- Energized or de-energized on trip can be selected for output relay
- Setting the maximum leakage capacitance to shorten the response time
- Simple, clearly arranged adjustment of the device with screwdriver
- LED chain to indicate the current insulation resistance
- Display of active measuring circuits
- Automatic and manual device self-test
- Alarm storage selectable
- External test and reset pushbutton can be connected
- Width 90 mm

\section*{Approvals and Markings}

\section*{\(C \in A C / D C\) PV}

\section*{Applications}

Insulation monitoring of:
- Non-earthed AC, DC, AC/DC networks
- UPS systems
- Networks with frequency inverters
- Battery networks
- Networks with direct current drives
- Photovoltaic systems
- Hybrid and battery-powered vehicles

\section*{Function Diagram}

\section*{Flashing Codes LED "ERR"}

\section*{Function}

If the device is supplied with DC auxiliary voltage, the a green "PWR" LED comes on. Switching on the auxiliary voltage is followed by an internal selftest for 10 sec , where the LEDs of the indicator string light up in sequence. After this, measurement of the insulation resistance in the measuring circuits begins.

\section*{Measuring circuit}
(Insulation measurement between terminals \(\mathrm{L}(+) / \mathrm{L}(-)\) and \(\mathrm{PE} / \mathrm{KE}\)) Terminals \(\mathrm{L}(+)\) and \(\mathrm{L}(-)\) are connected to the mains to be monitored. Broken wire detection, constantly effective during operation, generates an error messages if both terminals are not connected with low resistance through the mains.
In addition, the two terminals PE and KE must be connected to the protective conductor system via separate lines. An error message is given here as well if a line is interrupted (see section "Actions in case of connection faults").
If the main measuring circuit is activated (terminal HM open), an active measuring voltage with alternating polarity is applied between \(\mathrm{L}(+) / \mathrm{L}(-)\) and PE / KE to measure the insulation resistance. During the measuring phase with positive polarity, the "HM" LED flashes with a long On-phase and with negative polarity with a short On-phase. The "HM" LEDs goes off when the main measuring circuit is switched off through bridges of terminals HM-G. Measurement is suspended and no more measuring voltage reaches the measuring circuit, so that in case of coupling to a network where another insulation monitor is already active, no interference can occur.
The length of the positive and negative measuring phases depends on the settings on the rotary switch "CE/ \(\mu \mathrm{F}\) ", the actual leakage capacitance of the monitored network and with DC networks, on the level and duration of possible mains voltage fluctuations. Correct and preferably quick measurement is thus given with different mains conditions. In the event of particularly adverse conditions and major interferences, the measuring analysis can be steadied and delayed in addition with rotary switch "tv" if necessary.
The current insulation resistance is determined and analysed at the end of each measuring phase. The LED-chain show the resistance determined, and the output relays for prewarning "VW" and alarm "AL" switch according to the respective response values set. If the response thresholds have been undercut, the LEDs "VW" or "AL" light according to the insulation fault location: "+", "-" or "+" and "-" simultaneously for AC faults or symmetric insulation faults.

\section*{Storing insulation fault message}

If terminal R is open, the insulation fault messages (relay, LEDs) are stored when the respective response value is undercut, but also when the insulation resistance returns to the OK-range. In addition, the temporary minimum values of the insulation resistance are indicated on the LEDchain through dimmed LEDs.
If the "Reset" button on the device front is pressed or terminal \(R\) is connected with \(G\), the stored insulation fault messages are reset when the insulation resistance is again in the OK-range.

\section*{Output relay for insulation fault messages}

The rotary switch "CE/ \(\mu \mathrm{F}\) Rel." allows selecting the open circuit (A) or closed circuit (R) operation for the output relays "AL" (contacts 11-12-14) and "VW" (contacts 21-22-24).
With the open circuit operation, the relays respond when the response values are undercut, with the closed circuit operation they release when the response values are undercut.
If 2 different response values are not needed, "VW" and "AL" can be set to the same value. The output relays switch together in this case (,2u").

\section*{Broken wire detection}

As mentioned above, all terminals of the measuring circuit are constantly monitored for wire breaks - not only at Power-On or a manual or occasional automatic test. The response time of monitoring is only a few seconds. Broken wire detection between \(\mathrm{L}(+)\) and \(\mathrm{L}(-)\) is performed via coupled alternating voltage. This alternating voltage is short-circuited if the terminals are connected to the connected mains at low-resistance. The device detects that the mains to be monitored is properly connected. Since this broken wire detection is carried out with alternating voltage, large capacitances should be avoided between \(\mathrm{L}(+)\) and \(\mathrm{L}(-)\), since the capacitive reactance of these capacitances also short-circuits this alternating voltage. The device would no longer detect a connection fault on \(\mathrm{L}(+) / \mathrm{L}(-)\). Especially parallel lines should be prevented over larger distances.
If larger capacitances between \(\mathrm{L}(+) / \mathrm{L}(-)\) cannot be avoided or if the coupled alternating voltage interferes with the system, version LK 5895.12/011 (without broken wire detection on \(\mathrm{L}(+) / \mathrm{L}(-)\)) shall be used.

\section*{Function}

\section*{Device test functions}

Principally, 2 different test functions are implemented: The "self-test" and the "expanded test":
The self-test of the device is performed automatically after Power-On and every 4 operating hours. It can also be triggered manually at any time by pressing the "Test" button at the device front or with an external pushbutton connected between terminals T and G .
With the self-test, contrary to the expanded test, the status of the output relays and the analogue output are not affected; the sequence is as follows:
Switching to the negative measuring phase is performed for 4 sec . The "HM" LED flashes here with a brief On-phase. The LEDs of the LED-chain are selected in sequence and the internal circuit is checked. After this, switching to the positive measuring phase is performed for 4 sec . The "HM" LED flashes here with a long On-phase. The LED-chain cycles again and additional internal tests are performed. Insulation measurement continues normally after a pause of 2 sec if no faults have occurred.
The expanded test is started when the internal or external "Test" button is pressed (or is still held) at the end of the 8 sec self-test, described above. The sequence is the same as with the self-test (2 measuring phases at 4 sec + 2 sec pause); however, the output relays "AL" and "VW" as well as the associated LEDs switch to the alarm state and the analogue output proceeds to its lowest value.
If the Reset button is pressed during the 8 sec or terminals R-G are connected, the expanded test is terminated after these 8 sec . Otherwise, the phases of the expanded test are constantly repeated, where, in addition, the "ERR" LED is on. However, the expanded test is terminated as soon as the Reset button is pressed. The device switches to the OK-state and restarts insulation measurement.

\section*{Behaviour with internal device faults}

If internal device faults were detected during the test function, the "ERR" LED is lit continuously and the measuring circuit is deactivated internally ("HM" LED goes off). The output relays "AL" and "VW" as well as the associated LEDs switch to the alarm state and all LEDs of the LED-chain extinguish.

\section*{Behaviour in the case of connection faults}

If broken wire is detected on terminals \(L(+) / \mathrm{L}(-)\), the measurement is interrupted and the LED "HM" goes off. This connection failure is indicated by LED "ERR" with "failure code 2". The output relays "AL" and "VW" as well as the corresponding LEDs go into alarm state and all LEDs of the indicator LED chain go off. After removing the the interruption the measurement of the insulation resistance starts again. Stored alarm states remain active.
When interrupting the connection PE / KE to the protective ground, the unit reacts in the same way as with an interruption on \(L(+) / L(-)\), only the LED "ERR" shows "failure code 3".

\section*{Indicators}
\begin{tabular}{|c|c|c|}
\hline green LED „PWR": & \multicolumn{2}{|l|}{on when auxiliary supply connected} \\
\hline red LED „ERR": & permanent on: flashing: & at system error at connection failure \\
\hline green LED „HM": & flashing: ON-OFF-ratio pe measurement phase: & \begin{tabular}{l}
at active main measuring ciruit, \\
long ON period during measurement phase with positiv polarity short ON period during measurement phase with negative polarity
\end{tabular} \\
\hline yellow LED-chain: & \multicolumn{2}{|l|}{8 LEDs indicate the actual insulating resistance
\[
(\leq 10 \mathrm{k} \Omega \ldots \geq 2 \mathrm{M} \Omega)
\]} \\
\hline gyellow LED „VW +": & permanent on: & \(R_{E}\) lower then prewarning value to + potential \\
\hline yellow LED „VW -": & permanent on: & \(R_{E}\) lower then prewarning value to - potential \\
\hline \multicolumn{3}{|l|}{yellow LEDs „VW +"} \\
\hline red LED „AL +": & permanent on: & \(\mathrm{R}_{\mathrm{E}}\) lower then tripping value to + potential \\
\hline ed LED „AL -": & permanent on: & \(R_{E}\) lower then tripping value to - potential \\
\hline \multicolumn{3}{|l|}{LEDS „AL + "} \\
\hline nd „,AL -" simultaneity: & permanent on: & aut \\
\hline
\end{tabular}

\section*{Notes}

Device terminals PE and KE must always be connected via separate lines to different terminal points of the protective-conductor system.

The measuring circuit can be connected with its terminals \(L(+)\) and \(L(-)\) both to the DC and also AC side of a mixed network; it is done most practically where the primary incoming power supply takes place. Selector switch "tv / \(U_{N}\) " should be set accordingly.
For photovoltaic systems and hybrid vehicles, the measuring circuit of the LK 5895 is connected on the DC side; the auxiliary measuring circuit can then be used to monitor the (deactivated) AC side.

For the main measuring circuit, the nominal voltage range for DC is specified with 1000 V ; however, absolute values up to max. DC 1500 V are permissible.

Only one insulation monitor may be active in a network to be monitored, since the devices would otherwise influence each other. When coupling several networks or incoming feed sections, where each of them is equipped with its own insulation monitor, all of them must be deactivated except for one insulation monitor. Such deactivation can be beneficially handled via the HM-G control terminals with the LK 5895.

The measuring circuit is designed for large leakage capacitances up to \(3000 \mu \mathrm{~F}\). The selection switch "CE/ \(\mu \mathrm{F}\) " must be set accordingly. Measurement of the insulation resistances is not falsified by this; however, longer periods are required for the measuring phases than with small capacitances. If the maximum approximate leakage capacitance is known, the selector switch "CE/ \(\mu \mathrm{F}\) " can possibly be set to smaller values, which reduces the response time further.

The measuring circuit should not be connected via longer parallel guided wires, as this may interfere with the broken wire detection. Also large capacities between \(L(+)\) und \(L(-)\) have to be avoided.

No external potentials may be connected to control terminals, "HM", "T" and "R". The associated reference potential is "G" (identical with PE), and the connection of the terminals is made via bridges to "G".

\section*{Attention!}

The device must not be operated without KE/PE connection.

Before making insulation and voltage tests, the monitor LK 5895 has to be disconnected. !

The voltage of the monitored voltage system is connected to terminals \(L(+) / L(-)\). Please observe sufficient distance to terminals of neighbour devices and to the grounded metal cabinet or box (min 0.5 cm).

The device monitors HIGH-VOLTAGE
Caution High-Voltage when working on the device! Disconnect all power supplies before servicing equipment!

\section*{Technical Data}

\section*{Measuring ciruit \(\mathrm{L}(+) / \mathrm{L}(-)\) to \(\mathrm{PE} / \mathrm{KE}\)}

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
Voltage range:
Frequency range:
Max. line capacitance:
DC \(0 \ldots 1000\) V; AC \(0 \ldots 1000\) V

Internal resistance (AC / DC): \(3000 \mu \mathrm{~F}\)
Measuring voltage: \(\quad\) approx. \(\pm 95 \mathrm{~V}\)
Max. mesured current (\(\mathrm{R}_{\mathrm{E}}=0\)): \(<0.35 \mathrm{~mA}\)
Response values \(R_{E}\)
Pre-warning (,,VW"):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{k} \Omega:\) & 20 & 30 & 50 & 70 & 100 & 150 & 250 & 500 & 1000 & 2000 \\
\hline Alarm (,,AL") \\
\hline \(\mathrm{k} \Omega:\) & 1 & 3 & 10 & 20 & 30 & 50 & 70 & 100 & 150 & 250 \\
\hline
\end{tabular}
each adjustable via rotational switches
Response inaccuracy:
Response value hysteresis
at range \(10 \mathrm{k} \Omega \ldots 700 \mathrm{k} \Omega\) :
out of range:
On delay
at \(C_{E}=1 \mu \mathrm{~F}\),
\(R_{E}\) of \(\infty\) to \(0,5^{*}\) response value: \(<10 \mathrm{~s}\)
Input auxiliary voltage
DC-Input (A1+ /A2)
Nominal voltage \(U_{H}\) :
Voltage range:
Nominal consumption:
DC 24 V
.. 30 V

Control input (between HM, T, R and G)

\section*{Current flow:}

No-load voltage to G:
Permissible wire length:
Min. activation time:
\(\pm 15 \%+1.5 \mathrm{k} \Omega\)
approx. 25 \%
approx. \(40 \%+0.5 \mathrm{k} \Omega\)

\section*{Output}

Contacts:
Thermal current \(I_{t h}\) :
Switching capacity
to AC 15:
NO contact:
NC contact:
Electrical life
at \(8 \mathrm{~A}, \mathrm{AC} 250 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:
approx. 3 mA
approx. 12 V
< 50 m
0.5 s

General Data
Operating mode:
Temperature range Operation:

\section*{Storage:}

Relative air humidity:
Atmospheric pressure:
Altitude:
Clearance and creepage
distances
rated impulse voltage /
pollution degree
Measuring ciruit \(\mathrm{L}(+) / \mathrm{L}(-)\) to
auxiliary voltage DC und relay contacts VW, AL: auxiliary voltage DC to relay contacts VW, AL: relay contacts VW to relay contact AL:
Insulation test voltage
Routine test:

3 A / AC 230 V IEC/EN 60 947-5-1 1 A / AC 230 V IEC/EN 60 947-5-1
\(1 \times 10^{4}\) switching cycles
\(4 \mathrm{AgL} \quad\) IEC/EN 60 947-5-1
\(10 \times 10^{6}\) switching cycles

Continuous operation
\begin{tabular}{ll}
\(-25 \ldots+60^{\circ} \mathrm{C}\) & \begin{tabular}{l}
(device mounted away \\
from heat generation \\
components)
\end{tabular} \\
\(-25 \ldots+45^{\circ} \mathrm{C}\) & \begin{tabular}{l}
(device mounted without \\
distance heated by \\
devices with same load)
\end{tabular} \\
\(-40 \ldots+70^{\circ} \mathrm{C}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
\(93 \%\) bei \(40^{\circ} \mathrm{C}\) \\
\(860 \ldots 1600 \mathrm{mbar}(86 \ldots 106 \mathrm{kPa})\) \\
\(<4.000 \mathrm{~m}\)
\end{tabular}\(\quad\) IEC \(60664-1\)

\section*{Technical Data}

\section*{EMC}

Electrostatic discharge (ESD): 8 kV (air) IEC / EN 61000-4-2
HF irradiation:
\begin{tabular}{llr}
\(80 \mathrm{MHz} \ldots 2.7 \mathrm{GHz}:\) & \(10 \mathrm{~V} / \mathrm{m}\) & IEC / EN 61000-4-3 \\
\begin{tabular}{l}
Fast transients: \\
Surge voltages \\
between A1-A2: \\
between L(+) - L(-): \\
between A1, A2 - PE and
\end{tabular} & 4 kV & IEC / EN 61000-4-4 \\
L(+), L(-) - PE: & 1 kV & \\
\begin{tabular}{l}
between control line: \\
between control line \\
and earth: \\
HF-wire guided
\end{tabular} & 4 kV & IEC/EN 61000-4-5 \\
& \(0,5 \mathrm{kV}\) & \\
\hline
\end{tabular}

Limit value class A*)
*) The device is designed for the usage under industrial conditions (Class A, EN 55011).
When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated. To avoid this, appropriate measures have to be taken.

\section*{IP 40}

IEC/EN 60529
IP 20
IEC/EN 60529
Thermpolastic with V0 behaviour
according to UL subject 94
IEC/EN 60 068-2-6
Amplitude 0.35 mm
frequency 10 ... 55 Hz
Amplitude \(\pm 1 \mathrm{~mm}\), frequency \(2 \ldots 13.2 \mathrm{~Hz}\) \(13.2 \ldots 100 \mathrm{~Hz}\), acceleration \(\pm 0.7 \mathrm{~g}_{\mathrm{n}}\)
\(10 \mathrm{~g}_{\mathrm{n}} / 11 \mathrm{~ms}\), 3 pulses IEC/EN 60068-2-27
25/060/04
IEC/EN 60 068-1
EN 50005
DIN 46 228-1/-2/-3/-4
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2,5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) or
\(2 \times 1,5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)
DIN 46228-1/-2/-3-4
or
\(2 \times 2,5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) DIN 46228-1/-2/-3

8 mm
Plus-minus terminal screws M3,5
terminal with wire protection
0.8 Nm

DIN rail
IEC / EN 60715
approx. 500 g

\section*{Dimensions}

\section*{Width x height x depth: \(\quad 90 \times 90 \times 121 \mathrm{~mm}\)}
\begin{tabular}{ll}
\hline Standard Type & \\
\hline LK 5895.12/010 \(\quad \mathrm{DC} 20 \ldots 30 \mathrm{~V}\) \\
Article number: & 0065217 \\
- Outputs: & 1 changeover contact for pre-warning \\
- Auxiliary voltage: & 1 changeover contact for alarm \\
- Setting range pre-warning: & \(\mathrm{DC} 20 \ldots 30 \mathrm{~V}\) \\
- Seting range alarm: & \(1 \mathrm{k} \Omega \ldots 2 \mathrm{M} \Omega\) \\
- Adjustable line capacitance \\
- Open- / or closed circuit operation \\
- Width: & 90 mm \\
-
\end{tabular}

\section*{Variant}

LK 5895.12/011:

\section*{Connection Examples}

Insulation monitoring DC-side

Insulation monitoring AC-side

\section*{Characteristic}

Max. measuring time in response to line capacitance

M11295

\section*{VARIMETER IMD \\ Insulation monitor \\ LK 5894}

\section*{Product Description}

The insulation monitor LK 5894 of the varimeter IMD family provides best and up to date insulation monitoring of modern IT systems in an optimum and state of the art way fulfilling the relevant standards. The device can be used in the most flexible way for AC, DC and AC/DC systems even with large leakage capacity to earth (PE). The adjustment of the setting values is simple and user friendly done on 2 rotary switches on the front of the device. Via LEDs the measured value, device parameters and device status are indicated easy to read.

Connection Terminals
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1+, A2 & DC-Auxiliary voltage \\
\hline L(+), L(-) & Connection for measuring ciruit \\
\hline KE, PE & Connection for protective conductor \\
\hline G, R & \begin{tabular}{l}
Control input (manual/auto reset) \\
G/R not bridged: manual reset \\
G/R bridged: auto reset
\end{tabular} \\
\hline G, T & \begin{tabular}{l}
Control input (External test input) \\
connection option for external device test \\
pushbutton
\end{tabular} \\
\hline \(11,12,14\) & Alarm signal relay (1 changeover contact) \\
\hline \(21,22,24\) & \begin{tabular}{l}
Prewarning signal relay (1 changeover \\
contact)
\end{tabular} \\
\hline
\end{tabular}

\section*{Your Advantages}
- Preventivefire and system protection
- Quick fault localisation through selective earth fault detection to L+ and L-
- Universal application in non-earthed AC, DC, AC/DC networks with up to 690 V nominal voltage
- Suitable for large leakage capacitances up to \(1000 \mu \mathrm{~F}\)
- Simplest setting via engaging rotary switches
- Optimised measuring times - normally shorter than with known methods
- Monitoring also with voltage-free mains
- Measuring circuit with broken wire detection
- No additional coupling device required

\section*{Features}
- Insulation monitoring according to IEC/EN 61557-8
- Detection of symmetric and asymmetric insulation faults
- 2 changeover contacts
- Prewarning threshold setting range: \(20 \mathrm{k} \Omega . .2 \mathrm{M} \Omega\)
- Alarm threshold setting range:
\(1 \mathrm{k} \Omega 250 \mathrm{k} \Omega\)
- Energized or de-energized on trip can be selected for output relay
- Setting the maximum leakage capacitance to shorten the response time
- Simple, clearly arranged adjustment of the device with screwdriver
- LED chain to indicate the current insulation resistance
- Display of active measuring circuits
- Automatic and manual device self-test
- Width: 90 mm

\section*{Approvals and Markings}

\section*{C \(\in A C / D C\)}

\section*{Applications}

Insulation monitoring of:
- Non-earthed AC, DC, AC/DC networks
- UPS systems
- Networks with frequency inverters
- Battery networks
- Networks with direct current drives
- Hybrid and battery-powered vehicles

\section*{Function Diagram}

\section*{Flashing Codes LED "ERR"}

\section*{Function}

If the device is supplied with DC auxiliary voltage, the a green "PWR" LED comes on. Switching on the auxiliary voltage is followed by an internal selftest for 10 sec , where the LEDs of the indicator string light up in sequence. After this, measurement of the insulation resistance in the measuring circuits begins.

\section*{Measuring circuit}
(Insulation measurement between terminals \(L(+) / L(-)\) and PE / KE)
Terminals \(\mathrm{L}(+)\) and \(\mathrm{L}(-)\) are connected to the mains to be monitored. Broken wire detection, constantly effective during operation, generates an error messages if both terminals are not connected with low resistance through the mains.
In addition, the two terminals PE and KE must be connected to the protective conductor system via separate lines. An error message is given here as well if a line is interrupted (see section "Actions in case of connection faults").
If the main measuring circuit is activated, an active measuring voltage with alternating polarity is applied between \(L(+) / L(-)\) and PE / KE to measure the insulation resistance. During the measuring phase with positive polarity, the "Active" LED flashes with a long On-phase and with negative polarity with a short On-phase.
The length of the positive and negative measuring phases depends on the settings on the rotary switch "CE/ \(\mu \mathrm{F}\) ", the actual leakage capacitance of the monitored network and with DC networks, on the level and duration of possible mains voltage fluctuations. Correct and preferably quick measurement is thus given with different mains conditions. In the event of particularly adverse conditions and major interferences, the measuring analysis can be steadied and delayed in addition with rotary switch "tv" if necessary.
The current insulation resistance is determined and analysed at the end of each measuring phase. The LED chain show the resistance determined, and the output relays for prewarning "VW" and alarm "AL" switch according to the respective response values set. If the response thresholds have been undercut, the LEDs "VW" or "AL" light according to the insulation fault location: "+", "-" or "+" and "-" simultaneously for AC faults or symmetric insulation faults.

\section*{Storing insulation fault message}

If terminal \(R\) is open, the insulation fault messages from the main and auxiliary measuring circuit are stored when the respective response value is undercut, but also when the insulation resistance returns to the OK-range. In addition, the temporary minimum values of the insulation resistance are indicated on the LED chain through dimmed LEDs.
If the "Reset" button on the device front is pressed or terminal \(R\) is connected with \(G\), the stored insulation fault messages are reset when the insulation resistance is again in the OK-range.

\section*{Output relay for insulation fault messages}

The rotary switch "CE/ \(\mu \mathrm{F}\) Rel." allows selecting the operating current (A) or standby current (R) principle for the output relays "AL" (contacts 11-1214) and "VW" (contacts 21-22-24).

With the operating current principle, the relays respond when the response values are undercut, with the standby current principle they release when the response values are undercut.
If 2 different response values are not needed, "VW" and "AL" can be set to the same value. The output relays switch together in this case.

\section*{Broken wire detection}

As mentioned above, both the main measuring circuit and the auxiliary measuring circuit are constantly monitored for wire breaks - not only at Power-On or a manual or occasional automatic test. The response time of monitoring is only a few seconds.
Broken wire detection between \(L(+)\) and \(L(-)\) is performed via coupled alternating voltage. This alternating voltage is short-circuited if the terminals are connected to the connected mains at low-resistance. The device detects that the mains to be monitored is properly connected. Since this broken wire detection is carried out with alternating voltage, large capacitances should be avoided between \(\mathrm{L}(+)\) and \(\mathrm{L}(-)\), since the capacitive reactance of these capacitances also short-circuits this alternating voltage. The device would no longer detect a connection fault on \(\mathrm{L}(+) / \mathrm{L}(-)\). Especially parallel lines should be prevented over larger distances.
If larger capacitances between \(\mathrm{L}(+) / \mathrm{L}(-)\) cannot be avoided or if the coupled alternating voltage interferes with the system, version LK 5894.12/011 (without broken wire detection on \(\mathrm{L}(+) / \mathrm{L}(-)\)) shall be used.

\section*{Function}

\section*{Device test functions}

Principally, 2 different test functions are implemented: The "self-test" and the "expanded test":
The self-test of the device is performed automatically after Power-On and every 4 operating hours. It can also be triggered manually at any time by pressing the "Test" button at the device front or with an external pushbutton connected between terminals T and G .
With the self-test, contrary to the expanded test, the status of the output relays and the analogue output are not affected; the sequence is as follows:
Switching to the negative measuring phase is performed for 4 sec . The „Active" LED flashes here with a brief On-phase. The LEDs of the LED chain are selected in sequence and the internal circuit is checked. After this, switching to the positive measuring phase is performed for 4 sec . The „Active" LED flashes here with a long On-phase. The LED chain cycles again and additional internal tests are performed. Insulation measurement continues normally after a pause of 2 sec if no faults have occurred.
The expanded test is started when the internal or external "Test" button is pressed (or is still held) at the end of the 8 sec self-test, described above. The sequence is the same as with the self-test (2 measuring phases at 4 sec + 2 sec pause); however, the output relays "AL" and "VW" as well as the associated LEDs switch to the alarm state and the analogue output proceeds to its lowest value.
If the Reset button is pressed during the 8 sec or terminals R-G are connected, the expanded test is terminated after these 8 sec . Otherwise, the phases of the expanded test are constantly repeated, where, in addition, the "ERR" LED and the fault signalling relay (contacts 31-32-34) constantly receive current. However, the expanded test is terminated as soon as the Reset button is pressed. The device switches to the OK-state and restarts insulation measurement.

\section*{Behaviour with internal device faults}

If internal device faults were detected during the test function, the "ERR" LED is lit continuously and the measuring circuit is deactivated internally ("Active" LED goes off). The output relays "AL" and "VW" as well as the associated LEDs switch to the alarm state and all LEDs of the LED chain extinguish

\section*{Behaviour in the case of connection faults}

If broken wire is detected on terminals \(L(+) / L(-)\), the measurement is interrupted and the LED "HM" goes off. This connection failure is indicated by LED "ERR" with "failure code 2". The output relays "AL" and "VW" as well as the corresponding LEDs go into alarm state and all LEDs of the indicator LED chain go off. After removing the the interruption the measurement of the insulation resistance starts again. Stored alarm states remain active.
When interrupting the connection PE / KE to the protective ground, the unit reacts in the same way as with an interruption on \(L(+) / L(-)\), only the LED "ERR" shows "failure code 3".
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Indicators} \\
\hline green LED „PWR": & \multicolumn{2}{|l|}{on, when auxiliary supply connected} \\
\hline red LED „ERR": & permanent on: flashing: & at system error at connection failure \\
\hline green LED „Active": & flashing: ON-OFF-ratio per measurement phase: & \begin{tabular}{l}
at active measuring ciruit, \\
long ON period during measurement phase with positiv polarity short ON period during measurement phase with negative polarity
\end{tabular} \\
\hline yellow LED chain: & \multicolumn{2}{|l|}{8 LEDs indicate the actual insulating resistance (\(\leq 10 \mathrm{k} \Omega \ldots \geq 2 \mathrm{M} \Omega\))} \\
\hline yellow LED „VW +": & permanent on: & \(R_{E}\) lower then prewarning value to + potential \\
\hline yellow LED „VW -": & permanent on: & \(R_{E}\) lower then prewarning value to - potential \\
\hline \multicolumn{3}{|l|}{yellow LEDs „VW +"} \\
\hline red LED „AL + ": & permanent on: & \(R_{E}\) lower then tripping value to + potential \\
\hline red LED „AL - ": & permanent on: & \(R_{E}\) lower then tripping value to - potential \\
\hline \[
\begin{aligned}
& \text { red LEDS „AL +" } \\
& \text { und „AL -"simultaneity: }
\end{aligned}
\] & permanent on: & AC-fault / symmetric fault \\
\hline
\end{tabular}

\section*{Notes}

Device terminals PE and KE must always be connected via separate lines to different terminal points of the protective-conductor system.

The main measuring circuit can be connected with its terminals \(L(+)\) and \(\mathrm{L}(-)\) both to the DC and also AC side of a mixed network; it is done most practically where the primary incoming power supply takes place. Selector switch "tv / \(U_{N}\) " should be set accordingly.

For the main measuring circuit, the nominal voltage range for DC is specified with 690 V ; however, absolute values up to max. DC 1000 V are permissible.

In one voltage system to be monitored, only one insulation monitor must be installed. A second insulation monitor would influence the first one. When coupling separate voltage systems that each have an insulation monitor, all insulation monitors except one have to be disabled.

The main measuring circuit is designed for large leakage capacitances up to \(1000 \mu \mathrm{~F}\). The selection switch "CE/ \(\mu \mathrm{F}\) " must be set accordingly. Measurement of the insulation resistances is not falsified by this; however, longer periods are required for the measuring phases than with small capacitances. If the maximum approximate leakage capacitance is known, the selector switch "CE/ \(\mu \mathrm{F}\) " can possibly be set to smaller values, which reduces the response time further.

The measuring circuit should not be connected via longer parallel guided wires, as this may interfere with the broken wire detection. Also large capacities between \(\mathrm{L}(+)\) und \(\mathrm{L}(-)\) have to be avoided.

No external potentials may be connected to control terminals "T" and "R". The associated reference potential is "G" (identical with PE), and the connection of the terminals is made via bridges to "G".

\section*{Attention !}

The device must not be operated without KE/PE connection.

Before making insulation and voltage tests, the monitor LK 5894 has to be disconnected. !

The voltage of the monitored voltage system is connected to terminals L(+) / L(-). Please observe sufficient distance to terminals of neighbour devices and to the grounded metal cabinet or box (min 0.5 cm).

WARNING
The device monitors HIGH-VOLTAGE Caution High-Voltage when working on the device! Disconnect all power supplies before servicing equipment!

\section*{Technical Data}

\section*{Measuring ciruit \(\mathrm{L}(+) / \mathrm{L}(-)\) to \(\mathrm{PE} / \mathrm{KE}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :} & \multicolumn{4}{|c|}{DC \(0 . . .690 \mathrm{~V}\);} & \multicolumn{3}{|l|}{AC \(0 \ldots 690 \mathrm{~V}\)} \\
\hline \multicolumn{5}{|l|}{Voltage range:} & \multicolumn{3}{|l|}{DC max. 1000 V ;} & \multicolumn{3}{|l|}{AC max. 760 V} \\
\hline \multicolumn{11}{|l|}{Frequency range: DC or \(16 \ldots 1000 \mathrm{~Hz}\)} \\
\hline \multicolumn{11}{|l|}{Max. line capacitance: 1000} \\
\hline \multicolumn{11}{|l|}{Internal resistance (AC / DC): > \(280 \mathrm{k} \Omega\)} \\
\hline \multicolumn{11}{|l|}{Measuring voltage: approx. \(\pm 95\)} \\
\hline \multicolumn{11}{|l|}{Max. mesured current (\(\mathrm{R}_{\mathrm{E}}=0\)): \(<0.35 \mathrm{~mA}\)} \\
\hline \multicolumn{11}{|l|}{Response values \(\mathrm{R}_{E}\)} \\
\hline \multicolumn{10}{|l|}{Pre-warning („VW"):} & \\
\hline k \(\Omega\) : & 20 & 30 & 50 & 70 & 100 & 150 & 250 & 500 & 1000 & 2000 \\
\hline \multicolumn{11}{|l|}{Alarm („,AL")} \\
\hline k : & 1 & 3 & 10 & 20 & 30 & 50 & 70 & 100 & 150 & 250 \\
\hline
\end{tabular}
each adjustable via rotational switches

\section*{Response inaccuracy:}

Response value hysteresis
at range \(10 \mathrm{k} \Omega \ldots 700 \mathrm{k} \Omega\) :
out of range:
On delay
at \(C_{E}=1 \mu \mathrm{~F}\)
\(R_{E}\) of \(\infty\) to \(0.5^{*}\) response value: \(<10 \mathrm{~s}\)
Input auxiliary voltage
DC-Input (A1+ /A2)
Nominal voltage \(\mathrm{U}_{\mathrm{H}}\) :
Voltage range:
Nominal consumption:
Control input (between T, R and G)

\section*{Current flow:}

No-load voltage to \(G\) :
Permissible wire length:
Min. activation time:
Output

Contacts:
Thermal current \(I_{t h}\) :
Switching capacity
to AC 15:
NO contact:
NC contact:
Electrical life
at \(8 \mathrm{~A}, \mathrm{AC} 250 \mathrm{~V}\) :
Short circuit strength max. fuse rating: Mechanical life:

General Data

Operating mode:
Temperature range
Operation:
Storage:
Relative air humidity:
Atmospheric pressure
Altitude:

\section*{Clearance and creepage}

\section*{distances}
rated impulse voltage /
pollution degree
Measuring ciruit \(\mathrm{L}(+)\) / \(\mathrm{L}(-)\) to auxiliary voltage DC and relay contacts VW, AL: Auxiliary voltage DC to relay contacts VW, AL: Relay contact VW to relay contact AL: Insulation test voltage Routine test:
\(\pm 15 \%+1.5 \mathrm{k} \Omega\)
IEC 61557-8
approx. 25 \% approx. \(40 \%+0.5 \mathrm{k} \Omega\)

DC 24 V
DC 20 ... 30 V

\section*{approx. 3 mA}
approx. 12 V
< 50 m
0.5 s

Continuous operation
\(-25 \ldots+60^{\circ} \mathrm{C}\)
\(-40 \ldots+70^{\circ} \mathrm{C}\)
\(93 \%\) bei \(40^{\circ} \mathrm{C}\)
860 ... 1600 mbar (86 ... 106 kPa)
< 4.000 m
IEC 60 664-1
\[
\text { < } 4.000 \text { m }
\]
IL

\section*{Technical Data}

\section*{EMC}

Electrostatic discharge (ESD): 8 kV (air)
IEC / EN 61000-4-2
HF irradiation:
\(2 \times 1\) changeover contacts for VW and AL 4 A

3 A / AC 230 V IEC/EN 60 947-5-1 1 A / AC 230 V IEC/EN 60 947-5-1
\(1 \times 10^{4}\) switching cycles
4 AgL
IEC/EN 60 947-5-1
\(10 \times 10^{6}\) switching cycles

80 MHz ... 2.7 GHz :
Fast transients:
Surge voltages
between A1-A2:
between L(+) - L(-):
between A1, A2 - PE and
L(+), L(-) - PE:
between control line:
between control line and earth:
HF-wire guided Interference suppression:

\section*{Degree of protection}

Housing:
Terminals:
Housing:
Vibration resistance:

Shock resistance:
Climate resistance:
Terminal designation:
Wire connection
Screw terminals
(fixed):
\(10 \mathrm{~V} / \mathrm{m}\)
4 kV
IEC / EN 61000-4-3 IEC / EN 61000-4-4

1 kV IEC/EN 61000-4-5
2 kV IEC/EN 61000-4-5

4 kV IEC/EN 61000-4-5
\(0,5 \mathrm{kV}\)
IEC/EN 61000-4-5
1 kV
IEC/EN 61000-4-5
10 V
IEC / EN 61000-4-6
Limit value class \(\mathrm{A}^{*}\)
*) The device is designed for the usage under industrial conditions (Class A, EN 55011).
When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated. To avoid this, appropriate measures have to be taken.
IP 40
IEC/EN 60529
IP 20
IEC/EN 60529

Thermpolastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency \(10 \ldots 55 \mathrm{~Hz}\)
Amplitude \(\pm 1 \mathrm{~mm}\), frequency \(2 \ldots 13.2 \mathrm{~Hz}\) \(13.2 \ldots 100 \mathrm{~Hz}\), acceleration \(\pm 0.7 \mathrm{~g}_{\mathrm{n}}\) IEC/EN 60068-2-6
\(10 \mathrm{~g}_{\mathrm{n}} / 11 \mathrm{~ms}, 3\) pulses IEC/EN 60068-2-27 25 / 060 / 04 IEC/EN 60 068-1 EN 50005

DIN 46 228-1/-2/-3/-4
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2,5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) or
\(2 \times 1,5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) DIN 46228-1/-2/-3-4 or
\(2 \times 2,5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) DIN 46228-1/-2/-3

8 mm
Plus-minus terminal screws M3,5 terminal with wire protection 0.8 Nm

DIN rail
IEC / EN 60715
approx. 500 g
Mounting:
Weight:
Dimensions
Width \(\mathbf{x}\) height \(\mathbf{x}\) depth: \(90 \times 90 \times 121 \mathrm{~mm}\)
or

\section*{Standard Type}

LK 5894.12/010 DC 20 ... 30 V
Article number: 0065331
- Outputs: 1 changeover contact for pre-warning
- Auxiliary voltage: DC \(20 \ldots 30 \mathrm{~V}\)
- Setting range pre-warning: \(20 \mathrm{k} \Omega \ldots 2 \mathrm{M} \Omega\)
- Setting range alarm:
\(1 \mathrm{k} \Omega \ldots 250 \mathrm{k} \Omega\)
- Adjustable line capacitance
- Open- / or closed circuit operation
- Width: 90 mm

\section*{Variants}

LK 5894.12/011: \(\quad\) without wire-break detection at \(\mathrm{L}(+) / \mathrm{L}(-)\)
LK5894.12/110: Fixed function de-energised on trip, the relays react immediately after connection of auxiliary voltage

LK5894.12/111:
Fixed function de-energised on trip, the relays react immediately after connection of auxiliary voltage; without broken wire detection on \(\mathrm{L}(+) / \mathrm{L}(-)\)

\section*{Connection Examples}

Insulation monitoring DC-side

Insulation monitoring AC-side

\section*{Characteristic}

Max. measuring time in response to line capacitance

M11584

\section*{Product description}

The insulation monitor UH 5892 of the series varimeter IMD monitors the ground resistance of isolated DC-voltage systems (IT-systems) with nominal voltage up to DC 600 V . The unit detects symmetrical as well as unsymmetrical faults. The separate auxiliary supply of AC/DC \(24 \ldots 60 \mathrm{~V}\) or AC/DC \(85 . . .230 \mathrm{~V}\) allows also monitoring when the system is without voltage. To indicate the actual ground resistance value the unit has an LED chain and an analogue output. When a fault is detected the relay switches and the red LED Alarm lights up, The device can be used for system with leakage capacities up to 20 uF.

Function diagram

\section*{Your Advantages}
- Preventive fire and system protection
- Insulation monitoring of DC voltage systems up to 600 V nominal voltage
- No additional coupling device required
- Suitable for leakage capacitances up to \(20 \mu \mathrm{~F}\)
- Monitoring also with voltage-free mains
- 2 wide voltage input ranges for auxiliary voltage

\section*{Merkmale}
- Insulation monitoring according to IEC/EN 61557-8
- Detection of symmetric and asymmetric insulation faults
- 1 changeover contact for alarm
- Fixed response value \(\mathrm{R}_{\mathrm{AN}}\) : \(50 \mathrm{k} \Omega\), other on request
- Internal reset and test pushbutton
- External test and reset pushbutton can be connected
- LED indicator for auxiliary voltage and alarm
- LED chain to indicate the current insulation resistance
- Automatic or manual reset, programmable
- Analogue output for insulating value
- External indicating instrument can be connected
- Closed circuit operation
- Open circuit operation on request
- With pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- Width 45 mm

Approvals and Markings

\section*{\(C \in A C / D C\)}

\section*{Applications}

Monitoring of the resistance to earth in ungrounded DC systems

\section*{Circuit Diagram}

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Connection Terminals } & Signal designation \\
\hline Terminal designation & Auxiliary voltage UH \\
\hline A1(+), A2 & Connection for measuring circuit \\
\hline L(+), L(-) & Connection for protective conductor \\
\hline PE1, PE2 & \begin{tabular}{l}
Control input \\
(manual/auto reset) \\
X5/LT1 bridged: manual reset \\
X5/LT1 not bridged: auto reset
\end{tabular} \\
\hline X5(/LT1) & \begin{tabular}{l}
connection option for external \\
device test pushbutton
\end{tabular} \\
\hline PT1, PT2 & \begin{tabular}{l}
connection option for external reset \\
pushbutton
\end{tabular} \\
\hline LT1, LT2 & Analogue output \\
\hline X3, X4 & \begin{tabular}{l}
Alarm signal relay \\
(1 changeover contact)
\end{tabular} \\
\hline 11, 12, 14 & \\
\hline
\end{tabular}

\section*{Function}

The device is supplied with auxiliary voltage via terminals \(\mathrm{A} 1(+) / \mathrm{A} 2\); ea green "ON" LED comes on. After connecting the auxiliary supply a 10 s start up delay is active allowing the measuring circuit to start.
After this, measurement of the insulation resistance in the measuring circuits begins.

\section*{Measuring circuit}
(Insulation measurement between terminals \(L(+) / L(-)\) and PE1/PE2).
Terminals \(L(+)\) and \(L(-)\) are connected to the mains to be monitored. In addition, the two terminals PE1 and PE2 must be connected to the protective conductor system via separate lines. An active measuring voltage with alternating polarity is applied between \(\mathrm{L}(+) / \mathrm{L}(-)\) and PE1/PE2 to measure the insulation resistance.

The length of the positive and negative measuring phases has a fixed factory setting of 16 s (max. leakage capacitance of \(20 \mu \mathrm{~F}\)).
The LED-chain and the analogue output show the actual determined insulating resistance, and the output relays witch according to the respective response values set. If the response thresholds has been undercut the red LED "Alarm" lights up.

\section*{Indication}
\begin{tabular}{ll}
green LED "ON": & on, when auxiliary supply connected \\
red LED "Alarm": & \begin{tabular}{l}
on, when resistance is below the \\
response value \(R_{\text {AN }}\)
\end{tabular} \\
LED-chain: & \begin{tabular}{l}
the approx. value of actual rsistance to \\
ground (PE)
\end{tabular}
\end{tabular}

\section*{Notes}

The response value \(R_{\text {AN }}\) is fixed. An external indicator instrument can be connected.

The unit works de-energized on trip, that means, the output relay relase in position of rest at a insulation failures \(R_{E}<R_{A N}\)).

A bridge between X5 and LT1 allows to select auto or manual reset. The UH 5892 has a built in reset button on the front and allows connection of an external button at terminals LT1 and LT2 also.

For function test an external (terminals PT1-PT2) or built in push button can be used to simulate a ground fault. The push button has to be pressed for the length of a measuring period.

\section*{Notes}

The analogue output (terminals X3 and X4) provides a voltage signal proportional to the actual insulation resistance of the mains. The following formula describes the input to output ratio.:
(0 V at \(\mathrm{R}_{\mathrm{E}}=0\) and \(13.0 \ldots 13.5 \mathrm{~V}\) at \(\mathrm{R}_{\mathrm{E}}=\infty\))
\(U_{A}=\frac{U_{\max }}{\frac{180 \mathrm{k} \Omega}{R_{E}}+1} \quad ; \quad U_{\max }=13.25 \mathrm{~V} \pm 0.25 \mathrm{~V}\)
These values are valid for \(\mathrm{C}_{\mathrm{E}}=0\) (see diagram page 4). In practice it makes no sense to monitor values above \(11 \ldots 12 \mathrm{~V}\) as the tolerances increase, especially with mains capacity. On fluctuation of the mains voltage momentary false readings can occur. This is normal and caused by the cyclic measuring principle.

In one voltage system only one insulation monitor can be used. This has to be observed when interconnecting two separate systems.

\section*{Technical Data}

\section*{Auxiliary circuit}
\begin{tabular}{|c|c|c|}
\hline Auxiliary voltage
\[
\mathbf{U}_{\mathrm{H}}
\] & Voltage range & Frequency range \\
\hline \multirow[b]{2}{*}{AC/DC \(24 \ldots 60 \mathrm{~V}\)} & AC \(19 \ldots 68 \mathrm{~V}\) & \(45 . .400 \mathrm{~Hz}\); DC 48 \% W*) \\
\hline & DC \(18 \ldots 96 \mathrm{~V}\) & \(\left.\mathrm{W}^{\star}\right) \leq 5\) \% \\
\hline \multirow[b]{2}{*}{AC/DC 85 ... 230 V} & AC \(65 \ldots 276\) V & \(45 . .400 \mathrm{~Hz}\); DC \(\left.48 \% \mathrm{~W}^{*}\right)\) \\
\hline & DC \(75 . .300 \mathrm{~V}\) & \(\left.\mathrm{W}^{\star}\right) \leq 5 \%\) \\
\hline
\end{tabular}

Nominal consumption: max. 1.5 W

\section*{Measuring Circuit}

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
Voltage range:
Frequency range:
Response value \(R_{\text {AN }}\) :
Setting \(\mathbf{R}_{\mathrm{AN}}\) :
Internal AC resistance:
Internal DC resistance:
Messspannung:
Max. measuring current
(\(\mathrm{R}_{\mathrm{E}}=0\)):
Measuring cycle internally
adjustable:
Line capacitance \(\mathrm{C}_{\mathrm{E}}\) to ground:
Factory setting:
Operate delay
at \(R_{A N}=50 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{E}}=20 \mu \mathrm{~F}\)
\(\mathrm{R}_{\mathrm{E}}\) from \(\infty\) to \(0,9 \mathrm{R}_{\text {AN }}\) : \(<100 \mathrm{~s}\)
\(R_{E}^{E}\) from \(\infty\) to \(0 \mathrm{k} \Omega\) :
Hysteresis
at \(R_{\text {AN }}=50 \mathrm{k} \Omega\) :
Response inaccuracy:: \(\quad \pm 15 \% \pm 1.5 \mathrm{k} \Omega \quad\) IEC/EN 61557-8

\section*{Output}
Contacts:
Max. switching voltage:
Thermal current \(I_{t h}\) :

Thermal current \(I_{\text {th }}\) : Switching capacity to AC 15:
NO contact:
NC contact:
Short circuit strength
max. fuse rating:
Electrical life
at \(5 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Mechanical life:

DC 0 ... \(600 \mathrm{~V} / \mathrm{AC} 0 \ldots 400 \mathrm{~V}\)
\(0 \ldots 1,15 U_{N}\)
DC or 40 ... 60 Hz
\(50 \mathrm{k} \Omega, 10 \ldots 440 \mathrm{k} \Omega\) on request
fixed
\(>120 \mathrm{k} \Omega\)
\(>150 \mathrm{k} \Omega\)
approx. \(\pm 13 \mathrm{~V}\)
\(<0.3 \mathrm{~mA}\)
\(2 \ldots 16\) s
1 ... \(20 \mu \mathrm{~F}\)
\(16 \mathrm{~s}\left(\right.\) für \(\left.\mathrm{C}_{\mathrm{E}}=20 \mu \mathrm{~F}\right)\)
\(<60\) s
approx. 5 \%

1 changeover contact
AC 250 V
5 A

5 A / AC 230 V
IEC/EN 60 947-5-1
2 A / AC 230 V
IEC/EN 60 947-5-1
6 A gL
IEC/EN 60 947-5-1
\(1 \times 10^{5}\) switching cycles
\(>50 \times 10^{6}\) switching cycles

\section*{Analogue output}
for actual insulating value, no galvanic separation
Terminals X3-X4:
typ. 0 ... \(13.25 \mathrm{~V} / \mathrm{R}_{\mathrm{i}}\) approx. \(50 \Omega\)
\(\left(0 \mathrm{~V}\right.\) at \(\mathrm{R}_{\mathrm{E}}=0\) and \(13.0 \ldots 13.5 \mathrm{~V}\)
at \(R_{E}=\infty\))
X 4 is internal connected with PE

\section*{Technische Daten}

\section*{General Data}

Operating mode:
Permissible ambient and stocking temperature: Clearance and creepage

\section*{distances}
overvoltage category /
pollution degree:
meas. ciruit to auxiliary voltage
and relay contact: \(\quad 6 \mathrm{kV} / 2\)
auxiliary voltage to relay contact: \(6 \mathrm{kV} / 2\)
EMC
Electrostatic discharge:
HF irradiation
\(80 \mathrm{MHz} \ldots 1 \mathrm{GHz}: \quad 20 \mathrm{~V} / \mathrm{m}\)
1 GHz ... 2.7 GHz
Fast transients:
Surge voltage
between A1 (+)/A2:
between wire and ground:
HF-wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
Plug in with screw terminals
max. cross section
for connection:

Insulation of wires
or sleeve length:
Plug in with cage
clamp terminals
max. cross section
for connection:

Insulation of wires
or sleeve length:
Wire fixing:
Mounting:
Weight:

\section*{Continuous operation}
\(-20 \ldots+60^{\circ} \mathrm{C} /-25 \ldots+70^{\circ} \mathrm{C}\)

IEC 60 664-1

8 kV (air)
\(20 \mathrm{~V} / \mathrm{m}\)
IEC/EN 61 000-4-2
\(10 \mathrm{~V} / \mathrm{m}\)

1 kV
2 kV
20 V
Limit value class \(B\)
IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5 IEC/EN 61 000-4-6

IP \(40 \quad\) IEC/EN 60529
IP 20 IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6
frequency 10 ... 55 Hz
20/060/04
IEC/EN 60 068-1 EN 50005

DIN 46 228-1/-2/-3/-4
\(1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2}\) solid or stranded ferruled (isolated) or \(2 \times 0.25 \ldots 1.0 \mathrm{~mm}^{2}\) solid or stranded ferruled (isolated)

7 mm
\(1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2}\) solid or stranded ferruled (isolated)
\(2 \times 0.25 \ldots 1.5 \mathrm{~mm}^{2}\) stranded twin ferruled (isolated)

10 mm
captive slotted screw
or cage clamp terminals
DIN rail
IEC/EN 60715
approx. 270 g

Dimensions
Width \(\mathbf{x}\) height xdepth: \(\quad 45 \times 107 \times 121 \mathrm{~mm}\)

\section*{Classification to DIN EN 50155}

Vibration and
shock resistance:

> Category 1, Class B

IEC/EN 61373
Protective coating of the PCB: No

\section*{Standard Types}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{UH 5892.11PS AC/DC \(24 \ldots 60 \mathrm{~V} 50 \mathrm{k} \Omega\)} \\
\hline Article number: & 0066309 \\
\hline - Output:: & 1 Wechsler \\
\hline - Auxiliary voltage \(U_{H}\) : & AC/DC \(24 . . .60 \mathrm{~V}\) \\
\hline - Response value \(\mathrm{R}_{\text {A }}\) & \(50 \mathrm{k} \Omega\) \\
\hline - Line capacitance: & \(20 \mu \mathrm{~F}\) \\
\hline - De-energiezed on trip & \\
\hline - Width: & 45 mm \\
\hline \multicolumn{2}{|l|}{UH 5892.11PS AC/DC 85 ... \(230 \mathrm{~V} 50 \mathrm{k} \Omega\)} \\
\hline Article number: & 0066946 \\
\hline - Output:: & 1 Wechsler \\
\hline - Auxiliary voltage U & AC/DC 85 ... 230 \\
\hline - Response value \(\mathrm{R}_{\text {A }}\) & \(50 \mathrm{k} \Omega\) \\
\hline - Line capacitance: \({ }^{\text {AN }}\) & \(20 \mu \mathrm{~F}\) \\
\hline \begin{tabular}{l}
- De-energiezed on trip \\
- Width:
\end{tabular} & 45 mm \\
\hline
\end{tabular}

\section*{Options with Pluggable Terminal Blocks}

Screw terminal
(PS / plug in screw)

Cage clamp terminal (PC / plug in cage clamp)

Connection Example

\section*{Analogue Output Voltage \(\mathrm{U}_{\mathrm{A}}\) (Terminals X3-X4)} against Insulation Resistance \(R_{E}\) with \(C_{E}=0\)
Parameter: Max. Analogue Output Voltage Umax (at \(R_{E}=\) infinite)

\section*{VARIMETER IMD \\ Insulation Monitor \\ IL 5880, IP 5880, SL 5880, SP 5880}

IL 5880, SL 5880

IP 5880, SP 5880

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1 & \(\mathrm{L} /+\) \\
\hline A2 & \(\mathrm{N} /-\) \\
\hline L & Connection for monitored IT-systems \\
\hline PE & Connection for protective conductor \\
\hline PT & Connection for external test button \\
\hline LT1, LT2 & \begin{tabular}{l}
Connections for external reset or \\
manual and auto reset: \\
LT1/LT2 bridged: hysteresis function \\
LT1/LT2 not bridged: manual reset
\end{tabular} \\
\hline \begin{tabular}{l}
11, 12, 14 \\
21, 22, 24
\end{tabular} & \begin{tabular}{l}
Changeover contact \\
(each for switch in position VW or AL)
\end{tabular} \\
\hline
\end{tabular}
- According to IEC/EN 61 557-8
- For single and 3-phase AC-systems up to 0 ... 500 V and 10 ... 10000 Hz
- Adjustable tripping value \(\mathrm{R}_{\mathrm{AL}}\) of \(5 \ldots 100 \mathrm{k} \Omega\)
- Monitors also disconnected voltage systems
- De-energized on trip
- Auxiliary voltage Measuring Circuit and output contacts are galvanically separated
- Manual and auto reset
- With test and reset button
- Connections of external test and reset buttons possible
- LED indicators for operation and alarm
- 2 changeover contacts
- IL/SL 5880/200 with additional prewarning
- adjustable prewarning value \(10 \mathrm{k} \Omega\)... \(5 \mathrm{M} \Omega\)
- output function programmable
- Variant IL/SL 5880/300 according to DIN VDE 0100-551 for mobile generator sets available
- 4 models available:

IL 5880, IP 5880: \(\quad 61 \mathrm{~mm}\) deep with terminals near to the bottom to be mounted in consumer units or industrial distribution systems according to DIN 43880
SL 5880, SP 5880: 98 mm deep with terminals near to the top to be mounted in cabinets with mounting plate and cable ducts
- DIN rail or screw mounting
- 35 mm width

\section*{Approvals and Markings}

\section*{Applications}
- Monitoring of insulation resistance of ungrounded voltage systems to earth.
- IL/SL 5880/200 can also be used to monitor standby devices for earth fault, e.g. motor windings of devices that have to function in the case of emergency.
- IL/SL 5880/300 according to DIN VDE 0100-551 to monitor mobile generator systems
- Other resistance monitoring applications.
- For industrial and railway applications

\section*{Function}

The device is connected to the supply via terminals A1-A2. The unit can either be supplied from the monitored voltage system or from an separate auxiliary supply. Terminal \(L\) is connected to the monitored voltage and PE to earth. If the insulation resistance \(R_{E}\) drops below the adjusted alarm value \(R_{A L}\) the red LED goes on and the output relay switches off (de-energized on trip). If the unit is on auto reset (bridge between LT1LT2) and the insulation resistance gets better (\(R_{E}\) rises), the insulation monitor switches on again with a certain hysteresis and the red LED goes off. Without the bridge between LT1-LT2 the Insulation monitor remains in faulty state even if the insulation resistance is back to normal. (In order to achieve failure storage, the voltage system showing a fault must not be switched off too fast after detection of the failure, see notes). The reset is done by pressing the internal or external reset button or by disconnecting the auxiliary supply. By activating the "Test" button an insulation failure can be simulated to test the function of the unit.
The variants IL/SL 5880.12/200 have a second setting range with a higher resistance up to \(5 \mathrm{M} \Omega\) (Potentiometer \(\mathrm{R}_{\mathrm{vw}}\)). This setting value can be used for pre-warning with relay output, by positioning the lower setting switch to "AL 11-12-14; VW 21-22-24".
If the higher setting range should be used only, the setting switch is put in position "VW 2 u " and both contacts react only to the higher setting.
If the lower setting range should be used only, the setting switch is put in position "AL 2 u " and both contacts react only to the lower setting.
When set to manual reset the latching is active on both settings \(R_{A L}\) and \(\mathrm{R}_{\mathrm{vw}}\). Therefore it is possible in the case of a short insulation decrease (Switch position AL 11-12-14; VW 21-22-24), to pass the warning signal to a PLC while the main fault does not lead to a disconnection of the mains via the contacts 11-12-14.

\section*{Function Diagram}

\section*{IL 5880, SL 5880, IP 5880, SP 5880}

\section*{Indicators}

Green LED "ON":
Red LED "AL":
Yellow LED "VW":

On, when supply voltage connected
On, when insulation fault detected, \(\left(R_{E}<R_{A L}\right)\) On, when insulation resistance is under prewarning value, \(\mathrm{R}_{E}<\mathrm{R}_{\text {vw }}\) (only with variant IL/SL 5880.12/2 _ _ and /300)

\section*{Notes}

\section*{Storing of insulation failures:}

The storing of an insulation failure is delayed slightly longer the reaction of the output relay because of interference immunity. In cases where the defective voltage system is switched off immediartely by the output of the insulation monitor it can happen that the fault is not stored (e. g. mobile generator sets).

For these applications we recommend the variant IL/SL 5880/300, where the output relay reacts only after the fault ist stored. All other features of this variant are simular to IL/SL 5880/200.
The Insulation monitors IL/SL 5880 are designed to monitor AC-voltage systems. Overlayed DC voltage does not damage the instrument but may change the conditions in the Measuring Circuit.

IL 5880/200, SL 5880/200, IP 5880/200, SP 5880/200

\section*{Notes}

In one voltage system only one Insulation monitor must be connected. This has to be observed when coupling voltage system.
Line capacitance \(\mathrm{C}_{\mathrm{E}}\) to ground does not influence the insulation measurement, as the measurement is made with DC-voltage. It is possible that the reaction time in the case of insulation time gets longer corresponding to the time constant \(\mathrm{R}_{\mathrm{E}}{ }^{*} \mathrm{C}_{\mathrm{E}}\).

The model /200 can be used, because of it's higher setting value, to monitor single or 3-phase loads for ground fault. If the load is operated from a grounded system the insulation resistance of the load can only be monitored when disconnected from the mains. This is normally the fact with loads which are operated seldom or only in the case of emergency but then must be function (see connection example).

The auxiliary supply can be connected to a separate auxiliary supply or to the monitored voltage system. The range of the auxiliary supply input has to be observed.

When monitoring 3-phase IT systems it is sufficient to connect the insulation monitor only to one phase. The 3-phases have a low resistive connection (approx. 3-5 \(\Omega\)) via the feeding transformer. So failures that occure in the non-connected phases will also be detected.
\begin{tabular}{|c|c|}
\hline Technical Data & \\
\hline \multicolumn{2}{|l|}{Auxiliary Circuit} \\
\hline Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) IL 5880, SL 5880: & AC 220 ... 240 V , AC 380 ... 415 V \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) DC \(12 \mathrm{~V}, \mathrm{DC} 24 \mathrm{~V}\) \\
\hline IP 5880, SP 5880: & AC / DC \(110 \mathrm{~N} \ldots 240 \mathrm{~V}\)
\(0.7 \ldots 1.25 \mathrm{U}^{\prime}\) \\
\hline Frequency range (AC): & \(45 \ldots 400 \mathrm{~Hz}\) \\
\hline \multicolumn{2}{|l|}{Nominal consumption:} \\
\hline AC: & approx. 2 VA \\
\hline DC: & approx. 1 W \\
\hline \multicolumn{2}{|l|}{Measuring Circuit} \\
\hline Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & AC \(0 . . .500 \mathrm{~V}\) \\
\hline Voltage range: & \(0 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
\hline Frequency range: & \(10 \ldots 10000 \mathrm{~Hz}\) \\
\hline Alarm value \(\mathrm{R}_{\text {Al }}\) : & \(5 \ldots 100 \mathrm{k} \Omega\) \\
\hline \multicolumn{2}{|l|}{Prewarning value \(R_{v w}\) (only at IL/SL 5880/2} \\
\hline and IL/SL 5880/300): & \(10 \mathrm{k} \Omega . . .5 \mathrm{M} \Omega\) \\
\hline Setting \(\mathrm{R}_{\mathrm{AL}}, \mathrm{R}_{\mathrm{vw}}\) : & \multirow[t]{2}{*}{infinite variable
equivalent to earth resistance of < \(5 \mathrm{k} \Omega\)} \\
\hline Internal test resistor: & \\
\hline Internal AC resistance: & \(>250 \mathrm{k} \Omega\) \\
\hline Internal DC resistance: & \multirow[t]{2}{*}{approx. DC 15 V , (internally generated)} \\
\hline Measuring voltage: & \\
\hline Max. measuring current
\(\left(\mathrm{R}_{5}=0\right.\)): & \(<0.1 \mathrm{~mA}\) \\
\hline DC voltage: & DC 500 V \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Operate delay \\
at \(R_{A L}=50 \mathrm{k} \Omega, C E=1 \mu \mathrm{~F}\)
\end{tabular}} \\
\hline \(\mathrm{R}_{\mathrm{E}}\) from \(\infty\) to \(0.9 \mathrm{R}_{\text {AL }}\) : & \(<1.3\) s \\
\hline \(\mathrm{R}_{\mathrm{E}}^{\mathrm{E}}\) from \(\infty\) to \(0 \mathrm{k} \Omega\) : & \multirow[t]{2}{*}{\(<0.7 \mathrm{~s}\)
\(\pm 15 \%+1.5 \mathrm{k} \Omega \quad\) IEC 61557-8} \\
\hline Response inaccuracy: \(\quad \pm 15 \%+1.5 \mathrm{k} \Omega \quad\) IEC 61557-8 & \\
\hline Hysteresis
\[
\text { at } \mathrm{R}_{\mathrm{AL}}=50 \mathrm{k} \Omega \text { : }
\] & approx. 15 \% \\
\hline \multicolumn{2}{|l|}{Output} \\
\hline \multicolumn{2}{|l|}{Contacts:} \\
\hline IL / SL 5880.12, & \\
\hline IP / SP 5880.12: & 2 changeover contacts \\
\hline \multicolumn{2}{|l|}{IL / SL 5880.12/2} \\
\hline IL / SL 5880.12/300, & \\
\hline IP / SP 5880.12/2 & \\
\hline Thermal current \(\mathrm{I}_{\text {th }}\) : & \(2 \times 1\) changeover contact, programmable
4 A \\
\hline \multicolumn{2}{|l|}{Switching capacity to AC 15} \\
\hline NO: & \(5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1 \\
\hline NC: & \(2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline to DC 13: & \(2 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline \multicolumn{2}{|l|}{Electrical life} \\
\hline to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) : & \(\geq 5 \times 10^{5}\) switching cyclesIEC/EN 60 947-5-1 \\
\hline Short circuit strength & \\
\hline max. fuse rating: & \multirow[t]{2}{*}{\begin{tabular}{l}
4 AgL \\
IEC/EN 60 947-5-1 \\
\(\geq 30 \times 10^{6}\) switching cycles
\end{tabular}} \\
\hline Mechanical life: & \\
\hline \multicolumn{2}{|l|}{General Data} \\
\hline Operating mode: & Continuous operation \\
\hline \multicolumn{2}{|l|}{Temperature range} \\
\hline Operation: & \(-20 \ldots+60^{\circ} \mathrm{C}\) \\
\hline Storage: & \(-20 \ldots+70^{\circ} \mathrm{C}\) \\
\hline Altitude: & <2.000 m \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Clearance and creepage distances rated impulse voltage /}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{pollution degree} \\
\hline \multirow[t]{2}{*}{between auxiliary supply connections (A1-A2):} & \multirow[t]{2}{*}{\(4 \mathrm{kV} / 2\) at AC-auxiliary voltage \({ }^{\text {IEC }} 60\) 664-1} \\
\hline & \\
\hline \multicolumn{2}{|l|}{between measuring input} \\
\hline \multicolumn{2}{|l|}{between auxiliary supply} \\
\hline connections: & \(4 \mathrm{kV} / 2 \quad \mathrm{IEC} 60\) 664-1 \\
\hline auxiliary supply connections and measuring input & \\
\hline to relay contacts: & \(6 \mathrm{kV} / 2 \mathrm{LEC} 60\) 664-1 \\
\hline relay contact 11-12-14 & \\
\hline to relay contact 21-22-24: & \(4 \mathrm{kV} / 2 \quad\) IEC 60 664-1 \\
\hline Insulation test voltage & \\
\hline Routine test: & AC \(4 \mathrm{kV} ; 1 \mathrm{~s}\) AC \(2,5 \mathrm{kV} ; 1 \mathrm{~s}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Technical Data} \\
\hline \multicolumn{3}{|l|}{EMC} \\
\hline Electrostatic discharge: & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline HF irradiation & & \\
\hline 80 MHz ... 1 GHz : & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline 1 GHz ... 2.5 GHz & \(3 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline 2.5 GHz ... 2.7 GHz: & \(1 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 2 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltages} \\
\hline between A1-A2: & 1 kV & IEC/EN 61 000-4-5 \\
\hline between L-PE: & 2 kV & IEC/EN 61 000-4-5 \\
\hline HF-wire guided: & 10 V & IEC/EN 61 000-4-6 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection:} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & IP 20 & IEC/EN 60529 \\
\hline Housing: & \multicolumn{2}{|l|}{Thermoplastic with Vo behaviour according to UL Subjekt 94} \\
\hline Vibration resistance: & \multicolumn{2}{|l|}{Amplitude 0.35 mm frequency 10 ... 55 Hz IEC/EN 60 068-2-6} \\
\hline Climate resistance: & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{EN 50005}} \\
\hline Terminal designation: & & \\
\hline Wire connection: & \multicolumn{2}{|l|}{\begin{tabular}{l}
EN 50005 \\
DIN 46 228-1/-2/-3/-4
\end{tabular}} \\
\hline Cross section: & \multicolumn{2}{|l|}{\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or} \\
\hline \multirow[t]{2}{*}{Stripping length:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{10 mm
0.8 Nm}} \\
\hline & & \\
\hline Wire fixing: & \multicolumn{2}{|l|}{\begin{tabular}{l}
Flat terminals with self-lifting clamping piece \\
IEC/EN 60 999-1
\end{tabular}} \\
\hline Mounting: & \multicolumn{2}{|l|}{DIN rail mounting (IEC/EN60715) or screw mounting M4, 90 mm hole pattern, with additional clip available as accessory} \\
\hline \multicolumn{3}{|l|}{Weight:} \\
\hline IL 5880: \(\quad 160 \mathrm{~g}\) & \multicolumn{2}{|l|}{160 g} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{lr}\text { SL 5880: } & 189 \mathrm{~g} \\ \text { IP 5880: } & 250 \mathrm{~g}\end{array}\)}} \\
\hline & & \\
\hline SP 5880: & \multicolumn{2}{|l|}{300 g} \\
\hline \multicolumn{3}{|l|}{Dimensions} \\
\hline \multicolumn{3}{|l|}{Width x height x depth:} \\
\hline IL 5880: & \multicolumn{2}{|l|}{\(35 \times 90 \times 61 \mathrm{~mm}\)} \\
\hline SL 5880: & \multicolumn{2}{|l|}{\(35 \times 90 \times 98 \mathrm{~mm}\)} \\
\hline \multirow[t]{2}{*}{IP 5880:
SP 5880:} & \multicolumn{2}{|l|}{\(70 \times 90 \times 61 \mathrm{~mm}\)} \\
\hline & \multicolumn{2}{|l|}{\(70 \times 90 \times 98 \mathrm{~mm}\)} \\
\hline \multicolumn{3}{|l|}{Classification to DIN EN 50155 for IL 5880} \\
\hline \multirow[t]{3}{*}{Vibration and shock resistance: Ambient temperature:} & \multicolumn{2}{|l|}{Category 1, Class B IEC/EN 61373} \\
\hline & T1 compliant & - \\
\hline & T2, T3 and TX with op & erational limitations \\
\hline \multicolumn{3}{|l|}{Protective coating of the PCB: No} \\
\hline \multicolumn{3}{|l|}{Standard Types} \\
\hline \multicolumn{3}{|l|}{IL 5880.12 AC 220 ... 240 V} \\
\hline Article number: & \multicolumn{2}{|l|}{0053378} \\
\hline - Auxiliary voltage U & \multicolumn{2}{|l|}{AC \(220 \ldots 240 \mathrm{~V}\)} \\
\hline - adjustable alarm value \(\mathrm{R}_{\text {LL }}\) : & \multicolumn{2}{|l|}{\(5 \ldots 100 \mathrm{k} \Omega\)} \\
\hline - Width: & \multicolumn{2}{|l|}{35 mm} \\
\hline \multicolumn{3}{|l|}{SL 5880.12 AC 220 ... 240 V} \\
\hline Article number: & \multicolumn{2}{|l|}{0055396} \\
\hline - Auxiliary voltage U & \multicolumn{2}{|l|}{AC \(220 \ldots 240 \mathrm{~V}\)} \\
\hline - adjustable alarm value \(R_{\text {AL }}\) : & \multicolumn{2}{|l|}{\(5 . .100 \mathrm{k} \Omega\)} \\
\hline - Width: & \multicolumn{2}{|l|}{35 mm} \\
\hline
\end{tabular} \(4 \mathrm{kV} / 2\) at AC-auxiliary voltage
\[
4 \mathrm{kV} / 2 \quad \text { IEC } 60 \text { 664-1 }
\]
between auxiliary supply and measuring input connections: and measuring input to relay contacts: relay contact 11-12-14 to relay contact 21-22-24 Insulation test voltage
Routine test:

\section*{Variants}

IL / SL 5880.12/200:
IL / SL 5880.12/201:

IL / SL 5880.12/300:
with pre-warning and programmable outputs
as version IL / SL 5880.12/200, but both output relays with ergized on Trip principle
according to DIN VDE 0100-551 as version IL / SL 5880.12/200, but for use with mobile generator sets

\section*{Ordering example for variants}

\section*{Accessories}

ET 4086-0-2:
Additional clip for screw mounting Article number: 0046578

\section*{Connection Example}

\section*{Monitoring of an ungrounded voltage system.}
*1) Auxiliary supply \(U_{H}(A 1-A 2)\) can be taken from the monitored voltage system. The voltage- and frequency range of the auxiliary supply input must be observed.
*2) with bridge LT1-LT2: automatic reset without bridge LT1 - LT2: manual reset, reset with button LT

\section*{Connection Example}

Monitoring of an ungrounded voltage system.
*1) Auxiliary supply \(U_{H}(A 1-A 2)\) can be taken from the monitored voltage system. The voltage- and frequency range of the auxiliary supply input must be observed.
*2) with bridge LT1 - LT2: automatic reset without bridge LT1 - LT2: manual reset, reset with button LT

Monitoring of motorwindings against ground.
The insulation of the motor to ground is monitored as long as contactor K does not activate the load.
*2) with bridge LT1 - LT2: automatic reset without bridge LT1 - LT2: manual reset, reset with button LT

\section*{Function diagramm}

MK 5880N
- According to IEC/EN 61 557-8
- For single and 3-phase AC-systems up to 0 ... 500 V and 10 ... 1000 Hz
- Monitors also disconnected voltage systems
- Adjustable tripping value \(\mathrm{R}_{\mathrm{AL}}\) of \(5 \ldots 100 \mathrm{k} \Omega\)
- De-energized on trip
- Auxiliary voltage, measuring circuit and output contacts are galvanically separated
- Manual and auto reset
- With test and reset button
- Connections for external test and reset buttons possible
- LED indicators for operation and alarm
- 2 changeover contacts
- MK 5880N/200 with additional prewarning
- adjustable prewarning value \(10 \mathrm{k} \Omega \ldots 5 \mathrm{M} \Omega\)
- 1 output relay for alarm and 1 for pre-warning
- MH 5880/500: similar to MK 5880N but with galvanic separated analogue output and 11 step LED chain for the actual insulation value
- Wire connection: also \(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled, or
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid DIN 46 228-1/-2/-3/-4
- As option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- MK 5880N: 22.5 mm width

MH 5880: 45 mm width

\section*{Approvals and Markings}

\section*{}
\({ }^{1)}\) only MK 5880 N , see CCC-Data

\section*{Applications}
- Monitoring of insulation resistance of ungrounded voltage systems to earth
- MK5880N/200 can also be used to monitor standby devices for earth fault, e. g. motor windings of devices that have to function in the case of emergency.
- Other resistance monitoring applications

\section*{Notes}

When monitoring 3-phase IT systems it is sufficient to connect the insulation monitor only to one phase. The 3-phases have a low resistive connection (approx. 3-5 \(\Omega\)) via the feeding transformer. So failures that occure in the non-connected phases will also be detected.

\section*{Function}

The device is connected to the supply via terminals A1-A2. The unit can either be supplied from the monitored voltage system or from an separate auxiliary supply. Terminal \(L\) is connected to the monitored voltage and \(P E\) to earth. If the insulation resistance \(R_{E}\) drops below the adjusted alarm value \(R_{A L}\) the red LED goes on and the output relay switches off (de-energized on trip). If the unit is on auto reset (bridge between LT1-LT2) and the insulation resistance gets better (\(R_{E}\) rises), the insulation monitor switches on again with a certain hysteresis and the red LED goes off. Without the bridge between LT1-LT2 the Insulation monitor remains in faulty state even if the insulation resistance is back to normal. The reset is done by pressing the internal or external reset button or by disconnecting the auxiliary supply. By activating the "Test" button an insulation failure can be simulated to test the function of the unit.
The variant MK 5880N.38/200 has a second setting range with a higher resistance up to \(5 \mathrm{M} \Omega\) (Potentiometer \(R_{v w}\)). This setting value can be used for pre-warning with relay output.
When set to manual reset the latching is active on both settings \(R_{A L}\) and \(R_{v w}\). Therefore it is possible in the case of a short insulation decrease that the fault is stored and passed via contacts 21-22-24 to a PLC while the main fault does not lead to a disconnection of the mains via the contacts 11-12-14.

Function diagramm

\section*{MK 5880N/200}

\section*{Circuit diagram}

MK 5880N

M10145

\section*{Connection Terminals}
\begin{tabular}{|c|c|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage \\
\hline L & Connection for measuring circuit \\
\hline PE & Connection for protective conductor \\
\hline PT(/PE) & Connection for external test button \\
\hline LT1/LT2 & Connection for external reset or control input for hysteresis function or manual reset LT1/LT2 bridged: Hysteresis function LT1/LT2 not bridged: Manual reset \\
\hline 11, 12, 14 & Alarm signal relay (1 changeover contact) \\
\hline 21, 22, \(24{ }^{11}\) & Prewarning signal relay (1 changeover contact) \\
\hline U, I, G, X1 \({ }^{\text {2) }}\) & \begin{tabular}{l}
Analogue output X1/G not bridged: \\
U-G 0 ... 10V; I-G 0 ... 20mA \\
X1/G bridged: \\
U-G \(2 \ldots\).. 10V; I-G 4 ... 20mA
\end{tabular} \\
\hline \multicolumn{2}{|l|}{1) only MK 5880N/200 and MH 5880 \({ }^{2}\)) only MH 5880} \\
\hline
\end{tabular}

\section*{Indicators}
green LED "ON":
red LED "AL": yellow LED "VW":

On, when supply voltage connected On, when insulation fault detected (\(R_{E}<R_{A A}\))
On, when insulation resistance is under prewarning value, \(R_{E}<R_{v w}\) (only with variant MK 5880N.38/200)

\section*{Notes}

The insulation monitor MK 5880N is designed to monitor AC-voltage systems. Overlayed DC voltage does not damage the instrument but may change the conditions in the measuring circuit. In one voltage system only one Insulation monitor must be connected. This has to be observed when coupling voltage system.

Line capacitance \(C_{E}\) to ground does not influence the insulation measurement, as the measurement is made with DC-voltage. It is possible that the reaction time in the case of insulation fault gets longer corresponding to the time constant \(\mathrm{R}_{\mathrm{E}}{ }^{*} \mathrm{C}_{\mathrm{E}}\).
The model MK 5880N.38/200 can be used, because of it's higher setting value up to \(5 \mathrm{M} \Omega\), to monitor single or 3 -phase loads for ground fault. If the load is operated from a grounded system the insulation resistance of the load can only be monitored when disconnected from the mains. This is normally the fact with loads which are operated seldom or only in the case of emergency but then must be function (see connection example).

The auxiliary supply can be connected to a separate auxiliary supply or to the monitored voltage system. The range of the auxiliary supply input has to be observed.

The MH5880/500 has in addition to the prewarning function also a galvanic separated analogue output and an 11 step LED chain indicator, that displays the actual insulation value between 20 kOhm and 1 MOhm. On terminals \(\mathrm{U} / \mathrm{G}\) of the analogue output \(0-10 \mathrm{~V}\) are provided, on terminals I/G 0-20 mA are available. By bridging terminals X1 and G the output can be switched over to \(2-10 \mathrm{~V}\) and \(4-20 \mathrm{~mA}\). For the scaling of the analogue output see diagram M10142.

\section*{Technical Data}

Auxiliary circuit
Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
AC 220 ... 240 V , AC \(380 \ldots 415 \mathrm{~V}\)
DC 12 V , DC 24 V
Voltage range
AC:
0.8 ... 1.1 U

DC:
Frequency range (AC):
\(0.9 \ldots 1.25 \mathrm{U}_{\mathrm{N}}\)
Nominal consumption:
AC:
DC:
approx. 2 VA
approx. 1 W

\section*{Measuring circuit}

\section*{Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) \\ Voltage range:}

Frequency range:
Alarm value \(\mathrm{R}_{\mathrm{AL}}\) :
Prewarning value \(R_{v w}\)
(only at MK 5880N/200):
Setting \(\mathrm{R}_{\mathrm{AL}}, \mathrm{R}_{\mathrm{vw}}\) :
Internal test resistor:
Internal AC resistance:
Internal DC resistance:
Measuring voltage:
Max. measuring current
(\(\mathrm{R}_{\mathrm{E}}=0\)):
Max. permissible noise
DC voltage:
Operate delay
at \(R_{A L}=50 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{E}}=1 \mu \mathrm{~F}\)
\(\mathrm{R}_{\mathrm{E}}\) from \(\infty\) to \(0.9 \mathrm{R}_{\mathrm{AL}}\) :
\(\mathrm{R}_{\mathrm{E}}\) from \(\infty\) to \(0 \mathrm{k} \Omega\) :
Hysteresis
at \(R_{A L}=50 \mathrm{k} \Omega\) :

AC \(0 \ldots 500 \mathrm{~V}\)
0 ... \(1.1 \mathrm{U}_{\mathrm{N}}\)
10 ... 1000 Hz
5 ... \(100 \mathrm{k} \Omega\)
\(10 \mathrm{k} \Omega \ldots 5 \mathrm{M} \Omega\)
infinite variable
equivalent to earth resistance of \(<5 \mathrm{k} \Omega\)
\(>250 \mathrm{k} \Omega\)
\(>250 \mathrm{k} \Omega\)
approx. DC 15 V , (internally generated)
\(<0.1 \mathrm{~mA}\)
DC 500 V
approx. 1.3 s
approx. 0.7 s
approx. \(15 \%\)

\section*{Technical Data}

\section*{Output}

Contacts:
MK 5880N.12: \(\quad 2\) changeover contacts
MK 5880N.38/200: \(\quad 2 \times 1\) changeover contact
Thermal current \(\mathrm{I}_{\text {th }}\) : Switching capacity
to AC 15
NO contact:
NC contact:
to DC 13:
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:

4 A
\begin{tabular}{|c|c|}
\hline \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline \(1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline & IEC/EN 60 947-5-1 \\
\hline \(\geq 3 \times 10^{5}\) switch & ycles \\
\hline 4 AgL & IEC/EN 60 947-5-1 \\
\hline \(30 \times 10^{6}\) swit & \\
\hline
\end{tabular}
\(\geq 30 \times 10^{6}\) switching cycles

Analogue output with MH 5880/500
galvanic separation AC 3750 V
to auxiliary supply, measuring circuit and relay output
terminal \(\mathrm{U}(+)\) / G(-): \(\quad 0 \ldots 10 \mathrm{~V}\), max. 10 mA
terminal I (+)/G(-): \(\quad 0 \ldots 20 \mathrm{~mA}\), burden 500 Ohm
change to \(2 \ldots 10 \mathrm{~V}\) or \(4 \ldots 20 \mathrm{~mA}\) by bridging terminal X 1 and G (see diagram M10142)

\section*{General Data}

\section*{Operating mode:}

Temperature range: Clearance and creepage

\section*{distances}
rated impulse voltage / pollution degree between auxiliary supply connections (A1-A2): between measuring input connections (L - PE): between auxiliary supply and measuring input connections:
EMC
Electrostatic discharge:
Fast Transients:
Surge voltages
between A1-A2:
between L-PE:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Screw terminals
(integrated):

Insulation of wires
or sleeve length:
Plug in with screw terminals
max. cross section for connection:

Insulation of wires
or sleeve length:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

IEC 60 664-1
\(4 \mathrm{kV} / 2\) at AC-auxiliary voltage
IEC 60 664-1
4 kV / 2
IEC 60 664-1
\(4 \mathrm{kV} / 2\) (3 kV at DC-auxiliary voltage)
8 kV (air)
IEC/EN 61 000-4-2
2 kV IEC/EN 61 000-4-4

1 kV
IEC/EN 61 000-4-5
(at AC-auxiliary voltage)
1 kV
Limit value class B
IEC/EN 61 000-4-5

EN 55011

IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6 20/060/04 IEC/EN 60 068-1

EN 50005
DIN 46 228-1/-2/-3/-4
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled or
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid

8 mm
\(1 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled
8 mm

\section*{Technical Data}

Plug in with cage clamp terminals max. cross section for connection:
min. cross section for connection: Insulation of wires or sleeve length: Wire fixing:

Mounting:
Weight
MK 5880N:
MH 5880:
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled
\(0.5 \mathrm{~mm}^{2}\)
\(12 \pm 0.5 \mathrm{~mm}\)
Plus-minus terminal screws M 3.5 box terminals with wire protection or cage clamp terminals DIN rail

IEC/EN 60715
approx. 180 g
approx. 320 g
Dimensions
Width x heigth x depth

MK 5880N:
MK 5880N PC:
MK 5880N PS:
MH 5880:
\(22.5 \times 90 \times 97 \mathrm{~mm}\)
\(22.5 \times 111 \times 97 \mathrm{~mm}\)
\(22.5 \times 104 \times 97 \mathrm{~mm}\)
\(45 \times 90 \times 97 \mathrm{~mm}\)
\begin{tabular}{ll}
\hline CCC-Data & \\
Auxiliary circuit & \\
Nominal voltage \(U_{N}:\) & AC \(220 \ldots 240 \mathrm{~V}\) \\
& DC \(12 \mathrm{~V}, \mathrm{DC} 24 \mathrm{~V}\) \\
Switching capacity: & \\
to AC 15 & \(1.5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) \\
NO contact: &
\end{tabular}

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

\section*{Standard type}

MK 5880N. 12 AC 220 ... 240 V
Article number: 0054044
- Auxiliary voltage \(U_{H}\) : AC \(220 \ldots 240 \mathrm{~V}\)
- adjustable
alarm value \(R_{A 1}\) : \(\quad 5 \ldots 100 \mathrm{k} \Omega\)
- Width: 22.5 mm

\section*{Variants}

MK 5880N.38/200
MH 5880.38/500:
with pre-warning
similar to MK 5880N but with galvanic separated analogue output (current/voltage) and 11 step LED chain for the actual
insulation value
Width: 45 mm

\section*{Ordering example for variants}

\section*{Options with Pluggable Terminal Blocks}

Screw terminal Cage clamp terminal (PS/plugin screw) (PC/plugin cage clamp)

\section*{Notes}

Removing the terminal blocks with cage clamp terminals
1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

\section*{Connection diagrams}

Monitoring of an ungrounded voltage system.
*1) Auxiliary supply \(U_{H}(A 1-A 2)\) can be taken from the monitored voltage system. The range of the auxiliary supply input must be observed.
*2) with bridge LT1 - LT2: automatic reset
without bridge LT1-LT2: manual reset, reset with button LT

Monitoring of motorwindings againgst ground
The insulation of the motor to ground is monitored as long as contactor K does not activate the load.
*2) with bridge LT1 - LT2: automatic reset
without bridge LT1 - LT2: manual reset, reset with button LT

VARIMETER IMD

Function Diagram

Function: de-energized on trip
With function energized on trip, the status of the relay contacts \(11,12,14\) and 21, 22, 24 is inverted
- Increasing the availability of machines and plants
- For preventive maintenance
- According to IEC/EN 61 557-8
- With configurable analogue output for insulating value
- For three-phase and A.C. power systems with 0 ... 500 V and 10 ... 1000 Hz
- Adjustable alarm value for ground fault \(\mathrm{R}_{\mathrm{AL}}\) of 5 k ... \(5 \mathrm{M} \Omega\)
- Monitors also disconnected voltage systems
- Energized / de-energized on trip settable
- Measuring circuit, auxiliary voltage, output contacts and analogue output are galvanically separated
- Programmable for manual reset or hysteresis function
- With test and reset button
- Connections for external test and reset buttons possible
- LED indicators for operation and alarm
- 2 changeover contacts
- Output function programmable
- Width: 70 mm

\section*{Approvals and Markings}

\section*{CE}

\section*{Application}
- Monitoring of insulation resistance of ungrounded voltage systems to earth
- Can also be used to monitor standby devices for earth fault, e.g. motor windings of devices that have to function in the case of emergency
- Other resistance monitoring applications

M9581 c

\section*{Function}

The device is connected to the supply via terminals A1-A2. The unit can either be supplied from the monitored voltage system or from an separate auxiliary supply. Terminal \(L\) is connected to the monitored voltage and \(P E\) to earth. If the insulation resistance \(R_{E}\) drops below the adjusted alarm value \(R_{A L}\) the red LED goes on and the output relay switches off (de-energized on trip) or switches on (energized on trip). If the unit is on auto reset (bridge between LT1-LT2) and the insulation resistance gets better (\(\mathrm{R}_{\mathrm{E}}\) rises), the insulation monitor switches on (de-energized on trip) or switches off (energized on trip) again with a certain hysteresis and the red LED goes off. Without the bridge between LT1-LT2 the Insulation monitor remains in faulty state even if the insulation resistance is back to normal. The reset is done by pressing the internal or external reset button or by disconnecting the auxiliary supply. By activating the "Test" button an insulation failure can be simulated to test the function of the unit.

5 measuring ranges can be selected by rotary switch. 5 ... 50 kOhm; \(10 \ldots 100 \mathrm{kOhm} ; 50 \ldots 500 \mathrm{kOhm} ; 100 \mathrm{~K} . . .1 \mathrm{MOhm}\) and \(0.5 \mathrm{M} . . .5 \mathrm{MOhm}\). The fine tuning is done with potentiometer \(R_{A L} \times\) Bereich. With the range selector also the relay function is set. The 5 ranges on the left are with function de-energized on trip, the 5 functions on the right with function energized on trip.

With the 4 smaller ranges up to max. 1 MOhm a pre-warning can be adjusted between setting value and 5 MOhms . On the range \(0.5 \ldots 5 \mathrm{MOhm}\) the pre-warning is adjustable between setting value and 10 MOhm . The pre-warning reacts on contact \(21,22,24\), the alarm value on contact 11 , 12,14 . Turning \(\mathrm{R}_{\mathrm{vw}}\) fully anti clockwise contact \(21,22,24\) switches together with the alarm contact.

The pre-warning behaves similar as the alarm signal concerning manual reset. Hysteresis, energized or de-energized on trip

The devices have an analogue output that indicates the insulation resistance.
A Version with RS 485 interface is in preparation.

\section*{Analogue output:}
\begin{tabular}{|c|c|c|}
\hline Output Terminal & Terminal X4-X5 bridged & Terminal X4-X5 open \\
\hline \(\mathrm{u}+/ \mathrm{u}-\) & \(2 \ldots 10 \mathrm{~V}\) & \(0 \ldots 10 \mathrm{~V}\) \\
\hline \(\mathrm{i}+/ \mathrm{i}-\) & \(4 \ldots 20 \mathrm{~mA}\) & \(0 \ldots 20 \mathrm{~mA}\) \\
\hline
\end{tabular}

\section*{Terminal X1-X2, Analogue output:}

\section*{X1-X2 open:}

Insulation value within the adjusted measuring range \(R_{\text {AL }}\) e.g. \(50 \ldots 500 \mathrm{kOhm}\) is proportional to \(0 \ldots 10 \mathrm{~V}\) on terminals \(u+/ u-\) (\(x 4-\mathrm{X} 5\) is open).
The analogue value in relation to the insulation resistance can be seen in the diagrams M9605, M9606 (page 3 Setting aid).

X1-X2 bridged: Insulation value from 5 times the measuring range \(\max 10\) MOhm down to \(R_{\text {AL }}\) setting. e.g. range \(\mathrm{R}_{\mathrm{AL}}=5 \mathrm{kOhm} \times 10\) (max fine tuning) \(\times 5=250 \mathrm{kOhm}\) setting value range \(5 \mathrm{kOhm} \times 4\) (fine tuning) \(=20 \mathrm{kOhm}\) Analogue output 4... 20 mA is proportional to 20 ... 250 kOhm

\section*{Indication}
green LED "ON": On, when supply voltage connected (readiness for operation)
yellow LED "VW":
red LED "AL": On, when insulation fault detected, \(R_{E}<R_{A L}\) (value has fallen below alarm level)

\section*{Notes}

The Insulation monitor RP 5888 is designed to monitor AC-voltage systems. Overlayed DC voltage does not damage the instrument but may change the conditions in the Measuring Circuit. In one voltage system only one Insulation monitor must be connected. This has to be observed when coupling voltage system.
Line capacitance \(C_{E}\) to ground does not influence the insulation measurement, as the measurement is made with DC-voltage. It is possible that the reaction time in the case of insulation time gets longer corresponding to the time constant \(R_{E}{ }^{*} C_{E}\).

The Insulation monitor can be used, because of it's higher setting value, to monitor single or 3-phase loads for ground fault.
If the load is operated from a grounded system the insulation resistance of the load can only be monitored when disconnected from the mains. This is normally the fact with loads which are operated seldom or only in the case of emergency but then must be function (see connection example). The auxiliary supply can be connected to a separate auxiliary supply or to the monitored voltage system. The range of the auxiliary supply input has to be observed.
When monitoring 3-phase IT systems it is sufficient to connect the insulation monitor only to one phase. The 3-phases have a low resistive connection (approx. \(3-5 \Omega\)) via the feeding transformer. So failures that occure in the non-connected phases will also be detected.

\section*{Technical Data}

\section*{Auxiliary circuit}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : Voltage range:

Nominal frequency: Nominal consumption at AC:
at DC :

\section*{Measuring ciruit}

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
Voltage range:
Frequency range:
Alarm value \(\mathrm{R}_{\mathrm{AL}}\) :
Prewarning value \(R_{v w}\) :
Setting of ranges \(\mathrm{R}_{\mathrm{AL}}\) in 5 steps:

Setting \(\mathrm{R}_{\mathrm{AL}}\) :
Setting \(R_{v w}\) :
Internal test resistor:
Internal AC resistance:
Internal DC resistance:
Measuring voltage:
Max. measuring current
(\(\mathrm{R}_{\mathrm{E}}=0\)):
Max. permissible noise
DC voltage:
Operate delay
at \(\mathrm{R}_{\mathrm{AL}}=50 \mathrm{k} \Omega, \mathrm{CE}=1 \mu \mathrm{~F}\)
\(R_{E}\) from \(\infty\) to \(0,9 R_{\text {AL }}\)
\(\mathrm{R}_{\mathrm{E}}\) from \(\infty\) to \(0 \mathrm{k} \Omega\) :
Hysteresis
at \(\mathrm{R}_{\mathrm{AL}}=50 \mathrm{k} \Omega\) :
Output
Contacts:
at \(\mathrm{R}_{\mathrm{AL}}=\mathrm{R}_{\mathrm{VW}}\) :
Thermal current \(\mathrm{I}_{t}\) :
Switching capacity
to AC 15
NO contacts:
NC contacts:

\section*{Electrical life}
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:

AC/DC 24 ... \(80 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 80\)... 230 V
DC 19 ... \(110 \mathrm{~V}, \mathrm{AC} 19 \ldots 90 \mathrm{~V}\),
DC 64 ... 300 V , AC 64 ... 265 V
\(0.9 \ldots 1.25 U_{N}\)
AC \(50 / 60 \mathrm{~Hz}\)
5 VA
2.5 W

AC \(0 \ldots 500 \mathrm{~V}\)
0 ... \(1.1 U_{\mathrm{N}}\)
10 ... 1000 Hz
\(5 \mathrm{k} . .5 \mathrm{M} \Omega\)
\(\mathrm{R}_{\mathrm{AL}} \ldots 5 \mathrm{M} \Omega\)
5 ... \(50 \mathrm{k} \Omega, 10\)... \(100 \mathrm{k} \Omega\),
\(50 \ldots 500 \mathrm{k} \Omega, 100 \mathrm{k} . . .1 \mathrm{M} \Omega\)
and 0.5 M ... \(5 \mathrm{M} \Omega\)
infinite variable
on relative scale related to \(R_{\text {AL }}\) setting value
equivalent to earth resistance of \(<5 \mathrm{k} \Omega\) \(>250 \mathrm{k} \Omega\)
\(>250 \mathrm{k} \Omega\)
approx. DC 15 V , (internally generated)
\(<0.1 \mathrm{~mA}\)
DC 500 V
\(<2\) s
\(<1,4\) s
approx. \(15 \%\)

1 changeover contact for alarm
1 changeover contact for prewarning
2 changeover contacts
4 A

5 A / AC \(230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
2 A / AC 230 V
IEC/EN 60 947-5-1
\(\geq 5 \times 10^{5}\) switch. cycl.IEC/EN 60 947-5-1
4 A gL
IEC/EN 60 947-5-1
\(\geq 30 \times 10^{6}\) switching cycles

General Data

Operating mode:
Temperature range:
Clearance and creepage

\section*{distances}
rated impuls voltage /
pollution degree
auxiliary supply
measuring input / contacts: \(6 \mathrm{kV} / 2\)
measuring input / analogue output: \(4 \mathrm{kV} / 2\)
contacts 11,12,14 / 21,22,24: \(4 \mathrm{kV} / 2\)
EMC
Electrostatic discharge(ESD):
HF irradiation:
Fast transients:
Surge voltages
between A1-A2:
between L - PE:
Interference supression
Degree of protection:
Housing:
IP 40
Terminals:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

IEC 60 664-1
IEC 60 664-1
IEC 60 664-1 IEC 60 664-1

IEC/EN 61 000-4-2
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
EN 61 000-6-3
IEC/EN 60529
IEC/EN 60529

\section*{Technical Data}

Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Fixing torque:
Stripping length:
Mounting:
Weight:

Thermoplastic with Vo behaviour according to UL subject 94
Amplitude 0.35 mm
Frequency 10 ... 55 Hz ,IEC/EN 60 068-2-6
20 / 060 / 04
IEC/EN 60 068-1
EN 50005
\(1 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded wire
DIN 46 228-1/-2/-3/-4
box terminal with wire protection
0.4 Nm max.
7.5 mm

DIN rail
IEC/EN 60715
approx. 200 g

Dimensions

\section*{Width x height x depth: \(\quad 70 \times 90 \times 71 \mathrm{~mm}\)}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Standard Type} \\
\hline \begin{tabular}{l}
RP 5888.12 AC/DC 80 ... Article number: \\
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : \\
- Setting alarm value: \(\mathrm{R}_{\mathrm{AL}}\) : \\
- Width:
\end{tabular} & \[
\begin{aligned}
& 0060868 \\
& \text { AC/DC } 80 \ldots 230 \mathrm{~V} \\
& 5 \mathrm{k} \ldots 5 \mathrm{M} \Omega \\
& 70 \mathrm{~mm}
\end{aligned}
\] \\
\hline
\end{tabular}
Ordering Example

Analogue output

\section*{Connection Examples}

Monitoring of an ungrounded voltage system.
*1) Auxiliary supply \(U_{H}(A 1-A 2)\) can be taken from the monitored voltage system. The range of the auxiliary supply input must be observed.
*2) with bridge LT1-LT2: automatic reset
without bridge LT1-LT2: manual reset, reset with button LT

Monitoring of motorwindings against ground.
The insulation of the motor to ground is monitored as long as contactor K does not activate the load.
*2) with bridge LT1-LT2: automatic reset without bridge LT1 - LT2: manual reset, reset with button LT

Monitoring of an ungrounded voltage system.
*1) Auxiliary supply \(U_{H}(A 1-A 2)\) can be taken from the monitored voltage system. The range of the auxiliary supply input must be observed.
*2) with bridge LT1 - LT2: automatic reset
without bridge LT1 - LT2: manual reset, reset with button LT

\section*{Circuit Diagrams}

IN 5880/710, IN 5880/711

IP 5880/711
- According to IEC/EN 60 255, DIN VDE 0435-303, IEC/EN 61 557-8
- For rooms used for medical purposes according to IEC 60364-7-710, DIN VDE 0100-710
- For three-phase and A.C. power systems with 0 ... 500 V and \(10 \ldots 1000 \mathrm{~Hz}\) (IT power systems)
- Adjustable alarm value for ground fault \(\mathrm{R}_{\text {Al }}\) of \(50 \ldots 500 \mathrm{k} \Omega\)
- Measuring circuit with broken wire protection
- As option, programmable for storing or non-storing of errors
- With reset and test button
- Additional external reset and test buttons can be connected
- LED indicators for operation, insulation fault, and interruption of Measuring circuit
- 2 changeover contacts
- As option, with LED chain for indication of the current insulation status
- 52.5 mm width

\section*{Approvals and Markings}

\section*{\(C E\)}

\section*{Application}

For insulation monitoring of the IT system of rooms used for medical purposes according to VDE 0100-710:

\section*{Design and Method of Functioning}

The terminals L/L' and PE/PE' are connected to the respective lines of the IT power system. If the IT transformer has a centre tapping or a star point, the terminals L / L' are preferably connected to this point. The terminals L' and PE' should be connected with separate lines and possibly not in the same place (at least not at the same terminal) of the IT power system to allow for safe recognition of an interruption in the measuring circle.

The insulation resistance of the IT power system against ground is measured between the terminals \(L\) / \(L^{\prime}\) and \(P E / P E\). If the ground fault resistance \(R_{E}\) falls below the pickup value \(R_{A L}\) of the line isolation monitor, the red LED "AL" will be illuminated, and the two changeover contacts fall back into normal position. On interruption of the Measuring circuit, the two changeover contacts will likewise fall back into normal position, and the red LED "MK" will be illuminated.
After correction of the error \(\left(R_{E}>R_{A L}\right.\), Measuring circuit connected) and jumpered terminals LT1 - LT2 (= error not stored), the changeover contacts will change into work position (correct status), and the red error LEDs will stop lighting.
If you wish to store errors, remove the jumper LT1 - LT2. In this way, also short-lived errors as e.g. a temporary deterioration of insulation, for example by touching of a line or unreliable contact making in the Measuring circuit may trigger a stored alarm: The output contacts remain open also after the error has been corrected. The type of the error can be seen in retrospect from the illuminated error LED "AL" or "MK".
The error memory can be reset by pressing the internal or external reset key, or by switching off the auxiliary voltage.

By pressing the internal or external "Test" key, a deterioration of insulation is simulated in the Measuring circuit (= \(R_{E}\) approx. \(40 \mathrm{k} \Omega\)); thus, the correct response of the isolation monitor is checked.

The variant IN 5880/711 comprises an 11-stage LED chain for indication of the current insulation resistance of the power system. By means of differently colored LEDs, the insulation status in the range of \(20 \mathrm{k} \Omega \ldots 1 \mathrm{M} \Omega\) is indicated. In this way, deterioration of insulation can be detected even before an alarm is triggered.

The variant IP 5880/711 includes a 11 step LED indicator to monitor the actual state of the insulation, an additional power supply and relays to connect a test and indicator unit UP 5862. The width is 70 mm .

\section*{Notes}

\section*{General}

Before checking insulation and voltage of the system, disconnect the monitoring device IN 5880 from the power source.

\section*{Insulation monitoring system}

The isolation monitor is designed to monitor straight AC power systems. Any interfering direct voltages getting into the Measuring circuit will not damage the device but will falsify the conditions in the Measuring circuit while they are affecting it. As insulation measuring is performed via direct current, it will not be falsified by system capacitances against protective ground \(\mathrm{C}_{\mathrm{E}}\). However, the pickup time may be longer in case of insulation failure, in the order of the time constant \(R_{E}\) times \(C_{E}\).
In every IT circuit, only one isolation monitor must be connected. This has to be observed when coupling voltage system.

\section*{Indicators}

Green LED "ON": is illuminated when auxiliary voltage has been applied (operability)
Red LED "AL": is illuminated when an insulation failure is present,
\(\mathrm{R}_{\varepsilon}<\mathrm{R}_{\text {ㄴ }}\) (value has fallen below alarm level)
Red LED "MK": is illuminated when one of the lines of the Measuring circuit is interrupted (L, L', PE, PE')

With IN 5880/711, additional 11-stage LED chain:
Green LEDs: \(\quad\) at \(\geq 1 \mathrm{M} \Omega, 750 \mathrm{k} \Omega, 550 \mathrm{k} \Omega\)
Yellow LEDs: \(\quad\) at \(400 \mathrm{k} \Omega, 300 \mathrm{k} \Omega, 220 \mathrm{k} \Omega, 160 \mathrm{k} \Omega, 110 \mathrm{k} \Omega, 75 \mathrm{k} \Omega\)
Red LEDs: at \(40 \mathrm{k} \Omega, \leq 20 \mathrm{k} \Omega\)

\section*{Technical Data}

Insulation Measuring Circuit

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\)
Voltage range:
Frequency range:
Alarm value \(\mathrm{R}_{\mathrm{AL}}\) :
Internal testing resistor:
AC internal resistance:
DC internal resistance:
Measuring voltage:
Max. measuring current
(\(\mathrm{R}_{\mathrm{E}}=0\)):
Max. permissible
interfering direct voltage:
Operate delay:
\(R_{E}\) of \(\infty\) to \(0.9 R_{\text {AL }}\)
\(R_{E}^{E}\) of \(\infty\) to \(0 \mathrm{k} \Omega\) :
Hysteresis:

AC \(0 \ldots 500 \mathrm{~V}\)
0.8 ... 1.1 U
\(10 \ldots 1000 \mathrm{~Hz}\),
Adjustable from \(50 \ldots 500 \mathrm{k} \Omega\)
corresponds to an \(R_{E}\) of approx. \(40 \mathrm{k} \Omega\)
\(>250 \mathrm{k} \Omega\)
\(>250 \mathrm{k} \Omega\)
approx. DC 15 V (generated internally)
\(<50 \mu \mathrm{~A}\)
DC 500 V
with \(R_{A L}=50 \mathrm{k} \Omega, C E=1 \mu \mathrm{~F}\)
\(<1.3\) s
\(<0.7\) s
approx. 15 \%

Auxiliary Circuit

Auxiliary voltage \(\mathbf{U}_{\mathbf{H}}\)
Voltage range:
Nominal consumption:
Nominal frequency:

AC 220 ... 240 V
\(0.85 \ldots 1.1 U_{H}\)
approx. 2 VA
\(45 . . .400 \mathrm{~Hz}\)

\section*{Output}

Number of contacts provided:2 changeover contacts
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
5 A
Switching capacity
acc. to AC 15
NO contact:
NC contact:
Contact life
to AC 15 with \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strenght
max. fuse rating:
Mechanical life:

\section*{General Data}

\section*{Nominal operation: Permanent operation \\ Temperature range: \(-20 \ldots+60^{\circ} \mathrm{C}\)}

Clearance and creepage distances
overvoltage category/
pollution degree: \(\quad 4 \mathrm{kV} / 2\)
IEC 60 664-1
EMC

Static discharge (ESD):
HF irradiation:
Fast transients:
8 kV (air discharge)
\(10 \mathrm{~V} / \mathrm{m}\)
2 kV
between supply lines: 1 kV
between wire and ground
2 kV
adio interference suppression:Limit value class B
Degree of protection
Housing: IP 40 IEC/EN 60529
Terminals: IP 20 IEC/EN 60529

Housing:

Vibration resistance:

Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Mounting:
Net weight
IN 5880/710:
IN 5880/711:
IP 5880/711:

Thermoplast with V0 behavior
according to UL Subject 94
Amplitude 0.35 mm
Frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20 / 060 / 04
IEC/EN 60 068-1 EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) massive, or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46 228-1/-2/-3
Screw terminals with self-lifting
clamping piece IEC/EN 60 999-1
DIN rail
IEC/EN 60715
approx. 190 g
approx. 250 g
approx. 350 g

Width x height x depth
IN 5880/710, IN 5880/711: \(\quad 52.5 \times 90 \times 59 \mathrm{~mm}\)
IP 5880/711:
\(70 \times 90 \times 59 \mathrm{~mm}\)
\(70 \times 90 \times 59 \mathrm{~mm}\)

\section*{Standard Type}

IN 5880.12/710 AC 220 - 240 V
Article number:
0056739
- Output:

2 changeover contacts
Auxiliary voltage \(U_{H}\) : AC 220 ... 240 V
- Overall width: 52.5 mm
- Adjustable alarm value \(\mathrm{R}_{\mathrm{AL}}\) :
\(50 \ldots 500 \mathrm{k} \Omega\)

\section*{Variant}

IN 5880/711:
with 11-stage LED chain for indication of the current insulation value
IP 5880/711: with 11-stage LED chain for indication of the current insulation value, in addition with connection for test and indicator panel UP 5862

\section*{Ordering Example}

\section*{Connection Example}

Monitoring of a 3-phase IT power system

\section*{Connection Examples}

Monitoring of a single phase IT power system
*1) The auxiliary voltage \(U_{H}(A 1-A 2)\) can also be drawn from the power system to be monitored. However, the voltage range of the auxiliary voltage must be taken into consideration.
*2) With jumper LT1 - LT2: No storing of error message (hysteresis behavior)
With jumper LT1 - LT2: Storing of error message; can be deleted by pressing the Delete (Reset) key LT

\section*{Accessories}

\section*{Test and indicator panel UP 5862}

For insulation monitors in medically used rooms according to IEC 60 364-7-710, DIN VDE 0100-710

to mount in flush device boxes \(\varnothing 60 \mathrm{~mm}, 35 \mathrm{~mm}\) deep;
- test button to check the function of the device
- with green LED to indicate operation
- reset button for audible alarm
- with yellow LED to monitor insulation failure

Max. wire length to IN / IP 5880
at wire cross section \(A=0.5 \mathrm{~mm}^{2}: 500 \mathrm{~m}\)
at wire cross section \(A=1.5 \mathrm{~mm}^{2}: 1000 \mathrm{~m}\)

Dimensions (width x height): \(80 \times 80 \mathrm{~mm}\)
Article number: 0041706

Flush mounting kit
Order reference: KU 4087-150/005659

Mounting kit for surface mounting
KU 4087-100

VARIMETER IMD
Insulation Monitor
IL 5881, SL 5881
DOLD 発

Function Diagram

IL 5881/100, SL 5881/100; IL 5881, SL 5881
- According to IEC/EN 61 557-8
- For DC voltage systems up to 12 ... 280 V
- Wide voltage range of measuring input \(U_{N}\) DC \(12 \ldots 280 \mathrm{~V}\) (on request DC \(24 \ldots 500 \mathrm{~V}\) with separate auxiliary supply,
Measuring range \(20 \ldots 500 \mathrm{k} \Omega\))
- Adjustable tripping value \(\mathrm{R}_{\mathrm{AL}}\) of \(5 \ldots 200 \mathrm{k} \Omega\)
- Selective ground fault indication for \(\mathrm{L}+\) and L - allows fast fault finding
- Without auxiliary supply
- De-energized on trip
- 2 changeover contacts
- Automatic or manual reset, programmable
- With test and reset buttons
- Connection for external test and reset button possible
- galvanic separated AC or DC auxiliary supply available as option
- adjustable time delay as option
- 2 models available:

IL 5881: 61 mm deep with terminals near to the bottom to be mounted in consumer units or industrial distribution systems according to DIN 43880
SL 5881: \(\quad 98 \mathrm{~mm}\) deep with terminals near to the top to be mounted in cabinets with mounting plate and cable ducts
- DIN rail or screw mounting
- 35 mm width

\section*{Approvals and Markings}

\section*{Application}
- Monitoring of insulation resistance of ungrounded DC-voltage systems to earth.
- For industrial and railway applications

\section*{Function}

If the insulation resistance \(R_{E}\) between \(\mathrm{L}+\) or L - to ground drops below the adjusted alarm value \(\mathrm{R}_{\text {AL }}\) (insulation failure) the corresponding red LED goes on and the output relay switches off (de-energized on trip). If the unit is on auto reset (bridge between LT-X1) and the insulation resistance gets better (\(\mathrm{R}_{\mathrm{E}}\) rises), the insulation monitor switches on again with a certain hysteresis and the red LED goes off.
Without the bridge between LT-X1 the insulation monitor remains in faulty state even if the insulation resistance is back to normal. The location of the fault on L+ or L- is indicated on the corresponding LED (selective fault indication).
The reset is done by pressing the internal or external reset button or by disconnecting the auxiliary supply.
By activating the "Test" button internal or external an insulation failure can be simulated to test the function of the unit.

\section*{Indicators}

Green LED "ON":
Red LED "RE+": Red LED "RE-":

On, when supply voltage connected
On, when insulation fault detected (\(\mathrm{R}_{\mathrm{E}_{+}}<\mathrm{R}_{\mathrm{AL}}\)) on \(\mathrm{L}+\) On, when insulation fault detected \(\left(R_{E-}^{E+}<R_{A L}\right)\) on \(L-\)

IL 5881.12/100

IL 5881.12

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1 & \(\mathrm{L} /+\) \\
\hline A2 & \(\mathrm{N} /-\) \\
\hline L+, L- & Connection for monitored IT-systems \\
\hline PE & Connection for protective conductor \\
\hline PT, X1 & Connection for external test button \\
\hline LT, X1 & \begin{tabular}{l}
Connections for external reset or \\
manual and auto reset: \\
LT/X1 bridged: hysteresis function \\
LT/X1 not bridged: manual reset
\end{tabular} \\
\hline \begin{tabular}{l}
\(11,12,14\) \\
\(21,22,24\)
\end{tabular} & \begin{tabular}{l}
Changeover contact \\
(insulation failure)
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes}

The IL/SL 5881 can be used in systems with high leakage capacity to ground. When the unit is adjusted to high alarm values a leakage capacity can create a pulse when switching the system on (short alarm pulse). This happens at the following values:

IL / SL 5881: \(R_{A L}=200 \mathrm{k} \Omega: \mathrm{C}_{\mathrm{E}}>1 \mu \mathrm{~F}\)
IL / SL 5881: \(R_{A L}^{A L}=50 \mathrm{k} \Omega: C_{E}^{E}>6 \mu \mathrm{~F}\)
IL / SL 5881: \(\mathrm{R}_{\mathrm{AL}}=20 \mathrm{k} \Omega: \mathrm{C}_{\mathrm{E}}>16 \mu \mathrm{~F}\)
IL / SL 5881/100: \(\mathrm{R}_{\mathrm{AL}}=500 \mathrm{k} \Omega: \mathrm{C}_{\mathrm{E}}>0.8 \mu \mathrm{~F}\)
IL / SL 5881/100: \(R_{\text {AL }}=200 \mathrm{k} \Omega: \mathrm{C}_{\mathrm{E}}>0.8 \mu \mathrm{~F}\)
IL / SL 5881/100: \(\mathrm{R}_{\mathrm{AL}}=50 \mathrm{k} \Omega: \mathrm{C}_{\mathrm{E}}>2.0 \mu \mathrm{~F}\)
IL / SL 5881/100: \(\mathrm{R}_{\mathrm{AL}}=20 \mathrm{k} \Omega: \mathrm{C}_{\mathrm{E}}>4.5 \mu \mathrm{~F}\)
An optional time delay (on request) could suppress this pulse.
Because of the measuring principle with a resistor bridge (asymmetry principle) the insulation monitor IL/SL 5881 will not detect symmetric ground faults of \(\mathrm{L}+\) and L . Also a voltfree (disconnected \(\mathrm{U}_{\mathrm{N}}=0 \mathrm{~V}\)) system cannot be monitored.

\section*{Notes}

On models with separate auxiliary supply the alarm state is not defined when the voltage drops below 3 V . To avoid false alarm an additional auxiliary relay should be used which is connected to the monitored voltage or the variant IL 5881.12/010 is used.

On the models with galvanic separation between DC auxiliary supply and measuring input, the supply (A1/A2) can be connected to the monitored voltage system (L+/L-). The voltage range of the auxiliary input must be noticed which is only 1.25 of \(U_{H}\) while the measuring input always goes up to 280 V .

If no auxiliary supply is available the model IL/SL 5881/100 (without auxiliary supply) can be used which takes the auxiliary supply from the monitored system \(\left(U_{H}=U_{N}=D C 12 \ldots 280 \mathrm{~V}\right)\).

In one isolated voltage system only one insulation monitor must be connected, because several units would influence each other (half response value if 2 devices are connected).

\section*{Technical Data}

\section*{Auxiliary Circuit}
(only at IL/SL 5881)
\(\begin{array}{ll}\text { Auxiliary voltage } \mathbf{U}_{\mathrm{H}}: \quad & \text { AC } 220 \ldots 240 \mathrm{~V}, 380 \ldots 415 \mathrm{~V} \\ & \text { DC } 12 \mathrm{~V}, 24 \mathrm{~V}\end{array}\)
DC \(24 \ldots 60 \mathrm{~V}\)
Voltage range:
\begin{tabular}{ll}
AC: & \(0.8 \ldots 1.1 \mathrm{U}_{H}\) \\
DC: & \(0.9 \ldots 1.25 \mathrm{U}_{\mathrm{H}}\) \\
Frequency range (AC): & \(45 \ldots 400 \mathrm{~Hz}^{2}\)
\end{tabular}

Frequency range (AC):
Nominal consumption
AC:
approx. 2 VA
DC:
approx. 1 W

\section*{Measuring Circuit}

\section*{Nominal voltage \(U_{N}\) at}
\(\leq 5 \%\) residual ripple:
\(\leq 48 \%\) residual ripple:
Voltage range:
Alarm value \(\mathrm{R}_{\mathrm{AL}}\) :
Setting \(\mathrm{R}_{\mathrm{AL}}\) :
Internal AC resistance
L+ and L- to PE:
Max. Messstrom an PE (\(\mathrm{R}_{\mathrm{E}}=0\)): \(\mathrm{U}_{\mathrm{N}} / 75 \mathrm{k} \Omega\)

\section*{Operate delay}
at \(R_{A L}=50 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{E}}=1 \mu \mathrm{~F}\)
\(R_{E}\) from \(\infty\) to \(0.9 R_{A L}\) :
\(R_{E}\) from \(\infty\) to \(0 \mathrm{k} \Omega\) :
Response inaccuracy:

\section*{Hysteresis}
at \(R_{A L}=50 \mathrm{k} \Omega\) :
Time delay:
approx. 0.8 s
approx. 0.4 s
\(\pm 15 \%+1.5 \mathrm{k} \Omega\)
IEC 61557-8

\section*{Output}

\section*{Contacts:}

IL / SL 5881.12:
Thermal current \(I_{\text {th }}\) :
Switching capacity
to AC 15:
Switching capacity
to DC 13:

\section*{Electrical life}
to AC 15 at 1 A, AC 230 V :
Short circuit strength
max. fuse rating:
Mechanical life:

2 changeover contacts
4 A

3 A / AC 230 V
IEC/EN 60 947-5-1

2 A / DC 24 V
0.2 A / DC 250 V

IEC/EN 60 947-5-1
\(\geq 2 \times 10^{5}\) switching cycles IEC/EN 60 947-5-1
4 AgL
IEC/EN 60 947-5-1
\(\geq 10 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}

Operating mode:
Operation:
Storage:
Altitude:
Clearance and creepage distances
rated impulse voltage / pollution degree
between auxiliary supply connections(A1 / A2): between measuring input connections (L+ / L- / PE): between auxiliary supply and measuring input connections: Input to output(contacts): EMC
Electrostatic discharge: HF irradiation:
\(80 \mathrm{MHz} \ldots 1 \mathrm{GHz}\) :
1 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between A1-A2 and L+ - L-: between A1, A2 - PE and
L+, L- - PE:
HF-wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
Cross section:
Stripping length:
Fixing torque:
Wire fixing:
Mounting:

Weight
IL 5881:
SL 5881:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
\(-20 \ldots+60^{\circ} \mathrm{C}\)
\(<2.000\) m
\(4 \mathrm{kV} / 2\) at AC-auxiliary voltage

4 kV / 2
IEC 60 664-1
\(4 \mathrm{kV} / 2\)
IEC 60 664-1
IEC 60 664-1
IEC/EN 61 000-4-2
\(12 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3
\(10 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3
2 kV
IEC/EN 61 000-4-4
1 kV
2 kV
10 V
Limit value class B
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
EN 55011
IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Thermoplastic with V0 behaviour according to UL Subjekt 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6 20 / 060 / 04

IEC/EN 60 068-1
EN 50005
DIN 46 228-1/-2/-3/-4
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire
10 mm
0.8 Nm

Flat terminals with self-lifting clamping
piece IEC/EN 60 999-1
DIN rail mounting (IEC/EN60715) or screw mounting M4, 90 mm hole pattern, with additional clip available as accessory
approx. 170 g
approx. 200 g

\section*{Dimensions}

\section*{Width \(\mathbf{x}\) height x depth:}
IL 5881:
\(35 \times 90 \times 61 \mathrm{~mm}\)
SL 5881:

\section*{Classification to DIN EN \(\mathbf{5 0 1 5 5}\) for IL 5881}

Vibration and

\section*{shock resistance: Category 1, Class B IEC/EN 61373}

\section*{Ambient temperature: T1 compliant}

T2, T3 and TX with operational limitations

\section*{Protective coating of the PCB: No}

\section*{Variants}

IL / SL 5881.12: with auxiliary supply
IL / SL 5881.12/010 with auxiliary supply
no alarm at \(U_{N}<3 \mathrm{~V}\)
IL / SL 5881.12/300 without auxiliary supply
Nominal voltage \(U_{N}\) DC \(12 \ldots 280 \mathrm{~V}\) closed circuit operation
Time delay 0.5 ... 20 s

\section*{Ordering example for variants}

\begin{tabular}{ll}
\hline Accessories & \\
ET 4086-0-2: & Additional clip for screw mounting \\
& Article number: 0046578
\end{tabular}

Monitoring of an ungrounded system.
*1) Auxiliary supply \(U_{H}\) (A1-A2) can be taken from monitored voltage system. The range of the auxiliary supply input must be observed.
*2) with bridge LT - X1: automatic reset without bridge LT - X1: manual reset, reset with button LT

Monitoring of an ungrounded system without auxiliary supply.
*2) with bridge LT - X1: automatic reset
without bridge LT - X1: manual reset, reset with button LT

VARIMETER EDS
Locating current injector
RR 5886
DOLD 聞

\section*{Product description}

The locating current injector RR 5886 in connection with the insulation fault locator RR 5887 monitors and localises insulation faults in complex AC/DC networks (IT systems). The external current transformers work independently of each other, calibrate themselves and are simply connected to the measuring channels of the insulation fault locator RR 5887. The number of measuring channels is increased by combining several insulation fault locators via a RS-485 bus connection. The search for insulation faults in extensive networks can be refined in this manner. Two different alarm levels facilitate the timely detection of a dangerous insulation state. The devices are operated easily and intuitively thanks to automatic balancing and a clear layout of the setting elements. The early detection and localisation of insulations faults permits their quick and targeted correction. As user you will benefit from the operating reliability and high availability of your system.

\section*{Function Diagram}

\section*{Circuit Diagram}

\section*{Your Advantages}
- Quick correction of insulation faults in complex power networks
- Universal auxiliary voltage range AC/DC 85 ... 265 V

\section*{Features}
- Insulation troubleshooting in DC, AC and mixed IT systems in connection with the insulation fault locator RR 5887 according to DIN EN 61557-9 (VDE 0413-9):2009 and DIN EN 61557-1 (VDE 0413-1)
- Insulation coordination according to IEC 60664-1
- External control via insulation monitor possible
- Positive and negative test current to monitor DC networks and networks with simultaneous alternating current and direct current portions present
- RS-485 bus connection to synchronise the test current analysis and optionally for the connection to the EDS measuring bus
- Control via insulation monitor via RS-485 bus or external control input possible
- Pushbutton for manual test current output
- Terminal connection for automatic test current output
- Status output of insulation fault detection via external switching output
- Width: 105 mm

\section*{Approvals and Markings}

\section*{Application}
- Insulation fault detection in complex AC/DC networks
- Industry, shipbuilding, plant engineering, PV systems
- Quick fault correction of insulation faults in medical facilities

\section*{Indication}
green LED "ON": yellow LED ,, \(\square^{\prime \prime}\) : yellow LED „, 乙-": yellow LED „RS485":
on, when supply connected
Indicates the output of the positive test current pulse Indicates the output of the negative test current pulse Indicates RS-485 bus activity and test current output

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1 (+), A2 & Auxiliary voltage AC or DC \\
\hline L1 (+), L2(-), L3, PE & \begin{tabular}{l}
IT network voltage connections \\
DC/ AC/3AC
\end{tabular} \\
\hline SH, GND, Rb, B, A, Ra & RS-485 Bus (galvanic separation) \\
\hline Y1, Y2 & \begin{tabular}{l}
Switching input \\
Test current output to control
\end{tabular} \\
\hline G, H & \begin{tabular}{l}
Status switching output \\
Test current output
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes}

\section*{Switching input}

The test current output can be externally controlled via the switching input (terminals \(\mathrm{Y} 1, \mathrm{Y} 2\)). If the terminal connection is left open, the test current output can be controlled manually via the start/stop button. The test current output is started and stopped in alternating fashion with each push of the button.

When bridging terminals \(\mathrm{Y} 1-\mathrm{Y} 2\), the test current is output automatically after switching on the device. The start-stop button is inactive at this time.

The switching input can also be selected directly via an external device, e.g. insulation monitoring device. The switching input is supplied as well via the electrically separated supply voltage. The switching input can therefore be switched via a transistor or a relay output.

Configuration options for the test current output:
\(\left.\begin{array}{ll}\text { Y1 } & 0 \\ \mathrm{Y} 2 & 0\end{array}\right]\) Automatic test current output
Y1 \(\circ_{\square}\) Release of the test current output through
Y2 . higher level control or external switch
Y1 O Test current output controlled manually
Y2 - via device pushbutton

\section*{Switching output}

The status of the test current output can be monitored via the switching output (terminals H, G). The switching output consists of a switching transistor, which is low-resistance at test current output and otherwise highresistance. To generate digital output signals, the switching output must be connected to an external voltage source via a pull-up resistor.

\section*{RS-485 bus connection}

The locating current injector can be operated both in master mode and slave mode. The bus mode is set via a rotary switch.

The RS485 telegrams the locating current injector sends to synchronise the insulation fault measurement are identical in both bus modes.
While in the master mode the output of the telegrams occurs automatically every 12 seconds, in slave mode it occurs as response to a bus master request. A pending test current output is announced here in the user data range of the response telegram.

The insulation fault locators RR 5887, generally working in slave mode, synchronise themselves by monitoring the RS485 telegram network with manual test current output.

The RS-485 LED is permanently on during the test current output and bus activity and flashes when bus failures occur.

\section*{Technical Data}

\section*{Auxliary voltage}

Nominal voltage range

A1(+) / A2:
Voltage range:
Nominal consumption:
AC/DC 100 ... 230 V
AC/DC 85 ... 265 V
< 3 VA

\section*{Monitored network}

\section*{Nominal voltage:}

Voltage range AC / 3AC
L1/L2/L3:
Voltage range DC
L1(+)/L2(-):
Rated current range for
insulation test currents:

Test clock/test pause: \(2 \mathrm{~s} / 3 \mathrm{~s}\)
Bus
(galvanic separation): RS-485
DC / AC / 3AC \(24 \ldots 360 \mathrm{~V}\)
\(21 \ldots 400 \mathrm{~V}, 40\)... 60 Hz

21 ... 400 V

\section*{Technical Data}

\section*{Switching input}

Terminals:
Connection (passive)
Low-signal:
High-signal:
Connection (active)
Voltage range (low/high): \(\quad 0 \mathrm{~V} / 12 \ldots 24 \mathrm{~V}\)
Max. switching current (24 V): 10 mA
Switching output
\begin{tabular}{ll}
Terminals: & \(\mathrm{H}(+), \mathrm{G}(-)\) \\
Switching output (passive): & \begin{tabular}{l}
transistor outputs \\
Test current output:
\end{tabular} \\
& Output low resistance \\
(minimal 220 \(\Omega\) via PTC) \\
No test current output: & Output high resistance \\
Switching voltage max.: 24 V \\
Switching current max. \((24 \mathrm{~V}): 10 \mathrm{~mA}\)
\end{tabular}

Switching current max. (24 V): 10 mA

Terminals:
Bus:
Geräte Mode
Bus-Master/Slave:
Transmission medium:
Data transmission rate:
Network termination:
\(\mathrm{SH}, \perp, \mathrm{Rb}, \mathrm{B}, \mathrm{A}, \mathrm{Ra}\)
galvanic separation
adjustable via rotational switch
twisted, shielded two-wire line (SH)
115.2 kBit/s

Bus termination via
bridges Rb, B and Ra, A

\section*{General Data}

Nominal operating mode: continuous operation
Temperature range: \(-20 \ldots+60^{\circ} \mathrm{C}\)
Clearance and creepage distance
rated impulse voltage/
pollution degree: \(\quad 4 \mathrm{kV} / 3\)
EMC
Electro static discharge (ESD):
HF irradiation:
Fast transients:
IEC 60 664-1

Surge voltage
between
wires for power supply: 2 kV IEC/EN 61 000-4-5
between wire and ground: \(\quad 4 \mathrm{kV} \quad\) IEC/EN 61 000-4-5
HF-wire guided:
Interference suppression:
Degree of protection
Housing:
Housing:
Housing:
Vibration resistance:

Climate resistance:
Terminal designation:
Wire connection
screw terminals:
clamping screw:
Mounting:
Weight:
Dimensions

8 kV (air)

10 V
Limit value class B
IEC/EN 61 000-4-6
IEC/EN 61000-4-2
IEC/EN 61000-4-3
IEC/EN 61000-4-4
\(10 \mathrm{~V} / \mathrm{m}\)
2 kV

IP 40
EN 55011

IP 20
IEC/EN 60529
thermoplastic with VO behaviour acc. to
UL subject 94
Amplitude 0.35 mm
frequency 10... 55 Hz , IEC/EN 60 068-2-6
20 / 060 / 04
EN 50005
fixed
max. \(4 \mathrm{~mm}^{2}\) solid or
\(2.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
\(\min .0 .20 \mathrm{~mm}^{2}\)
M2.5
DIN-rail
IEC/EN 60715
approx. 200 g

Width \(\mathbf{x}\) height \(\mathbf{x}\) depth: \(\quad 105 \times 90 \times 71 \mathrm{~mm}\)

\section*{Standard Type}

RR 5886 AC/DC 85 ... 265 V
Article number:
0065011
- Rated current range for
insulation test currents: \(1 \ldots 5 \mathrm{~mA}\)
- Maximum test current output: 6.5 mA
- Width: 105 mm

System overview

M10801
Insulation fault detection in DC / AC / 3AC IT networks in connection with the insulation fault locator RR 5887
- External selection via an insulation monitoring device possible

Connection to measuring bus /Profibus gateway

\section*{Connection Examples}

3AC network with manual test current output; EDS measuring bus connection without bus termination

AC (DC) network with automatic test current output; RR5886 is bus master; bus termination on the device

\section*{Connection Example}

Insulation monitoring and insulation fault detection with 4 connected current transformers in a DC/AC network with subdistribution - insulation fault detection can be controlled by the insulation monitor /LK 5896); ALARM MEMORY active, i.e. alarm states are stored; bus termination of the first and last device on the RS-485 bus.

VARIMETER EDS
Insulation fault locator
RR 5887
DOLD 発

\section*{Product Description}

The locating current generator RR 5886 in connection with the insulation fault locator RR 5887 monitors and localises insulation faults in complex AC/DC networks (IT systems). The external current transformers work independently of each other, calibrate themselves and are simply connected to the measuring channels of the insulation fault locator RR 5887. The number of measuring channels is increased by combining several insulation fault locators via a RS-485 bus connection. The search for insulation faults in extensive networks can be refined in this manner. Two different alarm levels facilitate the timely detection of a dangerous insulation state. The devices are operated easily and intuitively thanks to automatic balancing and a clear layout of the setting elements. The early detection and localisation of insulations faults permits their quick and targeted correction. As user you will benefit from the operating reliability and high availability of your system.

\section*{Your Advantages}
- Quick correction of insulation faults in complex power networks
- Universal auxiliary voltage range AC/DC 85 ... 265 V
- Easy operation

\section*{Features}
- Insulation troubleshooting in DC, AC and mixed IT systems in connection with the locating current injector RR 5886 according to DIN EN 61557-9 (VDE 0413-9):2009 and DIN EN 61557-1 (VDE 0413-1)
- Insulation coordination according to IEC 60664-1
- Connection of max. 4 or 8 differential current transformers depending on the design
- RS-485 bus connection to synchronise the test current output and optionally for the connection to the EDS measuring bus for reading insulation fault currents
- Status output of insulation fault detection via external switching output
- Memory characteristics adjustable via bridge Y1-Y2
- Collective signalling relay to output preliminary warning and alarm states
- Pushbutton for manual reset of alarm states as well as testing of differential current transformers and their calibration
- Terminal connection for the storage of alarm states
- Width: 105 mm

\section*{Approvals and Markings}

\section*{Application}
- Insulation fault detection in complex AC/DC networks
- Industry, shipbuilding, plant engineering, PV systems
- Quick fault correction of insulation faults in medical facilities

\section*{Indication}
green LED "ON": On, when supply connected yellow LED Kanal 1..4: Pre-warning: Display of an insulation fault current \(>1 \mathrm{~mA}\) in the corresponding channel
red LED Kanal 1..4: Alarm: Display of an insulation fault current \(>5 \mathrm{~mA}\) in the corresponding channel
yellow LED „RS-485": Indicates RS-485 bus activity and active insulation fault detection
\begin{tabular}{l}
Connection Terminals \\
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1(+), A2 & Auxiliary voltage AC or DC \\
\hline K1..K4/ I1..I4 & Current transformer measur. channel \\
\hline SH, GND, Rb, B, A, Ra & RS-485 Bus (galvanic separation) \\
\hline Y1, Y2 & \begin{tabular}{l}
Switching input \\
Alarm storage
\end{tabular} \\
\hline G, H & \begin{tabular}{l}
Status switching output \\
Insulation fault detection
\end{tabular} \\
\hline \(11,12,14\) & \begin{tabular}{l}
Indicator relay prewarning \\
(changeover contact)
\end{tabular} \\
\hline \(21,22,24\) & \begin{tabular}{l}
Indicator relay alarm \\
(changeover contact)
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes}

\section*{Switching input}

The device is equipped with a switching input (terminals Y1, Y2), which can be furnished either with a simple wire bridge or selected actively as digital control input from an external device with max. 24 V DC.

The input is low-active, i.e. when applying a low-level, the function "ALARM MEMORY" is active, otherwise it is inactive.

If the function is active, no prewarning/alarm states are reset following an insulation fault locating cycle. A reset takes place only after pushing the "Alarm reset/ Test/ Transformer calibration" button for at least 2 sec.
\(\left.\left.\begin{array}{lll}\text { Y1 } & 0 \\ \text { Y2 } & 0\end{array} \begin{array}{l}\text { ALARM MEMORY active } \\ \text { - Alarm states are preserved } \\ \text { - Manually resettable via pushbutton }\end{array}\right\} \begin{array}{ll}\text { Y1 } & 0\end{array} \quad \begin{array}{l}\text { ALARM MEMORY inactive }\end{array}\right\}\)

\section*{Technical Data}

Auxliary voltage
Nominal voltage range
A1(+) / A2:
Voltage range:
Nominal consumption:
AC/DC 100 ... 230 V
AC/DC 85 ... 265 V
\(<3\) VA
Monitored network
\begin{tabular}{ll}
\begin{tabular}{ll}
Nominal voltage: \\
\begin{tabular}{l}
Voltage range AC / 3AC \\
L1/L2/L3:
\end{tabular} & DC / AC / 3AC \(24 \ldots 360 \mathrm{~V}\) \\
\begin{tabular}{l}
Voltage range DC \\
L1(+)/L2(-):
\end{tabular} & \(21 \ldots 400 \mathrm{~V}, 40 \ldots 60 \mathrm{~Hz}\) \\
& \(21 \ldots 400 \mathrm{~V}\) \\
\begin{tabular}{l}
Rated current range for \\
insulation test currents: \\
Maximum test current output:
\end{tabular} & \(1 \ldots 5 \mathrm{~mA}\) \\
\begin{tabular}{l}
Response sensitivity: \\
Bus \\
(galvanic separation):
\end{tabular} & 0.5 mA \\
Differential current transformer
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
Terminals: & K1, I1 \(\ldots \mathrm{K} 4, ~ I 4\) \\
Differential current transformer: & ND 5017 \\
Burden: & \(180 \Omega\) \\
Rated voltage: & 500 V \\
Rated frequency: & \(40 \ldots 60 \mathrm{~Hz}\) \\
Response sensitivity: & 0.2 mA \\
Measuring range: & \(0.5 \ldots 10 \mathrm{~mA}\) \\
Number of measuring channel: 4
\end{tabular}

Switching input
\begin{tabular}{|c|c|}
\hline Terminals: & Y1, Y2 \\
\hline Configuration (passive) & \\
\hline Low-level: & Bridge set / input low resistance \\
\hline High-level: & Input open / input high-resistance \\
\hline Configuration (active) & \\
\hline Voltage range (low/high): & 0V / \(12 . . .24 \mathrm{~V}\) \\
\hline Max. switching current (24V): & 0.5 mA \\
\hline Switching output & \\
\hline
\end{tabular}
\begin{tabular}{ll}
Switching output & \\
\hline Terminals: & \(\mathrm{H}(+), \mathrm{G}(-)\) \\
Switching output (passive): & \begin{tabular}{l}
transistor outputs \\
Test current output:
\end{tabular} \\
\begin{tabular}{l}
Output low resistance \\
(minimal \(220 \Omega\) via PTC)
\end{tabular} \\
No test current output: & Output high resistance \\
Switching voltage max.: & 24 V \\
Switching current max. \((24 \mathrm{~V}): 10 \mathrm{~mA}\)
\end{tabular}

\section*{Technical Data}

\section*{RS-485 Bus}

Terminals:
Bus:
Device mode
Bus-Master/Slave:
Transmission medium:
Data transmission rate:
Network termination:
\(\mathrm{SH}, \perp, \mathrm{Rb}, \mathrm{B}, \mathrm{A}, \mathrm{Ra}\)
galvanic separation
adjustable via rotational switch
twisted, shielded two-wire line (SH)
115.2 kBit/s

Bus termination via bridges Rb, B and Ra, A

Connection alarm signalling relay

\section*{Output:}

Nominal voltage:
Limiting continuous current
(\(\mathrm{I}_{\mathrm{th}}\) max):
Switching capacity
to AC 15
NO contact:
NC contact:
Elektrical life
to AC 15
at \(3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:
Terminal designation relay:
Prewarning:

M11062
General Data
Nominal operating mode: continuous operation
Temperature range: \(-20 \ldots+60^{\circ} \mathrm{C}\)
Clearance and creepage distance
rated impulse voltage/
pollution degree: \(\quad 4 \mathrm{kV} / 3\)
EMC
Electro static discharge (ESD): 8 kV (air) IEC/EN 61000-4-2
HF irradiation: \(10 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61000-4-3
Fast transients: \(\quad 2 \mathrm{kV}\)
Surge voltage
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
screw terminals:
clamping screw:
Mounting:
Weight:

2 kV
4 kV
10 V
Limit value class B
IP 40 IEC/EN 60529
IP \(20 \quad\) IEC/EN 60529
thermoplastic with VO behaviour acc. to
UL subject 94
Amplitude 0.35 mm
Frequenz 10... 55 Hz , IEC/EN 60 068-2-6
20/060/04
EN 50005
fixed
max. \(4 \mathrm{~mm}^{2}\) solid or
\(2.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
min. \(0.20 \mathrm{~mm}^{2}\)
M2.5
DIN-rail
approx: ca. 225 g

EC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6

IEC/EN 60715
IEC/EN 61000-4-4

EN 55011
-

Dimensions
Width \(\mathbf{x}\) height \(\mathbf{x}\) depth: \(105 \times 90 \times 71 \mathrm{~mm}\)

\section*{Function}

\section*{Switching output}

The device is equipped with a transistor switching output (terminals \(\mathrm{G}, \mathrm{H}\)), which is protected by a series-connected PTC \((\mathrm{RN}=220 \Omega)\).

In the idle state, the output is high-resistance. During insulation fault detection, the output is low-resistance (RN) and delivers a low-level in conjunction with a series resistor and an external voltage source.

\section*{RS-485 bus connection}

The insulation fault locator RR 5887 generally works in slave mode. It synchronises itself independently with the test current output by monitoring the RS485 telegram. All connected insulation fault locators RR 5887 work in parallel and independently from each other.

A bus address can be defined for the device via a rotary switch (RS-485 Bus). If the devices are integrated in an EDS measuring bus system for insulation fault detection, it must be remembered that each insulation fault locator receives its own channel number. An EDS measuring bus master can read insulation fault current values from the connected devices via this channel number.

The bus address of the associated locating current injector RR 5886 can be set via another rotary switch (RR 5886 Channel). A unique reference between a locating current injector and one or several insulation fault locators is established here. This way, several device combinations can be connected jointly to a RS-485 bus and monitor separate networks.

In the absence of an EDS measuring bus connection, the bus address does not have any special significance and be chosen arbitrarily.

The RS-485 LED is permanently on during the insulation fault detection and bus activity and flashes when bus failures occur.

\section*{Influence of discharge capacities}

The insulation fault locator is also able to perform reliable measurements under the influence of discharge capacities up to a certain size. The in fluence of discharge capacities depends on the insulation resistance and the mains voltage. Reliable detection of insulation resistance is ensured up to a discharge capacity of \(1 \mu \mathrm{~F}\).
The lower the mains voltage, the greater the permissible discharge capacity may be. For example, with mains voltages of \(50 \mathrm{~V}, 20 \mu \mathrm{~F}\) and more can also be processed without problem.

Insulation fault detection is no longer possible if the influence of the discharge capacities becomes too great. The measuring result may become poorer, in addition, when the discharge capacities are distributed unevenly in the network.
However, the symmetry relationships of the insulation fault resistances themselves do not affect the quality of the measurement.
If insulation faults are present between several conductors and PE, mains compensation currents flow through the insulation fault resistances overlaying the actual insulation fault currents. The measured insulation fault current can be reduced by half here in the extreme case.

\section*{Current transformer calibration}

Current transformer calibration is performed after switching on the device or after pushing the "Alarm reset/ Test/ Transformer calibration" pushbutton to compensate tolerances of the magnetic material of the current transformers and the resulting differences of the magnetic amplification.

\section*{Insulation fault measurement in mixed networks}

If an alternating current network, containing a downstream rectifier, is monitored, insulation fault detection can also be performed in the direct voltage circuit if the discharge capacities in this circuit are not too high. Because fault detection can be performed simultaneously in two different network forms - alternating current network and direct current network - the indications displayed for prewarning and alarm are quantitatively valid only for the network form set with the rotary switch. The network form not set will deliver results deviating by the factor 2. However, they can still be analysed in terms of their tendency, i.e. a potential insulation fault is still indicate.

\section*{Insulation fault current display}

The locating current injector takes the power for the test current from the monitored network itself. Insulation fault current measurements are nearly identical both for AC and DC networks. However, a difference in the level of the test current is obtained through the network form itself. With AC networks, the test current is only half the value as with DC networks. With 3AC networks, the factor is 0.67 . These differences are taken into account when determining the level of the insulation fault current and with the display of the alarm values.

\section*{Indication of alarm- and states}

\section*{Indication of alarm states}

The display of an alarm state as well as the response of the corresponding common alarm signalling relay act at least for the duration of a measuring cycle (12 sec). The alarm state is cancelled again when the respective threshold of the insulation fault current, under consideration of a defined hysteresis, is fallen below again.

The switching terminal "ALARM MEMORY" must be equipped if the alarm state shall persist permanently.

The response threshold for the insulation fault current does not depend on the network form chosen.

\section*{Prewarning}

Response threshold: Indication:
Common alarm relay:
Hysteresis for return: Duration of the alarm state:

1 mA
yellow LED continuously on Collective signalling relay "Prewarning" responds
0.1 mA

Until response threshold if fallen below

\section*{Alarm}

\section*{Response threshold:} Indication:
Common alarm relay:
Hysteresis for return:
Duration of the alarm state:
5 mA
rote LED leuchtet dauer-rot
Collective signalling relay "Alarm" responds 0.5 mA

Until response threshold if fallen below

\section*{No insulation faults present}

\section*{Indication}

The yellow LED briefly (200 ms) lights after the measuring cycle has been completed

\section*{Display of current transformer faults}

The insulation fault locator does not feature any control elements for setting the completion of current transformers. For this reason, the device must detect the presence of transformers independently. This happens together with the transformer calibration after switching on the device or after pushing the "Alarm Rest/ Test/ Transformer calibration" button.

The device can detect both, a transformer short circuit and a broken supply line (open transformer contact) individually for each channel.

The check for transformer faults is cyclically repeated after an insulation fault measurement has been completed allowing a transformer fault to be detected also under ongoing operation.

\section*{Short circuit at current transformer}

\section*{Indication: \\ red LED flashes \\ Duration of indication: \\ Until the short circuit is resolved}

Indication detected/interrupted differential current transformer

\section*{Indication:}

Duration of indication:
yellow LED flashes
Until current transformer test is completed or open current transformer connection is closed again

\section*{Indication of invalid insulation fault measurements}

If the value determined for the insulation fault current is invalid, e.g. because of excessive discharge capacities, or the direction of line routing through the current transformer is wrong, this condition is also indicated.

\section*{Indication:}

Duration of indication:
yellow LED flashes
Until a valid measured value is
determined again or the line direction
through the transformer was turned around

Indication of alarm- and function states
Summary: Indication of alarm- and function states
\begin{tabular}{|l|l|l|l|}
\hline Operation & \begin{tabular}{l}
State of \\
transducer
\end{tabular} & \begin{tabular}{l}
Insulation failure \\
current Ifs
\end{tabular} & Indication \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Measuring \\
operartion
\end{tabular}} & \begin{tabular}{l}
Transducer \\
connection \\
ok
\end{tabular} & \begin{tabular}{l}
Prewarning: \\
Ifs > 1 mA
\end{tabular} & \begin{tabular}{l}
yellow LED \\
continuously on
\end{tabular} \\
\cline { 3 - 4 } & \begin{tabular}{l}
Alarm: \\
Ifs > 5 mA
\end{tabular} & \begin{tabular}{l}
red LED \\
continuously on
\end{tabular} \\
\cline { 3 - 4 } & \begin{tabular}{l}
no \\
Insulation failure:
\end{tabular} & \begin{tabular}{l}
yellow LED \\
Briefly lights at \\
the end of the \\
Ifs < 1 mA
\end{tabular} \\
\cline { 3 - 4 } & & \begin{tabular}{l}
Messwert \\
ungültig
\end{tabular} & \begin{tabular}{l}
yellow LED \\
flashes
\end{tabular} \\
\cline { 3 - 4 } & \begin{tabular}{l}
short circuit at \\
transducer
\end{tabular} & \begin{tabular}{l}
red LED \\
flashes
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
breaking at \\
transducer
\end{tabular} & \begin{tabular}{l}
yellow LED \\
flashes
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l}
Transducer \\
not connected
\end{tabular} & & No indication \\
\hline \begin{tabular}{l}
Transducer \\
Test/ calib- \\
ration
\end{tabular} & \begin{tabular}{l}
Transducer \\
connection
\end{tabular} & \begin{tabular}{l}
Transducer \\
detected
\end{tabular} & \begin{tabular}{l}
red LED \\
flashes
\end{tabular} \\
\cline { 2 - 4 } & & \begin{tabular}{l}
yellow LED \\
flashes
\end{tabular} \\
\hline
\end{tabular}

\section*{Standard Type}

RR 5887.12 AC/DC \(85 \ldots 265 \mathrm{~V}\)
Article number:
0065012
- Rated current range for insulation test currents:
\(1 . .5 \mathrm{~mA}\)
- Maximum test current output: 6.5 mA
- Response sensitivity: 0.5 mA
- Prewarning

Hysteresis: 0.1 mA): \(\quad 1.0 \mathrm{~mA}\)
- Alarm (Hysteresise: 0.5 mA): 5.0 mA
- Width: 105 mm

\section*{Ordering example}

RR \(5887.12 / 00\)
Number of measuring channels
0: 4-channel
1: 8-channel

Contacts
Type

\section*{Accessories}

\section*{Residual Current Monitor ND 5017/024}
- The differential current transformer ND5017/024 is designed for DIN rail mounting or screw-type mounting
- Mounting on the top-hat rail may be done horizontally or vertically

Technical Data
\begin{tabular}{|c|c|}
\hline Rated voltage: & 500 V \\
\hline Rated nominal voltage: & 1 A \\
\hline Rated transformation ratio: & 1:3000 \\
\hline Burden: & \(180 \Omega\) \\
\hline Rated frequency: & \(40 \ldots 65 \mathrm{~Hz}\) \\
\hline Temperature range: & \(-20 \ldots+60^{\circ} \mathrm{C}\) \\
\hline Rated impulse voltage/ pollution degree: & \(4 \mathrm{kV} / 3\) \\
\hline Housing: & thermoplastic with VO behaviour acc. to UL subject 94 \\
\hline Vibration resistance: & Amplitude 0.35 mm frequency 10... 55 Hz , IEC/EN 60 068-2-6 \\
\hline Climate resistance: & \(20 / 060\) / 04 \\
\hline Wire connection & \\
\hline Single wire & \\
\hline \(\geq 0.75 \mathrm{~mm}^{2}\) : & up to 1 m \\
\hline \(\geq 0.75 \mathrm{~mm}^{2}\) twisted: & up to 10 m \\
\hline Cable shield \(\geq 0.5 \mathrm{~mm}^{2}\) : & \begin{tabular}{l}
up to 25 m \\
(Shield on one side on I-conductor and not to be earthed)
\end{tabular} \\
\hline DIN rail mounting: & integrated clips for vertical and horizontal mounting \\
\hline Screw fixing: & M3 or M4 \\
\hline Fixing torque: & max. 0.8 Nm \\
\hline Weight: & 97 g \\
\hline Dimensions & \\
\hline
\end{tabular}

Width x height x depth:

Residual Current Monitor ND 5017/070 (on request)

for DIN rail mounting or screw mounting
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline ND 5017/070 & \(\varnothing\) D & L & H & H1 & B & C & F & k & E & G \\
\hline Dimensions/mm & 70 & 111 & 110 & 115 & 32 & 37 & 55 & 4,2 & \(50^{*}\) & \(74^{*}\) \\
\hline Weight / g & \multicolumn{14}{|c|}{ approx. 220} \\
*) Drill tolerance for screw mounting: \(\pm 0.5 \mathrm{~mm}\)
\end{tabular}

\section*{Mounting instructions for screw mounting}

High forces when mounting may damage the current transformer fixtures The fixing clips are designed to support the current transformer. Forces that are applied by the cable running through the current transformer can only be tolerated within limitations.
During installation and afterwards please make sure that the wires are led through the current transformer without applying pressure and remain stable in that position.

\section*{Connection Example}

Insulation monitoring and insulation fault detection with 4 connected differential current transformers in a DC/AC network with subdistribution - insulation fault detection can be controlled by the insulation monitor /LK 5896); ALARM MEMORY active, i.e. alarm states are stored; bus termination of the first and last device on the RS-485 bus.

System overview

M10801
- Insulation fault detection in DC / AC / 3AC IT networks in connection with the locating current injector RR 5886
- External selection via an insulation monitoring device possible

Connection to measuring bus /Profibus gateway

VARIMETER RCM
Residual Current Monitor
IL 5882, SL 5882, IR 5882

\section*{Your advantages}
- Preventivefire and system protection
- Increasing the availability of plants by early fault detection
- As option with external or internal residual current transformer
- Protection against manipulation by sealable transparent cover over setting switches

\section*{Features}
- According to IEC/EN 62020
- for AC and pulsating DC currants Type A to IEC/TR 60755
- 9 tripping values from 10 mA to 10 A or from \(10 \mathrm{~mA} . .30 \mathrm{~A}\)
- Frequency range 20 ... 2000 Hz
- Selection of manual or automatic reset
- With prewarning
- With test and reset button
- Broken wire detection
- Short reaction time
- With adjustable delay \(\ddagger\)
- De-energized on trip
- LED indication for auxiliary supply and state of contact
- \(2 \times 1\) changeover contact
- Devices available in 3 enclosure versions:

IL 5882: 63 mm deep with terminals near to the bottom to be mounted in consumer units or industrial distribution systems according to DIN 43880
- width 35 mm
- for connection of external residual current transformer, e. g. DOLD ND 5016, ND5019

SL 5882: 100 mm deep with terminals near to the top to be mounted in cabinets with mounting plate and cable ducts
- width 35 mm
- for connection of external residual current transformer, e. g. DOLD ND 5016, ND5019

IR 5882: 63 mm deep with terminals near to the bottom to be mounted in consumer units or industrial distribution systems according to DIN 4388
- width 105 mm
- with internal residual current transformer

\section*{Approvals and Markings}

\section*{\(C \in \lll \ll c c\)}

\section*{Application}

Detection of insulation faults in grounded voltage systems. The residual current relay is used to maintain electrical plants before faults occur. Decrease in insulation can be detected and indicated early without interruption of operation.

\section*{Function}

The function of the IL/SL 5882 and IR 5882 can be compared to a fault current circuit braker unit. It detects and indicates residual currents, but does not disconnect.
The measurement is done by an external residual current transformer e. g. ND 5016 which is connected via terminals \(i\) and \(k\) to the IL/SL 5882. At the device IR 5882 the residual current transformer is integrated. Al conductors of the voltage system to be monitored are run through the CT except the ground wire. In a fault free voltage system the sum of all current is 0 and the CT induces no secondary voltage. If due to an insulation fault a fault current flows to ground, the current difference in the CT creates a measuring current, which is detected and measured by the IL/SL 5882 or IR 5882. A broken wire in the sensing circuit would disable the measurement, therefore a special circuit detects broken wire and forces the unit to trip.

The unit has \(2 \times 1\) changeover contacts. Contact 11-12-14 for alarm (AL) and 21-22-24 for prewarning (VW). Prewarning is detected at 70 \% of the selected alarm value. With external bridge X1-X2 the alarm is stored and has to be reset by pressing the reset button or by disconnecting the auxiliary supply. Without bridge X1-X2 the unit works with auto-reset and the fault is not stored. With the button "Test" a fault can be simulated (Alarm). Each contact is delayed with an adjustable time delay \(\mathrm{t}_{\mathrm{v}}\) (same delay time for alarm and pre-warning).

To avoid unauthorised adjustment of the potentiometers the unit has a transparent cover that could be seald with laquer. Two holes above the push buttons allow activation of test and reset.

\section*{Circuit Diagrams}

IL /SL 5882

IR 5882

\section*{Connection terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage \\
\hline i, k (only at IL/SL 5882) & \begin{tabular}{l}
Conn. f. external current transformer \\
ND5016, ND5019 ; terminals i, k
\end{tabular} \\
\hline X1, X2 & \begin{tabular}{l}
control input \\
X1/X2 bridged: \\
with manual reset of alarm \\
X1/X2 not bridged: \\
without manual reset of alarm \\
(Hysteresis function)
\end{tabular} \\
\hline \(11,12,14\) & 1. C/O contact (Alarm) \\
\hline \(21,22,24\) & \(1 . \mathrm{C} / \mathrm{O}\) contact (Pre-warning) \\
\hline
\end{tabular}

\section*{Indication}
green LED "ON": red LEDs "VW", "AL": on, when insulation failure (prewarning and alarm)

\section*{Note}

If time is set to 0 and a pulsating fault current is flowing (e.g. 1 -way rectified) the output relay may flicker because of the short reaction time. By increasing the time delay this effect can be avoided.

\section*{Technical Data}

\section*{Input}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :
Voltage range:
DC:
Nominal frequency \(\mathrm{U}_{\mathrm{H}}\) :
Nominal consumption
AC 230 V :
AC 24 V :
DC 24 V :
Measuring value adjustable via rotational switch:

AC/DC \(12 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \ldots 230 \mathrm{~V}\)
0.8 ... 1.1 U
\(0.9 \ldots 1.25 U_{N}\)
\(50 \ldots 400 \mathrm{~Hz}\)

\section*{4 VA}
1.6 VA

1 W
AC \(0.01 ; 0.03 \mathrm{~A} ; 0.1 \mathrm{~A} ; 0.3 \mathrm{~A} ; 0.6 \mathrm{~A}\)
\(1 A ; 2 A ; 5 A ; 10 A\) or
AC 0.01 A, 0.03 A; 0.1 A; 0.3 A; 0.6 A
\(1 \mathrm{~A} ; 2 \mathrm{~A} ; 7 \mathrm{~A} ; 30 \mathrm{~A}\)
\(20 \mathrm{~Hz} . . .2 \mathrm{kHz}\)
at failure current \(<50 \mathrm{~Hz}\) and the function "auto reset", a time delay must be adjusted, so that the relay does not buzz before switching approx. \(4 \%\) of trip value, fixed
\(\leq 0\)... -30 \%
\(\leq \pm 1 \%\)
\(\leq \pm 0.05 \% / \mathrm{K}\)
10 ... 40 ms
0 ... 5 s adjustable (logarithmic scale in order to allow also short time delay to be adjusted without problems)
Output
Contacts:
IL / SL / IR 5882.38:
Thermal current \(\mathrm{t}_{\mathrm{th}}\) :
Switching capacity
to AC 15:
NO contact:
NC contact:
to DC 13:
NO contact:
NC contact:
Electrical life
to \(A C 15\) at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength

\section*{max. fuse rating:}

Mechanical life:
General Data

\section*{Operating mode:}

Temperature range
Operation:
Storage:
Altitude:

\section*{Clearance and creepage}

\section*{distances}
rated impulse voltage /
pollution degree
supply / contacts:
supply / Measuring Circuit: EMC
Surge voltages:
HF-interference:
Electrostatic discharge:
HF irradiation
\(80 \mathrm{MHz} . . .1 \mathrm{GHz}\)
\(1 \mathrm{GHz} \ldots 2,7 \mathrm{GHz}\) :
Fast transients:
Surge voltages:
HF wire guided:
Interference suppression:
Degree of protection:
Housing:
Terminals:
Housing:
\(4 \mathrm{kV} / 2\)
corresponding to CT
class 3 (\(5 \mathrm{kV} / 0.5 \mathrm{~J}\)) DIN VDE 0435-303
class 3 (2.5 kV) DIN VDE 0435-303
8 kV (air) IEC/EN 61 000-4-2
IEC/EN 61 000-4-3, EN 50 121-3-2
\(20 \mathrm{~V} / \mathrm{m}\)
\(10 \mathrm{~V} / \mathrm{m}\)
4 kV (class 4) IEC/EN 61 000-4-4
1 kV (class 3) IEC/EN 61 000-4-5
10 V
Limit value class B
IEC/EN 61 000-4-6

IP 40
IEC/EN 60529
IP 20
Thermoplastic with V0-behaviour according UL subject 94

Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20 / 060 / \(03 \quad\) IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1
0.8 Nm

DIN rail
IEC/EN 60715
approx. 125 g
approx. 150 g
approx. 300 g

\section*{Dimensions}

Width x height x depth:
\begin{tabular}{ll}
IL 5882: & \(35 \times 90 \times 63 \mathrm{~mm}\) \\
SL 5882: & \(35 \times 90 \times 100 \mathrm{~mm}\) \\
IR 5882: & \(105 \times 90 \times 63 \mathrm{~mm}\) \\
& (inner diameter current transformer: \\
& 21.5 mm or 28 mm)
\end{tabular}

\section*{Accessories}

\section*{Residual Current Transformer ND 5016/024, ND 5016/035}

for DIN rail mounting or screw mounting
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ND 5016/024 & \(\emptyset\) D & L & L1 & B & H & C & E & F & k \\
\hline Dimension/mm & 24 & 82 & 75 & 24 & 54 & 25 & 42* & 46 & 4,2 \\
\hline Weight / g & \multicolumn{9}{|c|}{approx. 80} \\
\hline ND 5016/035 & \(ø\) D & L & L1 & B & H & C & E & F & k \\
\hline Dimension/mm & 35 & 88 & 81 & 24 & 67 & 25 & 42* & 46 & 4,2 \\
\hline Weight / g & \multicolumn{9}{|c|}{approx. 90} \\
\hline
\end{tabular}
*) Drill tolerance for screw mounting: \(\pm 0.5 \mathrm{~mm}\)

\section*{Technical Data Residual Current Transformer ND 5016, ND 5018}

\section*{Ambient temperature}

ND 5016:
ND 5019:
Inflammability class:

\section*{Nominal insulation voltage}
acc. to IEC 60 664-1:
Rated impulse voltage /
pollution degree:
Voltage test acc. to
IEC/EN 60 255:
Transformation ratio:
\(-20 \ldots+60^{\circ} \mathrm{C} / 253 \mathrm{~K} . .333 \mathrm{~K}\)
\(-10 \ldots+50^{\circ} \mathrm{C} / 263 \mathrm{~K} \ldots 323 \mathrm{~K}\)
V0 according to UL94

AC 630 V
\(6 \mathrm{kV} / 3\)
AC 3 kV
\(500 / 1\)

\section*{Length of connection wires}

\section*{Type of wire:}

Single wire:
Single wire Twisted pair:
Screened wire;
screen on terminal \(k\) :
Wire cross section
ND 5016:
ND 5019:
Stripping length:
Wire fixing
ND 5016:
ND 5019:
Screw connection:
ND 5016:
ND 5019:
Fixing torque:
DIN rail mounting:
ND 5016/024, /035:
ND 5016/070:
ND 5019:
up to 1 m
up to 10 m
up to 25 m
\(0.2 \ldots 1.5 \mathrm{~mm}^{2}\)
\(0.75 \mathrm{~mm}^{2}\)
8 mm
Terminals with spring connection and direct (Push in) technology Box terminals

M3 or M4
M5
0.8 Nm
integrated clips for vertical and horizontal mounting integrated clips for horizontal mounting using mounting adapter ET 5018

Residual Current Transformer ND 5016/070

for DIN rail mounting or screw mounting
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline ND 5016/070 & \(\varnothing\) D & L & H & H1 & B & C & F & k & E & G \\
\hline Dimension/mm & 70 & 111 & 110 & 115 & 32 & 37 & 55 & 4,2 & \(50^{*}\) & \(74^{*}\) \\
\hline Weight / g & \multicolumn{20}{|c|}{ approx. 220} \\
\hline
\end{tabular}
\({ }^{*}\) Drill tolerance for screw mounting: \(\pm 0.5 \mathrm{~mm}\)

\section*{Mounting instructions for screw mounting}

High forces when mounting may damage the current transformer fixtures. The fixing clips are designed to support the current transformer. Forces that are applied by the cable running through the current transformer can only be tolerated within limitations.
During installation and afterwards please make sure that the wires are led through the current transformer without applying pressure and remain stable in that position.

\section*{Accessories}

\section*{Residual Current Transformer ND 5019}

for Screw connection
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Dimensions in mm } \\
\hline & ND 5019/105 \\
\hline Art-Nr. & 0055118 \\
\hline\(ø\) D & 105 \\
\hline L & 170 \\
\hline B & 33 \\
\hline H & 146 \\
\hline C & 38 \\
\hline D & 94 \\
\hline E & 46 \\
\hline F & 61 \\
\hline k & 6,5 \\
\hline m & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Weight } \\
\hline & ND 5019/105 \\
\hline kg & 0,5 \\
\hline
\end{tabular}

The residual current transformer ND 5019/105 can also be mounted on DIN-rail. To do this the metal screw fixings have to be removed and have to be replaced by 2 mounting clips (ET5018: art.no. 0058754; set with 2 pcs)

Disassembling ND 5016/070

\section*{Installation of Wires}

To Avoid Interference with High Starting Currents

\section*{Connection Example}

X1-X2 open : automatic reset
X1-X2 closed : manual reset
M8370_C
* only IL5882, SL5882

\section*{Attention:}

As the auxiliary supply has no galvanic separation, the secondary circuit of the CT must not be connected to ground. A ground connection will lead to a damage of the unit!

\section*{Product Description}

The AC/DC sensitive residual current monitor RN 5883 allows an early detection of insulation faults and detects differential currents with AC as well as DC components in grounded voltage systems (type B). The measurement takes place via an external current transformer.

Contrary to an RCD the residual current monitor RN 5883 does not disconnect the mains when detecting a fault but only indicates it. Besides the easy to read LED chain indicating the actual current several LEDs display operation, pre-alarm and alarm. The 4 measuring ranges cover 10 to 3 A. Additional features are broken wire detection, test function and adjustable pre-alarm.
The residual current monitor RN5883 provides early information for precise and cost effective maintenance before the plant stops.

\section*{Circuit Diagram}

\begin{tabular}{l}
Connection Terminals \\
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) \\
\hline i1, k 1, i2, k2 & \begin{tabular}{l}
Connection of an external \\
residual current transformer
\end{tabular} \\
\hline \(\mathrm{X} 1, \mathrm{X} 2\) & \begin{tabular}{l}
Parameterization input \\
energized or de-energized on trip
\end{tabular} \\
\hline \(11,12,14\) & Contacts alarm signal \\
\hline \(21,22,24\) & Contacts pre-alarm signal \\
\hline \(\mathrm{U}-, \mathrm{U}+\) & Analogue output (option) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Your Advantage}
- Preventivefire and system protection
- Increasing the availability of plants by early fault detection
- Universal usage at AC/DC mains
- Protection against manipulation by sealable transparent cover over setting switches

\section*{Features}
- According to IEC/EN 62 020, VDE 0663
- For AC and DC systems Type B, according to IEC/TR 60755
- To detect earth faults in grounded voltage systems
- 4 setting ranges from 10 mA to 3 A
- Manual reset, with alarm and pre-warning
- With adjustable switching delay
- Energized or de-energized on trip
- LED indicator for operation, pre-alarm and alarm
- With test function
- LED-chain indicates fault current
- As option with analogue output
- Broken wire detection
- Width: 52.5 mm

\section*{Approvals and Markings}

\({ }^{1)}\) RN 5883 Variant /61; 2) ND 5015

\section*{Application}

The residual current monitor type \(B\) is designed to monitor DC systems and AC systems up to 250 Hz .

\section*{Indication}
green LED „ON": On, when auxiliary supply connected
yellow LED „Pre-Alarm": Flashes during time delay \(t_{v}\) On, when pre-alarm active
red LED „Alarm": Flashes during time delay \(t_{v}\) On, when alarm active
yellow and red LED: Flashes on broken wire or extremely high input signal
yellow LED-chain: LED chain indicates fault current in \% of adjusted alarm value

\section*{Notes}

The devices measure AC and DC current (AC / DC sensitive. Due to the measurement principle they also detect magnetic fields in the next to the current transformer.
When planning a panel with AC/DC sensitive residual current monitors please make sure that no components are placed next to the CT that create a magnetic field, e.g. contactors, transformers etc.
If an influence is detected, also a rotation of the CT by \(90^{\circ}\) could positively reduce the influence.

\section*{Set-up and Adjustment Facilities}

It is of advantage to keep the range small and the Factor high.
Example: Setting 300 mA : Range 0,1 x Factor \(3=300 \mathrm{~mA}\)

\section*{Function}

The Measuring circuit includes an external residual current transformer. All conductors of a voltage system are fed through the transformer except the ground wire. In a healthy system the sum of all flowing currents is zero, so that no voltage is induced in the CT. If an earth fault occurs, sourcing a current flowing to ground, the current difference induces a current in the CT that is detected by the RN 5883 .

If an earth fault occurs, sourcing a current flowing to ground, the current difference induces a current in the CT that is detected by the RP 5883.

On broken sensor wires and broken CT coils the unit goes into alarm state and the LEDs for pre-alarm (yellow) and alarm (red) flashes.

The unit has 2 changeover output contacts. One for alarm 11, 12, 14 and 21, 22, 24 and one for pre-alarm.

4 Setting Ranges can be slected from 10 mA to 3 A . The fine adjustment is made via potentiometer „Factor"
Measuring range \(=\) Range \(\times\) Factor.
The alarm relay switches at \(100 \%\) of the adjusted response value.
The pre-alarm can be set in \(10 \%\) steps between 10 and \(100 \%\) of the alarm value.

Potentiometer \(\mathrm{t}_{\mathrm{v}}\) sets the switching delay between 0 and 10 seconds. The delay reacts on pre-alarm and alarm.

The different CT sizes require a correct adaption of the residual current monitor. 3 models are available:
\begin{tabular}{|l|l|l|}
\hline Type & \begin{tabular}{l}
Suitable \\
residual current \\
transformer
\end{tabular} & Frequeny range \\
\hline RN 5883.12/61 & \begin{tabular}{l}
ND 5015/024 \\
ND 5015/035
\end{tabular} & DC + AC up to 250 Hz \\
\hline RN 5883.12/010/61 & ND 5015/070 & DC + AC up to 180 Hz \\
\hline RN 5883.12/020 & \begin{tabular}{l}
ND 5018/105 \\
ND \(5018 / 140\) \\
ND \(5018 / 210\)
\end{tabular} & DC + AC up to 60 Hz \\
\hline
\end{tabular}

An external link on X1-X2 allows the change between energized and deenergized on trip. A change of the function will only be valid after interruption of the supply voltage.
Terminal X1 / X2: external link = De-energized on trip, open \(=\quad\) Energized on trip

De-energized on trip: In the case of groundfault or missing auxiliary supply the relays are de-energized, the NC contacts 11/12; 21/22 are closed In fault free state the relays are energized, the NO contacts 11/14;21/24 are closed

Energized on trip: In the case of groundfault the relays are energized, the NO contacts 11/14;21/24 are closed in fault free state the relays are de-energized, the NC contacts 11/12; 21/22 are closed

If an adjusted value is reached on the measuring input (alarm or prewarning)at the standard type RN 5883 the signal is stored. Reset is made by pressing the button „Test/Reset" for < 3 s s or by disconnecting the auxiliary supply (approx. 30 s).

If the "Test/Reset" button is pressed for \(>3 \mathrm{~s}\), a test of the unit is made. The time delays run, the pre-warning and alarm is activated.

An LED chain shows the fault current between 10 and \(100 \%\) of the adjusted alarm value.
An analogue output \(0 \ldots 10 \mathrm{~V}\) indicates also the fault current. 10 V corresponds to \(100 \%\) of the adjusted alarm value.

\section*{Technical Data}

Input
Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :
Voltage range
at \(U_{H}=A C / D C 24 \ldots 80 \mathrm{~V}\) :
at \(U_{H}=A C / D C 80 \ldots 230 \mathrm{~V}\) :
Nominal frequency \(\mathrm{U}_{\mathrm{H}}\) :
Nominal consumption
at AC:
at DC :
Measuring range:

Measuring range
fine adjustment:
Überlastbarkeit:
Alarm:
Pre-alarm:
Frequency range:
Repeat accuracy:
Temperature drift:
Reaction time:
Switching delay
Pre-alarm / alarm:

AC/DC \(24 \ldots 80 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}\)
DC \(19 \ldots 110 \mathrm{~V}\), AC \(19 \ldots 90\) V,
DC 64 ... 300 V, AC 64 ... 265 V
AC \(50 / 60 \mathrm{~Hz}\)
5 VA
2.5 W

10 ... \(100 \mathrm{~mA}, 30\)... 300 mA , 100 ... \(1000 \mathrm{~mA}, 300\)... 3000 mA (3 ... 30 mA on request)

1 ... 10
with overload protection
\(100 \%\) of the adjusted measuring range
\(10,20,30,40,50,60,70,80,90,100 \%\)
of the adjusted alarm value
DC and AC to 250 Hz
\(\leq \pm 3 \%\)
\(\leq \pm 0.1 \% / K\)
200 ms
\(0 \ldots 10 \mathrm{~s}\)
Output
\begin{tabular}{|c|c|}
\hline Contacts: & 1 changeover contact for pre-alarm, 1 changeover contact for alarm \\
\hline Thermal current \(\mathrm{t}_{\mathrm{th}}\) up to \(30^{\circ} \mathrm{C}\) & \\
\hline up to \(40{ }^{\circ} \mathrm{C}\) : & 4 A \\
\hline up to \(60^{\circ} \mathrm{C}\) : & 2 A \\
\hline Switching capacity at AC 15: & \\
\hline NO contact: & \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline Electrical life & \\
\hline to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) : & \(3 \times 10^{5}\) switch. cycl. IEC/EN 60 947-5-1 \\
\hline Short circuit strength & \\
\hline max. fuse rating: & 4 AgL IEC/EN 60 947-5-1 \\
\hline Mechanical life: & \(\geq 10^{8}\) switching cycles \\
\hline
\end{tabular}
Terminal U+ / U-: \(\quad\)\begin{tabular}{l}
\(0 \ldots 10 \mathrm{~V} ; 5 \mathrm{~mA}\) \\
variant RN 5883/__1 \\
\\
\\
\\
Screened wire; screen one end grounded \\
at device to PE
\end{tabular}

General Data

Operating mode:
Temperature range
Operation:
Storage:
Altitude:
Insulation coordination
according to IEC 60664-1:
RN 5883 cennected with
current transformer ND 5015, ND 5018
Rated impuls voltage /
pollution degree:
Auxiliary voltage / Meas. circuit: \(6 \mathrm{kV} / 2\)
Auxiliary voltage / Contacts: \(6 \mathrm{kV} / 2\)
Auxiliary voltage / Analoge output: \(6 \mathrm{kV} / 2\)
Contacts / Analoge output: \(6 \mathrm{kV} / 2\)
Meas. circuit / Analoge output: \(6 \mathrm{kV} / 2\)
Contacts 11, 12, 14 / 21, 22, 24: 4 kV / 2
EMC
Surge voltages:
Electrostatic discharge:
HF irradiation
80 MHz ... \(2,7 \mathrm{GHz}\) :
HF-wire guided:
Fast transients:
Surge voltages:
Interference suppression:

Class 3(5 kV / 0.5 J) DIN VDE 0435-303 8 kV (air) IEC/EN 61 000-4-2
\(20 \mathrm{~V} / \mathrm{m}\) (class 3) IEC/EN 61 000-4-3 10 V (class 3) IEC/EN 61 000-4-6 2 kV (class 3) IEC/EN 61 000-4-4 1 kV class 3) Limit value class B

IEC/EN 61 000-4-5 EN 55011
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Technical Data} \\
\hline Degree of protection & \\
\hline Housing: & IP 40 IEC/EN 60529 \\
\hline Terminals: & IP 20 IEC/EN 60529 \\
\hline Housing: & Thermoplastic with V0-behaviour according UL subject 94 \\
\hline Vibration resistance: & Amplitude 0.35 mm frequency 10 ... \(55 \mathrm{HzIEC} / E N 60\) 068-2-6 \\
\hline Climate resistance: & 40 / 60 / 03 IEC/EN 60 068-1 \\
\hline Terminal designation: & EN 50005 \\
\hline Wire connection: & DIN 46 228-1/-2/-3/-4 \\
\hline Fixed screw terminals & \\
\hline Cross section: & \(0.5 \ldots 4 \mathrm{~mm}^{2}\) (AWG \(20-10\)) solid or \(0.5 \ldots 4 \mathrm{~mm}^{2}\) (AWG 20-10) stranded wire without ferrules \(0.5 \ldots 2.5 \mathrm{~mm}^{2}\) (AWG 20-10) stranded wire with ferrules \\
\hline Stripping length: & 6.5 mm \\
\hline Wire fixing: & Cross-head screw / M3 box terminals \\
\hline Fixing torque: & 0.5 Nm \\
\hline Mounting: & DIN rail IEC/EN 60715 \\
\hline Weight: & approx. 160 g \\
\hline \multicolumn{2}{|l|}{Dimensions} \\
\hline
\end{tabular}

Width x height x depth: \(\quad 52.5 \times 90 \times 71 \mathrm{~mm}\)

\section*{UL-Data RN 5883}

These devices only monitor residual currents and are not intended to be used as Ground Fault Circuit Interrupter (GFCI) in accordance with UL1053 / UL943.

These devices have been investigated to be used with external differential current transformers manufactured by E. Dold \& Söhne KG, Cat. Nos. ND5015/024/61, ND5015/035/61 or ND5015/070/61.

\section*{Supply voltage \(\mathrm{U}_{\mathrm{N}}\) :}

\section*{AC/DC 24-80V single or double phase \(50 / 60 \mathrm{~Hz}\); \\ AC/DC 80-230V single or double phase \(50 / 60 \mathrm{~Hz}\)}

\section*{Switching capacity relays}

Ambient temperature \(30^{\circ} \mathrm{C}\) :

Ambient temperature \(40^{\circ} \mathrm{C}\)

Ambient temperature \(60^{\circ} \mathrm{C}\) :
Analogue output
(only at variant/__1):
Max. measuring frequency:
Wire connection:

2A, 250Vac G.P.

0 .. 10V, 5mA
DC, AC (\(0-250 \mathrm{~Hz}\))
5A, 250Vac G.P. \(250 \mathrm{Vac}, 2 \mathrm{~A}\) pilot duty 250 Vac, 1/2hp

4A, 250Vac G.P. 250 Vac, 2A pilot duty 250 Vac, 1/2hp

AWG 20-12 \(60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}\) copper conductors only

\section*{Standard Type}

RN 5883.12/61 AC/DC 80 ... \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz}\)
Article number: 0066451
- For residual current transformer ND 5015/024 and ND 5018/035
- Alarm und Pre-alarm
- Energized or de-energized on trip
- Without analogue output
- Auxiliary voltage U. \(\quad\) AC/DC \(80 \ldots 230 \mathrm{~V}\)
- Width: \(\quad 52.5 \mathrm{~mm}\)

ND 5015/035/61
Article number: 0066841
- Residual current transformer for RN 5883
- Diameter: 35 mm

\section*{Variants}

For residual current transformer ND5015/024 und ND5015/035:

RN 5883.12/001/61.

RN 5883.12/800/61:

RN 5883.12/802/61:

With analogue output \(0 \ldots 10 \mathrm{~V}\)
Fixed values, without analogue output
Fixed values, without analogue output; with bridge on \(\mathrm{X} 1 / \mathrm{X} 2\) :
- Alarm: Energized on trip
- Pre-alarm: De-energized on trip without bridge:
- Alarm: De-energized on trip
- Pre-alarm: Energized on trip

Für residual current transformer ND5015/070
RN 5883.12/011/61:
with analogue output \(0 \ldots 10 \mathrm{~V}\)
For residual current transformer ND5018/105, ND5018/140,
ND5018/210:
RN 5883.12/021: with analogue output 0 ... 10 V
Ordering example for variants

\section*{UL-Daten ND 5015}

Wire connection:

Technical data that is not stated in the UL-Data, can be found in the technical data section

\section*{Accessories}

Residual Current Monitor ND 5015/024, ND 5015/035

for DIN rail mounting or screw mounting
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ND 5015/024 & \(ø\) D & L & L1 & B & H & C & E & F & k \\
\hline Dimensions/mm & 24 & 82 & 75 & 24 & 54 & 25 & 42* & 46 & 4.2 \\
\hline Weight / g & \multicolumn{9}{|c|}{approx. 80} \\
\hline ND 5015/035 & \(ø\) D & L & L1 & B & H & C & E & F & k \\
\hline Dimensions/mm & 35 & 88 & 81 & 24 & 67 & 25 & 42* & 46 & 4.2 \\
\hline Weight / g & \multicolumn{9}{|c|}{approx. 90} \\
\hline
\end{tabular}
*) Drill tolerance for screw mounting: \(\pm 0.5 \mathrm{~mm}\)

\section*{Technical Data Residual Current Monitor ND 5015, ND 5018}

Ambient temperature:
Inflammability class:
\(-40 \ldots+60^{\circ} \mathrm{C} / 233 \mathrm{~K} . .333 \mathrm{~K}\) V0 according to UL94
Insulation coordination according to IEC 61869-1
Highest rated operating voltage \(U_{m}\) :
AC 720 V
Rated impulse voltage: 3 kV
Length of connection wires
Type of wire to CT, e.g
Single wire:
up to 1 m
Single wire twisted pair (pair 1: i1-k1; pair 2: \(\mathrm{i} 2-\mathrm{k} 2\)): up to 10 m
Screened wire; screen one end grounded at device to PE: up to 25 m
Wire cross section: \(\quad 0.2 \ldots 1.5 \mathrm{~mm}^{2}\)
Stripping length:
8 mm

\section*{ND 5015:}

Wire fixing:
Actuation power:
DIN rail mounting:
Screw fixing:
Fixing torque
ND 5018:
Wire fixing:
DIN rail mounting:
Flat terminals with self-lifting clamping piece
using mounting adapter ET 5018
Screw fastening: (only at ND 5018/105, ND 5018/140, ND 5018/210) M 5

for DIN rail mounting or screw mounting
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline ND 5015/070 & \(\varnothing \mathrm{D}\) & L & H & H 1 & B & C & F & k & E & G \\
\hline Dimensions \(/ \mathrm{mm}\) & 70 & 111 & 110 & 115 & 32 & 37 & 55 & 4,2 & \(50^{*}\) & \(74^{*}\) \\
\hline Weight / g & \multicolumn{12}{|c|}{ approx. 220} \\
*) Drill tolerance for screw mounting: \(\pm 0.5 \mathrm{~mm}\)
\end{tabular}
*) Drill tolerance for screw mounting: \(\pm 0.5 \mathrm{~mm}\)

\section*{Mounting instructions for screw mounting}

High forces when mounting may damage the current transformer fixtures. The fixing clips are designed to support the current transformer. Forces that are applied by the cable running through the current transformer can only be tolerated within limitations.
During installation and afterwards please make sure that the wires are led through the current transformer without applying pressure and remain stable in that position.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ND 5018/105 & \(ø\) D & L & B & H & C & D & E & F & k & m \\
\hline Dimensions/mm & 105 & 170 & 33 & 146 & 38 & 94 & 46 & 61 & 6.5 & 16 \\
\hline Weight / g & \multicolumn{10}{|c|}{530} \\
\hline ND 5018/140 & \(\varnothing\) D & L & B & H & C & D & E & F & k & m \\
\hline Dimensions/mm & 140 & 220 & 33 & 196 & 48.5 & 123 & 46 & 61 & 6.5 & 16 \\
\hline Weight / g & \multicolumn{10}{|c|}{1250} \\
\hline ND 5018/210 & \(ø\) D & L & B & H & C & D & E & F & k & m \\
\hline Dimensions/mm & 210 & 299 & 33 & 284 & 69 & 161 & 46 & 61 & 6.5 & 16 \\
\hline Weight / g & \multicolumn{10}{|c|}{2100} \\
\hline
\end{tabular}

The residual current transformer ND 5018/105 can also be mounted on DIN-rail. To do this the metal screw fixings have to be removed and have to be replaced by 2 mounting clips
(ET5018: art.no. 0058754; set with 2 pcs)

\section*{Residual Current Monitor ND 5018/105}

for DIN rail mounting
\begin{tabular}{|l|c|c|c|c|c|}
\hline ND 5018/105 & \(\varnothing\) D & L & B & H & G \\
\hline Dimensions/mm & 105 & 170 & 33 & 146 & 55 \\
\hline Weight / g & \multicolumn{5}{|c|}{530} \\
\hline
\end{tabular}

Disassembling Residual Current Monitor ND 5015/070

Installation of Wires

\section*{Connection Example}

X1-X2 open : operating current
X1-X2 bridged : de-energized
M11294

\section*{VARIMETER PRO}

\section*{Product Description}

The universal measuring relays MK 9300N / MH 9300 of the VARIMETER PRO series monitor up to 9 parameters simultaneously. These are under-, over-voltage, voltage range, voltage asymmetry, under-, overcurrent, cos phi, effective-, apparent- and reactive power, frequency and phase sequence, The measurement in 3-phase or single-phase systemes is very simple and without extensiv wiring. Because of the menue structure the multifunctional measuring relays can be used easyly and intuitively.
The early detection of up-coming break downs and preventive maintenance avoid expensive damages. As user you profit from the reliability and availability of your plant.

\section*{Function Diagram}

Example: overvoltage monitoring with closed circuit operation

\section*{Your Advantage}
- Min-, Max. value or window monitoring
- Simultaneous monitoring of up to 9 different parameters
- Simple cortiguration and fault diagnostic
- Different fault indications
- Large measuring range 3 AC \(24 \ldots 690 \mathrm{~V}\)
- Auxiliary voltage ranges DC \(24 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}\) or \(\mathrm{AC} / \mathrm{DC} 110 \ldots 400 \mathrm{~V}\)
- Early detection of irregular states
- Space and cost saving
- Reduced wiring

\section*{Features}
- Multifunction measuring relay acc. to EN 60255-1
- Voltage monitoring (1- and 3-phase)
- Current monitoring
- Frequency monitoring
- Power factor cos phi
- Phase sequence, phase failure, asymmetry
- Effective-, reactive- and apparent power
- Start up delay, on delay
- Adjustable hysteresis 0.2 ... \(50 \%\) of response value
- Manual reset
- LCD for indication of the measuring values
- Relay output

MK 9300N: 1 changeover contact
MH 9300: \(2 \times 1\) changeover contacts
- Relay function selectable (energized/de-energized on trip)
- As option with plugable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- MK 9300N: Width \(22,5 \mathrm{~mm}\)

MH 9300: Width 45 mm

\section*{More Information}

\section*{- MK 9300N}

The MK9300N has 1 relay output.
Monitoring parameters can be set independently
- MH 9300

The MH 9300 has 2 relay outputs.
Monitoring parameters can be set independently
Each monitoring function can be assigned ro relay 1 and /or relay 2

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}
Applications
- Monitoring of single and 3-phase loads
- Emergency power supplies
- Voltage dependent switching at under- or overvoltage
- Voltage monitoring of portable equipment
- Motor protection on Phase failure
- Transformer protection on asymmetric load
- Frequency monitoring on inverter outputs

MK 9300N. 11

MH 9300.12
\begin{tabular}{l}
Connection Terminals \\
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1 (+), A2 & Auxiliary voltage AC or DC \\
\hline L1/i, L2, L3 & Voltage measuring input AC \\
\hline L1/i , k & Current measuring path AC \\
\hline \(11,12,14\) & Indicator relay (C/O contact) \\
\hline \(21,22,24\) & Indicator relay (C/O contact) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Function}

After connecting the auxiliary supply to terminals A1-A2 the startup delay disables the monitoring function so that changes on the input have no influence on the relay output of the VARIMETER PRO. The device is in display (RUN) mode and continuously measures the actual values. The buttons and toggle between the different values. Pressing Esc for more than 3 sec starts the input mode.

One or more measuring values can be assigned to the relay output. If the setting value of at least one function is exceeded the relay switches and the display indicates this state. The display is inverted, flashes and shows measuring function and fault.

The fault memory is selectable
With button the fault memory can be deleted.
On the unit MH 9300 it is possible to assign different values to the different relays so one can be used as pre-warning and the other as alarm output. Relay output 1 switches when actual value exceeds the pre-warning setting of at least one assigned measuring function.
If a second setting assigned to relay output 2 with the same measuring function the unit gives an Alarm signal.

\section*{Remarks}

To provide correct function the measuring voltage on L1/L2 has to be at least 20 V .

Due to the measuring principle a symmetric load on all 3 phases as you have it usually with motors.

The unit can also be used for single phase monitoring by bridging terminals \(L 2\) and \(L 3\). The display shows \(U\) instead of \(U_{\text {min }} / U_{\text {max }}\).

Overload within the current range is indicated by fast flashing of the LED.

\section*{Setting}

\section*{Indicators}

The LED indicate the state.
green LED \(U_{N}\) :
red LED (flashes)
orange LED:
on, when auxiliary voltage present at overload at current path

No measurement, unit in input mode

\section*{Cursor LCD Display}

Rel. 1 Rel. 2 Sp1 Sp2

\section*{Operating}
(1) UP / DOWN

Display (Run) - Mode
After power up the relay is in display (Run) mode.
(1) Scrolls the display to show one of the 10 possible values.

If a values exceeds the setting, the values is indicated flashing on inverted display. In the case of a fault display the display always returns to the fault value after pressing \(\quad\). If voltage is missing on the measuring input some values cannot be calculated and a no value is shown.

\section*{Input-Mode}

The measurement is interrupted, the relays are in failure state and the indicator LED has orange color
(1) Selection of parameters and setting of thresholds.

\section*{d ENTER}

\section*{Display (Run) - Mode:}

Manual reset, when manual reset is selected for output relay
Reset works only when fault is removed

\section*{Input-Mode:}
- Shifts cursor to the right
- Saves the value no-voltage safe
- Pressing for more than 3 sec : Change to display (Run) mode.

\section*{Esc Esc}

\section*{Display (Run) - Mode}
- Pressing for more than 3 sec : Change to input mode

\section*{Input-Mode:}
- Shifts cursor to the left
- Leave setting without saving

\section*{LCD-Display}

\section*{Setting of response values}
\begin{tabular}{ll}
\(<\) & Fault, when value drops under set point \\
\(>\) & Fault, when value exceeds set point \\
OFF & measurement disabled
\end{tabular}

If the adjusted threshold of at least one measuring function is exceeded, the corresponding relay output switches after the selected time delay tv and the fault is indicated on the display.
Manual reset can be activated or de-activated and is operated with on the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Adjustable Parameter} \\
\hline \multicolumn{2}{|l|}{Limit values for Rel. 1 and Rel. 2 Selectable with buttons} & Factory setting \\
\hline \(\mathrm{U}_{\text {min }}\) : & Response value undervoltage, Lowest phase to phase voltage (Undervoltage relay) & OFF \\
\hline \(\mathrm{U}_{\text {max }}\) : & Response value overvoltage, Highest phase to phase voltage L1, L2 or L3 (Overvoltage relay) & 440 V \\
\hline Asym: & Response value voltage asymmetry, Percentage of highest to lowest phase to phase voltage (Asymmetry relay) & 20 \% \\
\hline I: & Response value current at current path L1 (< under- / > overcurrrent) & \(>8.00 \mathrm{~A}\) \\
\hline Cos-¢: & Response value phase displacement between current and voltage (< under- / > overload monitor) & OFF \\
\hline P: & Response value effective power 3-phase Independent of phase sequence switches at adjusted value also at reverse power (< under- / > overload) & OFF \\
\hline S: & Response value apparent power 3-phase (< / >) & OFF \\
\hline Q: & Response value reactive power (< / >) & OFF \\
\hline f: & Response value frequency (range \(1 \ldots 400 \mathrm{~Hz}\)) (< under / > overfrequency) & OFF \\
\hline Hyst: & Hysteresis 0.2 ... \(50 \%\) of response value & 4.0 \% \\
\hline tv: & On delay for relays (\(0 \ldots 10 \mathrm{sec}\)) & 0 s \\
\hline Phseq: & Monitoring phase sequence (ON / OFF) & ON \\
\hline A / R & Seting open- / closed circuit operation & R \\
\hline Sp : & Error storage (ON / OFF) & OFF \\
\hline
\end{tabular}

Response values can be deactivated. (OFF)
Further Setting Parameter
Selectable with buttons \(1+\)\begin{tabular}{c|c|}
\hline Factory \\
setting
\end{tabular}
\begin{tabular}{|c|l|}
\hline \(\mathrm{t}_{\mathrm{a}}:\) & \begin{tabular}{l}
Start up delay, when auxiliary voltage connected \\
\((0.2 \ldots 10 \mathrm{sec})\) in steps of 0.1 s
\end{tabular} \\
0.2 s \\
\hline
\end{tabular}

\section*{Restore Factory Settings}
(Restore factory settings)
Before auxiliary voltage connected press button Esc.
During start press and hold.

\section*{Indicator output}

Monitoring parameters can be set independently.
The MK9300N has 1 relay output.
The MH 9300 has 2 relay outputs.
Each monitoring function can be assigned to Relay 1 and/or to Relay 2. The switching mode energized or de-energized on trip can be set in input mode.

\section*{Operating}

After connecting the auxiliary supply A1/A2 the unit is in display (Run) mode:

The display is inverted when a measured value is exceeds the settings. With button the fault memory is reset.

The actual measured values can be toggled with the buttons.
Pressing button Esc for more than 3 sec the unit changes to input mode.
In input mode the measurement is disabled, the relays are in failure mode and the indicator LED is orange.

With the buttons the different setting values can be chosen.
Move cursor position
(d) One character to the right
(Esc)
One character to the left

Back to the Display (Run)-Mode
Press button \(\quad 3 \mathrm{~s} \quad\) OK New values stored
or
Press button Esc 3 s ; Break Values unchanged
R N on the display confirm with
d to change to display (Run) mode.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Display (RUN) Mode } & \multicolumn{1}{c|}{ Input-Mode } \\
\hline Display inverted when the actual value is in failure state. & \begin{tabular}{l}
Measurement interrupted, relays are in failure state, \\
indicator LED orange color
\end{tabular} \\
\hline Scroll display between the 10 different measuring values. & \begin{tabular}{l}
Chose Rel1, Rel2, \(\mathrm{T}_{2}\) and RUN \\
As option address for RS485 Bus
\end{tabular} \\
\hline Reset fault memory: & \begin{tabular}{l}
Esc \\
Chose parameter \\
Change and set response values for Rel1 and Rel2.
\end{tabular} \\
\hline Shift cursor to the left \\
Shift cursor to the right
\end{tabular}

\section*{Operating - Display - Menü (RUN) Mode \\

The menu for relay 2 is identically

\begin{tabular}{|c|c|c|c|}
\hline & & M11004_a & \\
\hline \multicolumn{2}{|l|}{Technical Data} & & \\
\hline \multicolumn{2}{|l|}{Auxiliary Voltage A1/A2} & \multicolumn{2}{|l|}{Current Measuring Input i/k} \\
\hline \multicolumn{2}{|l|}{Nominal auxiliary voltage \(\mathbf{U}_{\mathrm{H}}\)} & Nominal current: & AC 12 A \\
\hline MK 9300N: & DC \(24 \mathrm{~V}\left(0.9 \ldots 1.1 \times \mathrm{U}_{\mathrm{H}}\right)\) & Measuring range: & AC \(100 \mathrm{~mA} \ldots 12 \mathrm{~A}\) \\
\hline \multirow[t]{4}{*}{MH 9300:} & AC 110, \(230 \mathrm{~V}, 400 \mathrm{~V}\left(0.8 \ldots 1.1 \times \mathrm{U}_{\mathrm{H}}\right)\) & \multicolumn{2}{|l|}{Max. overload} \\
\hline & AC/DC \(110 \ldots 400 \mathrm{~V}\left(0.8 \ldots 1.1 \times \mathrm{U}_{\mathrm{H}}\right)\) & continuously: & \multirow[t]{2}{*}{16 A
\(\max .25 \mathrm{~A}\)} \\
\hline & DC \(24 \mathrm{~V}\left(0.9 \ldots 1.1 \times \mathrm{U}_{\mathrm{H}}\right)^{*}\) & \multirow[t]{2}{*}{short time < 10 s :} & \\
\hline & *) for measuring range 3 AC \(24 . .400 \mathrm{~V}\) & & If current range is overloaded, the LED \\
\hline Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) & & flashes fast \\
\hline Frequency range: & \(45 . .400 \mathrm{~Hz}\) & Nominal frequency: & 50 / 60 Hz \\
\hline Input current & & Frequency range: & \(45 . . .400 \mathrm{~Hz}\) \\
\hline at DC 24 V : & 50 mA & & \\
\hline at AC 230 V : & 15 mA & Setting Range (absolute, v & button and LCD-display) \\
\hline \multicolumn{2}{|l|}{Voltage Measuring Input L1/L2/L3} & \multicolumn{2}{|l|}{Measuring accuracy} \\
\hline \multicolumn{2}{|l|}{MK 9300N:} & \multicolumn{2}{|l|}{(in \% of setting value): \(\pm 4 \%\)} \\
\hline Nominal voltage: & 3 AC 400 V & \multicolumn{2}{|l|}{Hysteresis} \\
\hline \multirow[t]{2}{*}{Measuring range \(\mathrm{U}_{\mathrm{m}}\) :} & 3 AC \(24 \ldots 400 \mathrm{~V}\) & (in \% of setting value): & \(0.2 \ldots 50 \%\) of response value \\
\hline & \(\left(0,8 \ldots 1,1 \times U_{M}\right)\) & Reaction time: & \(<350 \mathrm{~ms}\) (\(\mathrm{f}>10 \mathrm{~Hz}\)) \\
\hline \multicolumn{2}{|l|}{MH 9300:} & Adjustable on delay \(\mathrm{t}_{\mathrm{v}}\) : & \(0 \ldots 10 \mathrm{~s}\) (in steps of 0.1 s) \\
\hline \multirow[t]{2}{*}{Nominal voltage: Measuring range \(U_{M}\) :} & 3 AC \(400 \mathrm{~V} / 690 \mathrm{~V}\) & Adjustable start up delay \(\mathrm{t}_{\mathrm{a}}\) : & \(0.2 \ldots 10 \mathrm{~s}\) (in steps of 0.1 s) \\
\hline & \[
\begin{aligned}
& 3 \mathrm{AC} 24 \ldots 400 \mathrm{~V}, 24 \ldots 690 \mathrm{~V} \\
& \left(0,8 \ldots 1,1 \times \mathrm{U}_{\mathrm{M}}\right)
\end{aligned}
\] & \multicolumn{2}{|l|}{Output Circuit (Rel1: 11/12/14; Rel2: 21/22/24)} \\
\hline \multirow[t]{17}{*}{Nominal frequency: Frequency range:} & \(50 / 60 \mathrm{~Hz}\) & & \\
\hline & \(1 . .400 \mathrm{~Hz}\) & \multicolumn{2}{|l|}{Contacts:} \\
\hline & & MK 9300N: & \\
\hline & & MH 9300: & 1 changeover contact (Rel1) and 1 changeover contact (Rel2) \\
\hline & & & \(2 \times 4 \mathrm{~A}\) \\
\hline & & \multicolumn{2}{|l|}{Switching capacity} \\
\hline & & NO contacts: & \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline & & NC contacts: 1 A / AC 230 V IEC/EN 60 947-5-1
to DC 13 & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline & & NO contacts: & \(1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline & & NC contacts: & \(1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline & & \multicolumn{2}{|l|}{Electrical life} \\
\hline & & to AC 15 at 3 A, AC 230 V : & \(2 \times 10^{5}\) switch. cycl. IEC/EN 60 947-5-1 \\
\hline & & Permissible switching & \\
\hline & & frequency: & \multirow[t]{2}{*}{1800 / h} \\
\hline & & short circuit strength & \\
\hline & & Max. fuse rating: & \(4 \mathrm{AgG} / \mathrm{gL}\) IEC/EN 60 947-5-1 \\
\hline & & Mechanical life: & \(30 \times 10^{6}\) switching cycles \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{General Data}

Nominal operating mode: Temperature range
Operation:

Storage:
Altitude:
continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
(at range \(0 \ldots-20^{\circ} \mathrm{C}\) limited
function of the LCD display)
\(-20 \ldots+60^{\circ} \mathrm{C}\)
<2,000 m

Clearance and creepage distance rated impulse voltage / pollution degree

Auxiliay voltage / meas. input: Auxiliay voltage / contacts:
Measuring input / contacts:
Contacts 11,12,14 / 21,22,24:
Overvoltage category:
EMC
Electrostatic discharge (ESD): 8 kV (air)
HF-irradiation
80 MHz ... 2.7 GHz
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:

\section*{Degree of protection}

Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Wire connection
Screw terminal
(fixed):

Insulation of wires or sleeve length:
Terminal block with screw terminals
Max. cross section:
Insulation of wires or sleeve length:
Terminal block with cage clamp terminals Max. cross section:

Min. cross section:
Insulation of wires or sleeve length:
Wire fixing:

Fixing torque:
Mounting:

\section*{Weight:}

MK 9300N:
MH 9300:
6 kV / 2
6 kV / 2
6 kV / 2
4 kV / 2
III

10 V / m
2 kV

2 kV
4 kV
10 V EN 55011).

8 mm

8 mm \(0.5 \mathrm{~mm}^{2}\)
\(12 \pm 0.5 \mathrm{~mm}\)
0.8 Nm

DIN rail
approx. 140 g
approx. 250 g

Limit value class \(A^{*}\))
*) The device is designed for the usage under industrial conditions (Class A,

When connected to a low voltage public system (Class B, EN 55011) radio interference can be generated. To avoid this, appropriate measures have to be taken.
IP 40
DIN EN 60529
DIN EN 60529
thermoplastic with VO behaviour
according to UL Subject 94
Amplitude 0.35 mm , frequency 10 ... 55 Hz IEC/EN 60 068-2-6 20 / 060 / \(04 \quad\) EN 60 068-1

DIN 46 228-1/-2/-3/-4
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) or \(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) or \(2 \times 2.5 \mathrm{~mm}^{2}\) solid
\(1 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)

Plus-minus terminal screws M3,5 box terminals with wire protection or cage clamp terminals

IEC/EN 60715

Dimensions

\section*{Width x height x depth:}

MK 9300N:
\(22.5 \times 90 \times 97 \mathrm{~mm}\)
MH 9300:

\section*{Standard Types}

\section*{Ordering Example}
Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw) (PC/plugin cage clamp)

\section*{Notes}

Removing the terminal blocks with cage clamp terminals
1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

\section*{Safety notes}

Dangerous voltage.
Electric shock will result in death or serious injury.

Disconnect all power supplies before servicing equipment.
- Faults must only be removed when the relay is disconnected
- The user has to make sure that the device and corresponding components are installed and wired according to the local rules and law (TUEV, VDE, Health and safety).
- Settings must only be changed by trained staff taking into account the safety regulations. Installation work must only be done when power is disconnected.
- Observe proper grounding of all components

\section*{Set Up Procedure}

The connection has to be made according to the connection examples. To connect the current of L1 the Terminals I and k are available. If the current to be measured exceeds the maximum continuous current of the input and external current transformer has to be used. If current is not measured input k remains unconnected.

\section*{Connection Example}

M10940

VARIMETER PRO

\section*{Product Description}

The measuring relays RN 9877 and RL 9877 of the VARIMETER series monitor overvoltage, undervoltage, voltage range, phase asymmetry and phase sequence in 3-phase or single-phase systems. The measurement is very simple and without extensive wiring as there is no auxiliary power supply necessary. The monitoring functions are easily selectable using a single turn switch without complex menu structure. The early detection of up-coming break downs and preventive maintenance avoid expensive damages. As user you profit from the reliability and availability of your plant.

\section*{Your Advantages}
- Preventive maintenance
- For better productivity
- Always right directions of motors and pumps
- Safe monitoring of motors and plants with phase failure detection
- High repeat accuracy
- Wide measuring voltage range
- Selectable monitoring function
- Easy setting

\section*{Features}
- According to IEC/EN 60 255-1
- For monitoring of AC 3- and single-phase with \(50 / 60 \mathrm{~Hz}\)
- Detection of
- Overvoltage
- Undervoltage
- Voltage range excess
- Phase failure
- Phase asymmetry
- missing neutral e.g. broken neutral wire
- and phase sequence in 3-phase systems
- With or without neutral
- No separate auxiliary necessary
- Output: 1 changeover contact
- De-energized on trip
- Adjustable hysteresis for reset
- Adjustable switching delay
- Fast fault detection
- Width:
- RL 9877: 35 mm
- RN 9877: 52.5 mm

\section*{Approvals and Markings}

\section*{Application}
- Monitoring of three-phase voltage systems to identify overvoltage and undervoltage
- Indication of phase sequence in 3-phase systems, phase failure and voltage asymmetry
- Monitoring of voltage systems with motors
- Changeover to emergency supply after failure detection

M11480_c

Monitoring function: 3 AC / 1 AC-overvoltage / undervoltage; rotary switch: „U>" / „U<"

Monitoring function: 3 AC / 1 AC-voltage range; rotary switch: „U<>"

M11404_C

Monitoring function: 3 AC-Asymmetrie; rotary switch: „Asym."

Monitoring function: 3 AC-phase sequence; rotary switch: any

Function Diagrams

only at variant RN9877/120 e.g. RL9877/120:
Monitoring function: Phase failure

\section*{Functions}

In 3-phase systems all three phases are measured against neutral. In the monitoring modes overvoltage, undervoltage and voltage range the excess of the switching voltage \(U\) by one or more phase voltages is indicated by blinking of the corresponding LED. After the switching delay time has expired the voltage LED is on permanently and the output relay releases. If the phase voltage which has triggered the alarm falls below the nominal voltage \(U\), the voltage LED switches off immediately whereas the output relay is energized.

The output relay operates in closed circuit mode i.e. in case of good condition the relay energized whereas in fault condition it is de-energized.

In the voltage range monitoring mode the nominal voltage range \(U \pm \triangle U\) is adjustable. An alarm is triggered in case a phase voltage leaves this monitoring range. The hysteresis for switching back into good condition is half the value set by the potentiometer \(\triangle U\).

In the voltage monitoring operation modes an excess of the voltage asymmetry between the three phases of more than \(25 \%\) is indicated by the asymmetry LED turning on. In this terminology asymmetry means the relative difference of the maximum phase voltage and the minimum phase voltage. Fall back into good condition occurs with a hysteresis of ca. \(6 \%\). In this case the asymmetry LED turns off and the output relay energizes.

In the asymmetry monitoring operation mode the trigger level for asymmetry excess in 3-phase systems is adjustable. The hysteresis for falling back into good condition is exactly half of the set value for asymmetry. In this monitoring mode activation and deactivation of the output relay is done using the same timing parameters as in the voltage monitoring mode except that the control is governed by asymmetry excess rather than voltage excess. In this function mode a difference of the phase voltage to the adjusted voltage value of more then \(25 \%\) is indicated by the corresponding voltage LED. Again fall back into good condition is done with a hysteresis of approx. 6 \%.

In all monitoring modes of a 3-phase system a correct phase sequence is monitored. In case of a wrong phase sequence the phase sequence LED turns on permanently and the output relay remains de-energized. This state is on hold until the unit is restarted with correct phase sequenze. After the phase sequence is correct again the LED is turned off immediately.

A missing or broken neutral is indicated by the asymmetry LED and the phase sequence LED being switched on permanently.

In 3-phase systems without neutral the delta voltages UA, UB and UC are calculated via virtual star voltages by means of vector addition. The monitoring modes are the same as with devices with neutral. The following relationships between triangle voltages and device terminals are to be taken into account:
\(U A=L 1-L 2 ; \quad U B=L 1-L 3 ; \quad U C=L 2-L 3 ;\)
The variant RN9877/120 is especially suitable to detect phase failures.
While the neutral is connected and a phase drops under \(50 \%\) of the phase voltage the corresponding LED signals the failure. The percentage between minimum and maximum phase voltage is measured.
When the neutral is missing, the phases are measured in relation to a virtual internal neutral.

After elaps of the switching delay the phase failure LED is continuously on and the output relay switches off (de-energised on trip). The reset takes place with a hysteresis of \(6.25 \%\) then then LED goes off immediately and the output relay energises.

\section*{Indicator}
green LED „ON":
red LED „U":
red LED „<U":
yellow LED „Asym.":
yellow LED "L1 \(\rightarrow\) L2 \(\rightarrow\) L3":

\section*{Variant /120:}
green LED „ON":
red LED „L1":
red LED „L2":
red LED „L3":
yellow LED „ \(\mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow \mathrm{~L} 3\) ":
on, when supply connected
on, when overvoltage
on, when undervoltage
indicates a voltage asymmetry in 3-phase systems or loss of neutral
indicates wrong phase sequence in
3-phase systems or loss of neutral
on, when supply connected
on, when phase failure at phase 1
on, when phase failure at phase 2
on, when phase failure at phase 3
indicates wrong phase sequence in 3-phase systems

\section*{Notes}

During initialisation the relay recognises automatic the mains frequency (50 Hz or 60 Hz) and Netzform (3AC- or 1AC- systems).

On 3-phase connection all 3-phase voltages are criteria to return into good state, therefore the hysteresis should be chosen as low as possible for undervoltage or overvoltage mode (max. 10\%). For the voltage range mode a higher hysteresis should be selected (min.10\%).

Depending on the voltage system different monitoring functions can be selectet on a selector switch:
\begin{tabular}{|c|c|c|}
\hline Function select & Type of voltage & Monitoring \\
\hline\(U>\) & \(3 A C / 1 A C\) & Overvoltage \\
\hline\(U<\) & \(3 A C / 1 A C\) & Undervoltage \\
\hline\(U<>\) & \(3 A C / 1 A C\) & Voltage range \\
\hline Asym. & \(3 A C\) & Phase asymmetry \\
\hline
\end{tabular}

\section*{Technical Data}

Input
Operating voltage \(\mathrm{U}_{\mathrm{B}}\) :
RL 9877:

RN 9877:

Voltage rated operating \(\mathrm{U}_{\mathrm{e}}\)
RL 9877:
RN 9877:
Operating voltage \(\mathrm{U}_{\mathrm{B}}\) :
RL 9877:
RN 9877:
Voltage rated operating \(\mathrm{U}_{\mathrm{e}}\) :
RL 9877:
RN 9877:
Nominal frequency
Frequency range:
Frequency range:
Max. asymmetry:
Nominal consumption:
Output
Contact:
Contact material:
Switching voltage:
Thermal current \(\mathrm{I}_{\text {th }}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:
Measuring circuit
\begin{tabular}{|c|c|}
\hline Measuring voltage: & infinite adjustable \\
\hline RL 9877: & 3/N AC 80 ... \(230 \mathrm{~V} / 45\)... 130 V \\
\hline RN 9877: & \(3 / \mathrm{N}\) AC \(175 \ldots 525 \mathrm{~V} / 100 \ldots 300 \mathrm{~V}\) \\
\hline RL 9877: & 3 AC 80 ... 230 V \\
\hline RN 9877: & 3 AC \(175 \ldots 525 \mathrm{~V}\) \\
\hline Voltage range: & \(0.85 \mathrm{U}_{\mathrm{N}} \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
\hline Hysteresis: & infinite adjustable \(4 . . .20 \%\) \\
\hline Response value for & \\
\hline Phase asymmetry: & infinite adjustable \(4 . . .20 \%\) \\
\hline Switching delay \(\mathrm{t}_{\mathrm{v}}\) : & infinite adjustable instantaneuos, \(2 \ldots 30\) s \\
\hline Repeat accuracy: & \(\pm 2\) \% \\
\hline Temperature influence: & \(\pm 1 \%\) \\
\hline & Attention: \\
\hline & The combination of adjusted switching voltage U and hysteresis \(\triangle \mathrm{U}\) must be within the measuring range. \\
\hline
\end{tabular}

General Data

Operating mode:
Temperature range
Operation
Storage:
Relative air humidity:

\section*{Altitude:}

Clearance and creepage

\section*{distances}

Rated impuls voltage/
Pollution degree:
EMC
Electrostatic discharge (ESD): 8 kV
HF irradiation
\begin{tabular}{lll}
\(80 \mathrm{MHz} \ldots 1 \mathrm{GHz}:\) & \(12 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\(1 \mathrm{GHz} \ldots 2,7 \mathrm{GHz}:\) & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
Fast transients: & 2 kV & IEC/EN 61 000-4-4
\end{tabular}

\section*{Technical Data}

Surge
between
wires for power supply: 2 kV IEC/EN 61 000-4-5
between wire and ground: 4 kV IEC/EN 61 000-4-5
HF wire guided:
Interference suppression:
Degree of protection:
Housing:
Terminals:
Enclosure:

Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
Fixed screw terminals
Cross section:

Stripping length:
Fixing torque:
Wire fixing:
Fixed
High-voltage terminals
Cross section:

Stripping length:
Fixing torque:
Wire fixing:
Mounting:
Weight:
RL 9877:
RN 9877:

IEC/EN 61 000-4-6
EN 55011

IEC/EN 60529
IEC/EN 60529
IP 20 IEC/EN
acc. to UL subject 94
Amplitude 0.35 mm
Class I
IEC/EN 60 255-21
20/055/04 IEC/EN 60 068-1
EN 50005
DIN 46 228-1/-2/-3/-4
\(0.2 \ldots 4 \mathrm{~mm}^{2}\) (AWG \(24-12\)) solid or \(0.2 \ldots 2.5 \mathrm{~mm}^{2}\) (AWG 24-12)
stranded wire with and without ferrules
7 mm
0.6 Nm

EN 60 999-1
Captive slotted screw / M2.5
\(0.2 \ldots 6 \mathrm{~mm}^{2}\) (AWG 24-10) massiv oder \(0.2 \ldots 4 \mathrm{~mm}^{2}\) (AWG 24-10)
stranded wire without ferrules
\(0.25 \ldots 4 \mathrm{~mm}^{2}\) (AWG 24-10)
stranded wire with ferrules
8 mm
0.7 Nm EN 60 999-1

Captive slotted screw / M3
DIN rail
IEC/EN 60715
approx. 105 g
approx. 125 g

\section*{Dimensions}

Width \(\mathbf{x}\) height x depth:
RL 9877:
\(35 \times 90 \times 71 \mathrm{~mm}\)
RN 9877:
\(52.5 \times 90 \times 71 \mathrm{~mm}\)

\section*{UL-Data}

ANSI/UL 60947-1, \(5^{\text {th }}\) Edition
ANSI/UL 60947-5-1, \(3^{\text {rd }}\) Edition
CAN/CSA-C22.2 No. 60947-1-13, \(2^{\text {nd }}\) Edition
CAN/CSA-C22.2 No. 60947-5-1-14, \(1^{\text {st }}\) Edition
Switching capacity: Pilot duty B300
5A 240Vac Resistive, G.P.
5 A 30 Vdc Resistive or G.P.
5A 250Vac G.P.
Wire connection:
RL 9877:
\(60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}\) copper conductors only AWG 24-12 Sol/Str Torque 0.6 Nm
RN 9877
for terminals \(11,12,14\) :
AWG 24-12 Sol/Str Torque 0.6 Nm AWG 30-10 Sol/Str Torque 0.7 Nm
Technical data that is not stated in the UL-Data, can be found
in the technical data section

\section*{Standard Types}

RL \(9877.113 / \mathrm{N} 80 \ldots 230 \mathrm{~V} / 45 \ldots 130 \mathrm{~V} 4 \ldots 20 \% 0 \ldots 30 \mathrm{~s}\)

Article number:
- Output:
- Measuring voltage
- Hysteresis:
- Switching delay:
- Width:

0066426
1 changeover contact
3/N AC 80 ... \(230 \mathrm{~V} / 45\)... 130 V
4 ... 20 \%
\(0 \ldots 30\) s
35 mm

RN 9877.11 3/N \(175 \ldots 525 \mathrm{~V} / 100 \ldots 300\) V \(4 \ldots 20 \% \quad 0 \ldots 30 \mathrm{~s}\)
Article number: 0066425
- Output:
- Measuring voltage:
- Hysteresis:
- Switching delay:

3/N AC 175 ... \(525 \mathrm{~V} / 100\)... 300 V
4 ... 20 \%
\(0 . . .30\) s
52.5 mm

\section*{Variant}

RN 9877.11/120:
to detect phase failure, indications of the missing phase via LED; can be used with or without neutral

\section*{Ordering example for variant}

\(\mathrm{L}: 35 \mathrm{~mm}\) Width
\(\mathrm{N}: 52.5 \mathrm{~mm}\) Width
3-phase connection without neutral

Single-phase connection

VARIMETER PRO
Phase Monitor
BD 9080

Function Diagram

\section*{Circuit Diagram}

- According to IEC/EN 60255-1
- Monitoring of
- Under- and overvoltage
- Asymmetry
- Phase failure
- Phase sequence
- Adjustable time delay between 0.1 ... 5 s
- One LED in each case for:
- Auxiliary voltage A1/A2
- Overvoltage U
- Undervoltage U
- Asymmetry / Phase sequence / Power failure
- Contact position
- Closed circuit operation
- 2 changeover contacts
- As option available with open circuit operation
- Width 45 mm

\section*{Approvals and Markings}

*) see variants

\section*{Applications}

For monitoring three-phase networks for undervoltage, overvoltage, phase sequence, asymmetry, power failure.
\begin{tabular}{ll}
\hline Indication & \\
1. LED A1 / A2: & on, when operating voltage present \\
2. LED U max \(_{\text {: }}\) on, in event of overvoltage \\
3. LED \(\mathrm{m}_{\text {min }}\) : & \begin{tabular}{l}
on, in event of undervoltage \\
on, in event of: \\
- asymmetry
\end{tabular} \\
& \begin{tabular}{l}
- incorrect phase sequence \\
- power failure \\
on, when output relay activated
\end{tabular} \\
5. LED: &
\end{tabular}

\section*{Notes}

Measurement procedures: arithmetical mean value measurement over several half-waves of rectified phase voltages L1/L2 and L2/L3. Reference phase is L3. Networks with or without neutral can be monitored. The auxiliary voltage to be applied to A1/A2 can also be taken from the threephase network which is to be monitored. This reduces to 0.8-1.1 \(\mathrm{U}_{\mathrm{H}}\) the permitted range of voltage of the network to be monitored.

\section*{Variants}

BD 9080.12/61:
BD 9080:
BD 9080.12/001:
BD 9080.12/020:
BD 9080.12/200:
with UL-approval on request with CCC-approval on request open circuit operation
output relay
indicates only under- and overvoltage
with extended temperature range of
\(-40 \ldots+70^{\circ} \mathrm{C}\)

\section*{Remark}

At an ambient temperature of \(+70^{\circ} \mathrm{C}\) the device has to be mounted with 2 cm space to the neighbour units and the necessary air circulation must be provided.
The contact current must not be more then 2 A.
The life of the product may be reduced by the higher ambient temperature!

\section*{Ordering example for variant}

\section*{Connection Examples}

Continuous current limit curve

\section*{VARIMETER PRO}

Phase Monitor with thermistor motor protection
IL 9086, SL 9086
DOLD

Function Diagrams

Voltage

Temperature
- According to IEC/EN 60 255-1, IEC/EN 60 947-8
(pr EN 60 947-8) and part 303
- Monitoring of
- Undervoltage 3 phase
- Phase failure
- Phase sequence
- Loss of neutral
- Phase asymmetry
- Overtemperature
- Broken wire in thermistor circuit
- Short circuit in thermistor circuit
- Without auxiliary supply
- 1 sensing input for 1 ... 6 thermistors
- LED indication
- Supply voltage
- Measuring voltage
- Temperature
- As option with manual reset on temperature fault
- \(2 \times 1\) changeover contact
- Devices available in 2 enclosure versions:

IL 9086: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SL 9086: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 35 mm

Approvals and Markings

\section*{Applications}

Monitoring of 3-phase Motor systems with temperature sensing of the Motor thermistors, e.g. for elevators.

\section*{Function}

When the voltage of the system and the temperature of the load is correct all three LED are on. The device has 2 separate relay outputs. If a temperature fault is detected relay 1 trips (deenergises on fault). If a voltage fault occurs relay 2 trips. The unit can be used for \(3 p 3 w\) and \(3 p 4 w\) systems. If connected to a 3 wire system the \(N\)-terminal remains unconnected.

\section*{Indicators}

Left green LED:
Right green LED:
Middle green LED \(\vartheta\) :
on when supply connected on when measured voltage is correct on when temperature correct

\section*{Notes}

A short circuit between P1-P2, i.e.between the senor lines, will be detected. This is independent of the numer of sensors. If more then one thermistors are connected in series, a short circuit across one sensor cannot be detected. The PTC input is galvanically separated from the supply and measuring voltage as well as from the output contacts.

Connection Terminals
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L1, L2, L3, N & Measuring- or supply input \\
\hline P1, P2 & Thermistor input \\
\hline \(11,12,14 ; 21,22,24\) & Changeover contacs \\
\hline
\end{tabular}

\section*{Technical Data}

Measuring Input Voltage
Measuring voltage
L1 / L2 / L3 / N:

Voltage range:
Nominal frequency:
Frequency range:
Undervoltage detection:
Asymmetry detection:
Hysteresis:
Response delay:
Operate delay:

3 / N AC 400 / 230 V
(other voltages on request)
\(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\)
\(50 / 60 \mathrm{~Hz}\)
\(45 \ldots 65 \mathrm{~Hz}\)
approx. \(0.7 \pm 0.15 \times U_{N}\)
approx. \(20^{\circ}\) angle asymmetrie
\(\leq 6 \% \times U_{N}\)
100 ... 300 ms
\(15 \ldots 30 \mathrm{~ms}\left(0 \mathrm{~V} \Rightarrow \mathrm{U}_{\mathrm{N}}\right)\)

Measuring Input Thermistor (P1,P2)

Temperature sensor:
Number of sensors:
Response value:
Reset value:
Short circuit in sensor line:
Load on sensor circuit:
Broken sensor circuit:
Measuring voltage:
Measuring current:
Voltage on P1,P2
on open sensor circuit:
Short circuit current on
sensor circuit:

PTC-sensor acc. to DIN 44 081/082
1 ... 6 piece in series
\(3.2 \ldots 3.8 \mathrm{k} \Omega\)
\(1.5 \ldots 1.8 \mathrm{k} \Omega\)
\(10 \ldots 30 \Omega\)
\(<5 \mathrm{~mW}\) (at \(\mathrm{R}=1.5 \mathrm{k} \Omega\))
\(>3.8 \mathrm{k} \Omega\)
\(\leq 2 \mathrm{~V}(\) at \(\mathrm{R}=1.5 \mathrm{k} \Omega)\)
\(\leq 1 \mathrm{~mA}\) (at \(\mathrm{R}=1.5 \mathrm{k} \Omega\))
approx. DC 12 V
approx. DC 1.5 mA
Relay Output

\section*{Contacts}

IL/SL 9086.38:

Contact material:
Thermal current \(I_{\text {th }}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life:
to AC 15 at 1 A, AC 230 V:
Switching voltage:
Switching current:
Switching load:
Short circuit strength
max. fuse rating:
Mechanical life:

1 changeover contact
(phase failure, contact 21-22-24)
1 changeover contact
(temperature fault, contact 11-12-14)
\(\mathrm{AgNi} 0.15+0.3 \mu \mathrm{~m} \mathrm{AU}\)
\(2 \times 4 \mathrm{~A}\)

3 A / AC 230 V IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
\(6 \times 10^{5}\) switching cycles IEC/EN 60 947-5-1
min. 10 V ; max. DC \(120 \mathrm{~V} / \mathrm{AC} 250 \mathrm{~V}\)
min. 0.1 A ; max. 5 A
min. 1 W, 1 VA; max. \(120 \mathrm{~W}, 1250\) VA
\(4 \mathrm{AgG} / \mathrm{gL}\)
\(>10^{8}\) switching cycles

\section*{Technical Data}

\section*{General Data}

Operating mode:
Temperature range
Operation:
Storage:
Altitude:
Input current
L1:
L2:
L3:
Nominal consumption: Clearance and creepage distances
Rated impulse voltage / pollution degree Input/Output:
EMC
Electrostatic discharge:
HF-irradiation
\(80 \mathrm{MHz} . . .2 .7 \mathrm{GHz}\) :
Fast transients:
Surge voltages
between
wires for power supply: 1 kV between wire and ground:
HF wire guided:
Interference suppression:
Degree of protection
Housing
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Wire connection
max. cross section:

Stripping lentgh:
Fixing torque:
Mounting:
Weight
IL 9086:
SL 9086:

\section*{Dimensions}

\section*{Width x height x depth}
IL 9086:
\(35 \times 90 \times 59 \mathrm{~mm}\)
SL 9086:
\(35 \times 90 \times 98 \mathrm{~mm}\)

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
\(-25 \ldots+60^{\circ} \mathrm{C}\)
< 2.000 m
approx. 7 mA
approx. 7 mA
approx. 1.5 mA
approx. 3.5 VA

185 g
230 g
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20 / 060 / 04
IEC/EN 60 068-1
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46 228-1/-2/-3/-4
10 mm
0,8 Nm
DIN rail
IEC/EN 60715

IEC 60 664-1
IEC/EN 61 000-4-2
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
EN 55011
\begin{tabular}{ll}
IP 40 & IEC/EN 60529 \\
IP 20 & IEC/EN 60529
\end{tabular}
\(4 \mathrm{kV} / 2\)
8 kV (air)
\(10 \mathrm{~V} / \mathrm{m}\)
4 kV

1 kV
2 kV
10 V
Limit value class B
IEC/EN 60529
EC/EN 60529

\section*{Standard Type}

IL 9086.383 AC 400 V and 3 / N AC \(400 / 230 \mathrm{~V}\)
Article number: 0053087
- Output:
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
- Width:

1 changeover contact (phase failure) 1 changeover contact (temperature fault) 3 AC 400 V and \(3 / \mathrm{N}\) AC \(400 / 230 \mathrm{~V}\) 35 mm

SL 9086.38 3 AC 400 V and 3 / N AC 400 / 230 V

\section*{Article number:}
- Output:
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
- Width:

0054751
1 changeover contact (phase failure)
1 changeover contact
(temperature fault)
3 AC 400 V and \(3 / \mathrm{N} \mathrm{AC} 400 / 230 \mathrm{~V}\) 35 mm

\section*{Variant}

IL 9086.38/100
with manual reset after detection of overtemperature or short circuit in the sensor circuit. The output can be reset by pressing the reset button or by disconnecting the voltage for a short period after the temperature returned to good value.

\section*{Ordering example vor variant}
IL 9086 . 38 /_ 00 3/N AC \(400 / 230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}\)

Measuring voltage
1 with manual reset
Contacts
1 changeover contacts phase failure 1 changeover contact temperature fault
Type

\section*{Connection Examples}

Monitoring Technique
VARIMETER PRO
Phase Monitor
IL 9087, SL 9087

Function Diagram

Voltage

\section*{Circuit Diagrams}

IL 9087.11,
SL 9087.11

IL 9087.12,
SL 9087.12
- According to IEC/EN 60 255-1
- Monitoring of phase failure
- Undervoltage 3-phase 3 or 4 wire
- Phase failure
- Phase sequence
- Loss of neutral
- Phase asymmetry
- Without auxiliary supply
- De-energized on trip
- LED indication
- Supply voltage
- Phase failure
- 1 or 2 changeover contacts
- Devices available in 2 enclosure versions:

IL 9087: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SL 9087: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 35 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Applications}

Monitoring of 3-phase systems with motors, e. g. for elevators.

\section*{Function}

On a healthy voltage system both LEDs are on. If a voltage failure occurs the contact 11-14, 21-24 opens. In 3-phase voltage systems with unbalanced load the unit can also detect the loss of neutral on the input line of the system. If a neutral is not used the N-terminal remains unconnected.

\section*{Indicators}
left green LED:
right green LED:
on when voltage connected on when measuring voltage correct

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L1, L2, L3, N & Measuring- or supply input \\
\hline \(11,12,14 ; 21,22,24\) & Changeover contacs \\
\hline
\end{tabular}

\section*{VARIMETER PRO}

Over- and Undervoltage Relay
IL 9077, IP 9077, SL 9077, SP 9077

Function Diagram IL 9077

\section*{Circuit Diagram}

IL 9077.12, SL 9077.12
- According to IEC/EN 60 255-1
- Identification of overvoltage, undervoltage and phase failure
- With asymmetry identification as an option
- Mains fault diagnostics with a number of LEDs
- Setting values for overvoltage and undervoltage can be set separately
- Large Setting Ranges \(0.9 \ldots 1.3 \mathrm{U}_{\mathrm{N}}\) and \(0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\)
- Time delay variable between \(0.1 \ldots 20 \mathrm{~s}\)
- Closed circuit operation
- No auxiliary voltage
- Independant of phase sequence
- As option with phase sequence detection
- Single-phase connection possible
- Optionally for 3P3W Systems
- 2 changeover contacts, at IP/SP \(90772 \times 2\) changeover contacts
- Devices available in 2 enclosure versions:

I-model: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
S-model: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- IL 9077, SL 9077: width 35 mm

IP 9077, SP 9077: width 70 mm

\section*{Approvals and Markings}

*) only IL 9077

\section*{Applications}

Monitoring of three-phase voltage systems to identify overvoltage and undervoltage, e.g. to monitor in-house generation equipment in accordance with VDE 0100.

\section*{Function}

All 3 phase voltages are measured with N (L 1 and L 2 are measured against L3 in the case of equipment without an \(N\) connection). If they are in the acceptable range, a green LED goes on and the output relay is activated. If at least one phase exceeds the setting value for overvoltage (variable between \(0.9 \ldots 1.3 U_{N}\)) or if at least one phase falls short of the setting value for undervoltage (variable between \(0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\)), the output relay releases after the set time delay and the green LED goes off (fault state). 2 red LEDs then indicate the cause of the fault:
- Undervoltage " < U"
- Overvoltage " > U"

When all 3 phase voltages are below the chosen setting value for overvoltage and above the chosen setting value for undervoltage again, the relevant red LED goes out, the output relay is activated again and the green LED goes on again (acceptable state).
When the system returns to an acceptable state, there is a hysteresis of about \(4 \%\) of the set value with both the set voltage thresholds.
On the unit with phase sequence detection IL/SL 9077/003 (only available without neutral) the wrong phase sequence is handled like undervoltage: The red LED "<U" is active and the output relay switches off.
The model with asymmetry identification IL/SL 9077/010 monitors the symmetry of the three-phase voltage system as well. When all 3 voltages are in the acceptable range between the two setting values here, but there is voltage asymmetry of more than about \(6 \ldots 8 \%\), the output relay releases after the set time delay and the LED that is green when the state is acceptable goes red. (This model can, for example, also be used for immediate identification of the regeneration of failed phases by feedback).
The IP/SP 9077.39 is an under- and overvoltage relay with seperate output relays (each with 2 changeover contacts) for undervoltage and overvoltage monitoring. For every output a seperate delay 0.1 ... 20 s is adjustable.

IP 9077.39, SP 9077.39

IP 9077.39/001, SP 9077.39/001 IP 9077.39/002, SP 9077.39/002
red LED " < U"
red LED " > U":
state
voltage asymmetry (only IL/SL 9077/010) fault message / undervoltage fault message / overvoltage

\section*{Notes}

The terminals L1, L2 and L3 have to be bridged if the relay is used in single phase systems. (For 3p3w units L1 and L2 have to be linked).
The maximum fault delay amounts to only about 0.6 s if there is a total failure of phase L3.
The overvoltage output on IP/SP 9077.39/002 can only switch if the voltage between \(L 2\) and \(L 3\) is \(>0.7 U_{N}\) as the unit works without auxiliary supply.

\section*{Technical Data}

\section*{Input}

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : single-phase connection:

3-phase without neutral connection::

3-phase with neutral connection:

\section*{Voltage range:}

Maximum overload:
Nominal consumption:

\section*{Nominal frequency:}

\section*{Setting Ranges}

\section*{Setting value for}
overvoltage "> U":
Setting value for undervoltage "< U": Hysteresis:

Time delay:
Threshold for
asymmetry identification
IL/SL 9077/010:

\section*{Output}

\section*{Contacts}

IL/SL 9077.12
IP/SP 9077.39:
Contact material:
Switching voltage:
Thermal current \(I_{\text {th }}\) : Switching capacity
to AC 15:
NO contact:
NC contact:

\section*{Electrical life:}
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:

\section*{General Data}

\section*{Operating mode:}

\section*{Temperature range:}

Operation:
Storage:
Relative air humidity:

\section*{Altitude:}

\section*{Clearance and creepage}

\section*{distances}
rated rated impulse voltage voltage /

\section*{pollution degree:}

\section*{EMC}

Electrostatic discharge:
HF irradiation
80 MHz ... 1 GHz :
1 GHz ... 2 GHz :
2 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground: Interference suppression:

AC \(100 \mathrm{~V}, 115 \mathrm{~V}, 220 \mathrm{~V}, 230 \mathrm{~V}\),
AC \(400 \mathrm{~V}, 415 \mathrm{~V}, 440 \mathrm{~V}, 500 \mathrm{~V}\)
3AC \(100 \mathrm{~V}, 115 \mathrm{~V}, 220 \mathrm{~V}, 230 \mathrm{~V}\), \(3 A C 400 \mathrm{~V}, 415 \mathrm{~V}, 440 \mathrm{~V}, 480 \mathrm{~V}, 500 \mathrm{~V}\)

3/N AC \(100 \mathrm{~V} / 58 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(110 \mathrm{~V} / 64 \mathrm{~V}\); 3/N AC \(200 \mathrm{~V} / 115 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(220 \mathrm{~V} / 127 \mathrm{~V}\); \(3 / \mathrm{N}\) AC \(230 \mathrm{~V} / 133 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(400 \mathrm{~V} / 230 \mathrm{~V}\); 3/N AC \(415 \mathrm{~V} / 240 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(440 \mathrm{~V} / 254 \mathrm{~V}\); \(3 / \mathrm{N}\) AC \(480 \mathrm{~V} / 277 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(500 \mathrm{~V} / 290 \mathrm{~V}\) \(0.7 \ldots 1.3 U_{\mathrm{N}}\)
\(1.35 \mathrm{U}_{\mathrm{N}}\), permanent
approx. 8 VA (L3-N)
(approx. 16 VA for IP 9077)
\(50 / 60 \mathrm{~Hz}\)
variable between \(0.9 \ldots 1.3 U_{N}\)
variable between \(0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) approx. \(4 \%\) of the set value in each case variable between \(0.1 \ldots 20 \mathrm{~s}\)
approx. 6 ... \(8 \%\) phase asymmetry

2 changeover contacts
\(2 \times 2\) changeover contacts
AgNi
AC 250 V
4 A

3 A / AC 230 V
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
\(\geq 1.5 \times 10^{5}\) switching cycles
4 AgL
IEC/EN 60 947-5-1
\(30 \times 10^{6}\) switching cycles

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
\(-25 \ldots+60^{\circ} \mathrm{C}\)
\(93 \%\) at \(40^{\circ} \mathrm{C}\)
<2,000 m

IEC 60 664-1
IEC/EN 61 000-4-2

IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5

EN 55011

\section*{Technical Data}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Degree of protection:} & Housing: IP 40 IEC/EN 60529 \\
\hline & Terminals: IP 20 IEC/EN 60529 \\
\hline Housing: & Highly non-flammable thermoplastic with VO behaviour according to UL subject 94 \\
\hline Vibration resistance: & Amplitude 0.35 mm , frequency 10 ... 55 Hz IEC/EN 60 068-2-6 \\
\hline Climate resistance: & 20/060/04 IEC/EN 60 068-1 \\
\hline \multirow[t]{2}{*}{Wire connection:} & \(2 \times 2.5 \mathrm{~mm}^{2}\) solid or \\
\hline & \(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled DIN 46 228-1/-2/-3/-4 \\
\hline \multirow[t]{2}{*}{Wire fixing:} & Flat terminals with self-lifting \\
\hline & clamping piece IEC/EN 60 999-1 \\
\hline Fixing torque: & 0.8 Nm \\
\hline Mounting: & DIN rail IEC/EN 60715 \\
\hline \multicolumn{2}{|l|}{Weight} \\
\hline IL 9077: & 110 g \\
\hline SL 9077: & 137 g \\
\hline IP 9077: & 210 g \\
\hline SP 9077: & 259 g \\
\hline
\end{tabular}

Dimensions

\section*{Width x height x depth}
\begin{tabular}{ll}
IL 9077: & \(35 \times 90 \times 59 \mathrm{~mm}\) \\
SL 9077: & \(35 \times 90 \times 98 \mathrm{~mm}\) \\
IP 9077: & \(70 \times 90 \times 59 \mathrm{~mm}\) \\
SP 9077: & \(70 \times 90 \times 98 \mathrm{~mm}\)
\end{tabular}

\section*{Standard Types}

IL \(9077.123 / \mathrm{N}\) AC 400 / \(230 \mathrm{~V} 0.1 \ldots 20 \mathrm{~s}\)
Article number: 0045788
- Output:
- De-energized on trip
- Variable time delay
- Width:

2 changeover contacts
3/N AC 400/230 V
\(0.1 \ldots 20 \mathrm{~s}\)

SL 9077.12 3/N AC 400 / 230 V \(0.1 \ldots 20\) s
Article number:
- Output:
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
- De-energized on trip
- Variable time delay
- Width:

0054758
2 changeover contacts
3/N AC 400/230 V

Variants
\begin{tabular}{|c|c|}
\hline I_ 9077._ /001: & \(3 p 3 w\), de-energized on trip \\
\hline \multirow[t]{2}{*}{IL 9077.12/003:} & 3 p 3 w , de-energized on trip \\
\hline & with phase sequence detection \\
\hline \multirow[t]{2}{*}{IL 9077.12/010:} & 3 p 4 w , de-energized on trip \\
\hline & with asymmetry detection \\
\hline \multirow[t]{2}{*}{IL 9077.12/011:} & 3 p 3 w , de-energized on trip \\
\hline & with asymmetry detection \\
\hline \multirow[t]{3}{*}{IL 9077.12/800:} & with fast respone and high \\
\hline & overload at overvoltage. \\
\hline & See datasheet IL 9077/800. \\
\hline IP 9077.39: & 3 p 4 w , de-energized on trip \\
\hline \multirow[t]{2}{*}{IP 9077.39/002:} & \(3 p 3 w\), undervoltage output de-energized on trip overvoltage output energized \\
\hline & on trip \\
\hline
\end{tabular}

Ordering example for variants

\section*{Product Description}

The measuring relay RL 9836 of the VARIMETER series monitors overvoltage, undervoltage and voltage range in DC voltage systems. The measurement is very simple and without extensive wiring as there is no auxiliary power supply necessary. The monitoring functions are easily selectable using a single turn switch without complex menu structure. The early detection of up-coming break downs and preventive maintenance avoid expensive damages. As user you profit from the reliability and availability of your plant.

Connection Terminals
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L + & Positiv voltage measuring input \\
\hline L - & Negative voltage measuring input \\
\hline \(11,12,14\) & Changeover contact (outputrelay) \\
\hline
\end{tabular}

\section*{Your Advantages}
- Preventive maintenance
- For better productivity
- High repeat accuracy
- Wide measuring voltage range
- Easy setting

\section*{Features}
- According to IEC/EN 60 255-1
- For DC monitoring
- Detection of
- Overvoltage
- Untervoltage
- Voltage range excess in single-phase AC voltage systems
- No separate auxiliary necessary
- Output: 1 changeover contact
- De-energized on trip
- Adjustable switching voltage
- Adjustable hysteresis for reset
- Adjustable switching delay
- Fast fault detection
- Width: 35 mm

\section*{Approvals and Markings}

Application
- For monitoring direct current voltage supply systems to detect undervoltage, overvoltage
- Switch over to emergency supply after fault detection

\section*{Function}

When monitoring overvoltage, undervoltage and voltage range, the exceeding of the setting values above or below the thresholds is indicated by flashing of the voltage indicating LED. After the time delay the voltage indicating is continuously on and the relay de-energises. If the voltage returns to normal value, the LED goes immediately off and the output relay energises.

The output relay is de-energized on trip.
In the voltage range monitoring mode the nominal voltage range \(U \pm \triangle U\) is adjustable. An alarm is evoked in case the voltage leaves this monitoring range. The hysteresis for switching back into good condition is half the value set by the potentiometer \(\Delta \mathrm{U}\).

\section*{Indicator}
green LED „ON":
on, when supply connected
red LED „>U":
on, when overvoltage
red LED „<U":
on, when undervoltage

Monitoring function: overvoltage / undervoltage; rotary switch: „U>" / "U<"

Monitoring function: voltage range; rotary switch: „U<>"

\section*{Notes}

The following monitoring functions are selectable using the 3-step function switch:
\begin{tabular}{|c|c|}
\hline Function select & Monitoring function \\
\hline\(U>\) & Overvoltage \\
\hline\(U<\) & Undervoltage \\
\hline\(U<>\) & Voltage range \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Technical Data & \\
\hline \multicolumn{2}{|l|}{Input} \\
\hline Operating voltage \(\mathrm{U}_{\mathrm{B}}\) : Voltage rated operating \(\mathrm{U}_{\mathrm{e}}\) : Nominal consumption: & DC 24 ... 130 V ; DC 50 ... 250 V DC \(28 \ldots 118 \mathrm{~V}\); DC \(59 \ldots 227 \mathrm{~V}\) approx. 2 W \\
\hline \multicolumn{2}{|l|}{Output} \\
\hline Contacts: & 1 changeover contact \\
\hline Contact material: & AgNi \\
\hline Switching voltage: & AC 250 V \\
\hline Thermal current \(\mathrm{I}_{\text {th }}\) : & 5 A \\
\hline Switching capacity to AC 15 & \\
\hline NO contact: & \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline Electrical life to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) : & typ. \(3 \times 10^{5}\) switching cyles \\
\hline Short circuit strength & IEC/EN 60 947-5-1 \\
\hline max. fuse rating: & 5 AgL \\
\hline Mechanical life: & > \(30 \times 10^{6}\) switching cyles \\
\hline \multicolumn{2}{|l|}{Measuring circuit} \\
\hline \multirow[t]{2}{*}{Measuring voltage:} & \multirow[t]{2}{*}{\begin{tabular}{l}
infinite adjustable \\
DC 24 ... 130 V; DC 50 ... 250 V
\end{tabular}} \\
\hline & \\
\hline \multirow[t]{2}{*}{Hysteresis: Switching delay \(\mathrm{t}_{\mathrm{v}}\) :} & infinite adjustabler 4 ... \(20 \%\) \\
\hline & infinite adjustable instantaneuos, 2 ... 30 s \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Repeat accuracy: \\
Temperature influence:
\end{tabular}} & \(\pm 2\) \% \\
\hline & \(\pm 1 \%\) \\
\hline & Attention: \\
\hline & The combination of adjusted switching voltage Uand hysteresis \(\triangle \mathbf{U}\) \\
\hline
\end{tabular}

General Data
\begin{tabular}{|c|c|c|}
\hline Operating mode: & \multicolumn{2}{|l|}{continuous operation} \\
\hline \multicolumn{3}{|l|}{Temperature range} \\
\hline Operation: & \multicolumn{2}{|l|}{\(-20 \ldots+55^{\circ} \mathrm{C}\)} \\
\hline Storage: & \multicolumn{2}{|l|}{\(-25 \ldots+60^{\circ} \mathrm{C}\)} \\
\hline Relative air humidity: & \multicolumn{2}{|l|}{\(93 \%\) at \(40^{\circ} \mathrm{C}\)} \\
\hline Altitude: & \multicolumn{2}{|l|}{< 2,000 m} \\
\hline \multicolumn{3}{|l|}{Clearance and creepage} \\
\hline Rated impuls voltage/ & & \\
\hline Pollution degree: & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline \multicolumn{3}{|l|}{EMC} \\
\hline Electrostatic discharge (ESD): & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline \multicolumn{3}{|l|}{HF irradiation} \\
\hline 80 MHz ... 1 GHz : & \(12 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline 1 GHz ... 2,7 GHz: & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 2 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge} \\
\hline \multicolumn{3}{|l|}{between} \\
\hline wires for power supply: & 2 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 4 kV & IEC/EN 61 000-4-5 \\
\hline HF wire guided: & 10 V & IEC/EN 61 000-4-6 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection:} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & IP 20 & IEC/EN 60529 \\
\hline Enclosure: & \multicolumn{2}{|l|}{Thermoplastic with Vo behaviour} \\
\hline \multirow[t]{2}{*}{Vibration resistance:} & Amplitude 0.35 mm & \\
\hline & Class I & IEC/EN 60 255-21 \\
\hline Climate resistance: & 20 / 055 / 04 & IEC/EN 60 068-1 \\
\hline Terminal designation: & EN 50005 & \\
\hline
\end{tabular}

Technical Data
Wire connection:
DIN 46 228-1/-2/-3/-4
Fixed screw terminals
Cross section:

Stripping length:
Fixing torque:
Wire fixing:
Mounting:
Nettogewicht:
Dimensions
Width \(\mathbf{x}\) height x depth: \(\quad 35 \times 90 \times 71 \mathrm{~mm}\)
UL-Data

ANSI/UL 60947-1, \(5^{\text {th }}\) Edition
ANSI/UL 60947-5-1, \(3^{\text {rd }}\) Edition
CAN/CSA-C22.2 No. 60947-1-13, 2 \({ }^{\text {nd }}\) Edition
CAN/CSA-C22.2 No. 60947-5-1-14, \(1^{\text {st }}\) Edition

\section*{Switching capacity: Pilot duty B300}

5A 240Vac Resistive, G.P.
5A 30Vdc Resistive or G.P.
5A 250Vac G.P.
Wire connection:
\(60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}\) copper conductors only
AWG 24-12 Sol/Str Torque 0.6 Nm
Technical data that is not stated in the UL-Data, can be found in the technical data section
\begin{tabular}{ll}
\hline Standard Type & \\
\hline RL \(9836.11 \quad\) DC \(50 \ldots 250 \mathrm{~V}\) & \(4 \ldots 20 \% \quad 0 \ldots 30 \mathrm{~s}\) \\
Article number: & 0066430 \\
- Output: & 1 Wechsler \\
- Operating voltage: & DC \(50 \ldots 250 \mathrm{~V}\) \\
- Hysteresis: & \(4 \ldots 20 \%\) \\
- Switching delay: & \(0 \ldots 30 \mathrm{~s}\) \\
- Width: & 35 mm
\end{tabular}

\section*{Ordering example}

Connection Example

Single-phase connection

\section*{Product Description}

The measuring relay RL 9854 of the VARIMETER series monitors overvoltage, undervoltage and voltage range in single-phase systems. The measurement is very simple and without extensive wiring as there is no auxiliary power supply necessary. The monitoring functions are easily selectable using a single turn switch without complex menu structure. The early detection of up-coming break downs and preventive maintenance avoid expensive damages. As user you profit from the reliability and availability of your plant.

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L & Phase voltage \\
\hline N & Neutral \\
\hline \(11,12,14\) & Changeover contact (outputrelays) \\
\hline
\end{tabular}

\section*{Your Advantages}
- Preventive maintenance
- For better productivity
- High repeat accuracy
- Wide measuring voltage range
- Easy setting

\section*{Features}
- According to IEC/EN 60 255-1
- For monitoring AC single phase with \(50 / 60 \mathrm{~Hz}\)
- Detection of
- Overvoltage
- Undervoltage
- Voltage range excess in single-phase AC voltage systems
- No separate auxiliary necessary
- Output: changeover contact
- De-Energized on trip
- Adjustable switching voltage
- Adjustable hysteresis for reset
- Adjustable switching delay
- Fast fault detection
- Width: 35 mm

\section*{Approvals and Markings}

\section*{Application}
- Monitoring of voltage systems to detect over- and undervoltage
- Switch over to emergency supply after fault detection

\section*{Function}

When monitoring overvoltage, undervoltage and voltage range, the exceeding of the setting values above or below the thresholds is indicated by flashing of the voltage indicating LED. After the time delay the voltage indicating is continuously on and the relay de-energises. If the voltage returns to normal value, the LED goes immediately off and the output relay energises.

The output relay is de-energized on trip.
In the voltage range monitoring mode the nominal voltage range \(\mathrm{U} \pm \Delta \mathrm{U}\) is adjustable. An alarm is evoked in case the voltage leaves this monitoring range. The hysteresis for switching back into good condition is half the value set by the potentiometer \(\Delta U\).

\section*{Indicator}
green LED "ON" on, when supply connected
red LED „>U":
on, when overvoltage
red LED „<U":
on, when undervoltage

Monitoring function: overvoltage / undervoltage; rotary switch: „U>" / „U<"

Monitoring function: voltage range; rotary switch: „U<> "

\section*{Notes}

During initialisation the relay recognises the mains frequency (50 Hz or 60 Hz).

The following monitoring functions are selectable using the 3-step function switch:
\begin{tabular}{|c|c|}
\hline Function select & Monitoring function \\
\hline\(U>\) & Overvoltage \\
\hline\(U<\) & Undervoltage \\
\hline\(U<>\) & Voltage range \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Technical Data} \\
\hline \multicolumn{2}{|l|}{Input} \\
\hline Operating voltage \(\mathrm{U}_{\mathrm{B}}\) : & AC 100 ... 300 V, AC \(45 \ldots 135 \mathrm{~V}\) single-phase with neutral \\
\hline Voltage rated operating \(\mathrm{U}_{\mathrm{e}}\) : & AC \(118 \ldots 273\) V, AC \(53 \ldots 123 \mathrm{~V}\) \\
\hline Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
\hline Frequency range: & \(45 \ldots 65 \mathrm{~Hz}\) \\
\hline Nominal consumption: & approx. 7 VA \\
\hline \multicolumn{2}{|l|}{Output} \\
\hline Contact: & 1 changeover contact \\
\hline Contact material: & AgNi \\
\hline Switching voltage: & AC 250 V \\
\hline Thermal current \(\mathrm{I}_{\mathrm{th}}\) : & 5 A \\
\hline Switching capacity to AC 15 & \\
\hline NO contact: & \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline \multicolumn{2}{|l|}{Electrical life} \\
\hline to AC 15 at 1 A, AC 230 V : & typ. \(3 \times 10^{5}\) switching cyles \\
\hline Short circuit strength & IEC/EN 60 947-5-1 \\
\hline max. fuse rating: & 5 AgL \\
\hline Mechanical life: & \(>30 \times 10^{6}\) switching cyles \\
\hline Measuring circuit & \\
\hline
\end{tabular}
\begin{tabular}{ll}
Measuring voltage: & infinite adjustable \\
& AC \(100 \ldots 300 \mathrm{~V}, \mathrm{AC} 45 \ldots 135 \mathrm{~V}\) \\
Hysteresis: & infinite adjustable \(4 \ldots 20 \%\) \\
Switching delay \(\mathrm{t}_{\mathrm{v}}:\) & infinite adjustable \\
& instantaneuos, \(2 \ldots 30 \mathrm{~s}\) \\
Release delay: & 10 s \\
Repeat accuracy: & \(\pm 2 \%\) \\
Temperature influence: & \(\pm 1 \%\) \\
& Attention: \\
& The combination of adjusted \\
& switching voltage U and hysteresis \(\triangle \mathbf{U}\) \\
& must be within the measuring range.
\end{tabular}

\section*{General Data}

Operating mode:
continuous operation
Temperature range
Operation:
\(-20 \ldots+55^{\circ} \mathrm{C}\)
Storage:
\(-25 \ldots+60^{\circ} \mathrm{C}\)
Relative air humidity:
Altitude:
Clearance and creepage

\section*{distances}

Rated impuls voltage/
Pollution degree:
6 kV / 2
EMC
Electrostatic discharge (ESD): 8 kV (air)
HF irradiation
\(80 \mathrm{MHz} \ldots 1 \mathrm{GHz}\) :
1 GHz ... 2,7 GHz:
\(12 \mathrm{~V} / \mathrm{m}\)
\(10 \mathrm{~V} / \mathrm{m}\)
2 kV
Surge
between
wires for power supply:
between wire and ground:
HF wire guided:
Interference suppression:

2 kV
4 kV
10 V
Limit value class B

\section*{Technical Data}

Degree of protection:
Housing:
IP 40
IEC/EN 60529
Terminals:
Enclosure:

Vibration resistance:

Climate resistance:
Terminal designation:
Wire connection:
Fixed screw terminals
Cross section:

Stripping length:
Fixing torque:
Wire fixing:
Mounting:
Weight:
IP 20
IEC/EN 60529
Thermoplastic with V0 behaviour
acc. to UL subject 94
Amplitude 0.35 mm
Class I
IEC/EN 60 255-21
20 / 055 / 04 IEC/EN 60 068-1
EN 50005
DIN 46 228-1/-2/-3/-4
\(0.2 \ldots 4 \mathrm{~mm}^{2}\) (AWG 24-12) solid or
\(0.2 \ldots 2.5 \mathrm{~mm}^{2}\) (AWG \(24-12\))
stranded wire with and without ferrules
7 mm
0.6 Nm

EN 60 999-1
Captive slotted screw / M2.5
DIN rail
IEC/EN 60715
approx. 105 g

Dimensions
Width \(\mathbf{x}\) height x depth: \(35 \times 90 \times 71 \mathrm{~mm}\)

\section*{UL-Data}

ANSI/UL 60947-1, \(5^{\text {th }}\) Edition
ANSI/UL 60947-5-1, \(3^{\text {rd }}\) Edition
CAN/CSA-C22.2 No. 60947-1-13, \(2^{\text {nd }}\) Edition
CAN/CSA-C22.2 No. 60947-5-1-14, \(1^{\text {st }}\) Edition

\section*{Switching capacity: Pilot duty B300}

5A 240Vac Resistive, G.P.
5A 30Vdc Resistive or G.P.
5A 250Vac G.P.
Wire connection:
\(60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}\) copper conductors only
AWG 24-12 Sol/Str Torque 0.6 Nm
Technical data that is not stated in the UL-Data, can be found in the technical data section

\section*{Standard Type}

RL 9854.11 AC \(100 \ldots 300\) V \(4 \ldots 20 \% \quad 0 \ldots 30 \mathrm{~s}\)
Article number: 0066429
- Output: 1 changeover contact
- Measuring voltage: AC \(100 \ldots 300\) V
- Hysteresis: \(4 \ldots 20 \%\)
- Switching delay: \(0 \ldots 30\) s
- Width: 35 mm

\section*{Ordering Example}

Connection Example

Single-phase connection

Function Diagram

Example: overvoltage monitoring with closed circuit operation

MK 9064N. 11

MH 9064.12

\section*{Your Advantages}
- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable
- Min-, Max. value or window monitoring
- Monitoring of AC/DC 0.2 ... 600 V
- Large measuring ranges
- Simple configuration and fault diagnostic
- Auxiliary voltage ranges DC 24 V , AC 230 V or AC/DC 110 ... 400 V
- Space and cost saving

\section*{Features}
- AC/DC voltage measuring (single-phase)
- Start up delay, on delay
- Manual reset
- LCD for indication of the measuring values
- Relay output \(\begin{array}{lr}\text { MK 9064N: } & 1 \text { changeover contact } \\ \text { MH 9064: } & 2 \times 1 \text { changeover contacts }\end{array}\)
- Relay function selectable (energized/de-energized on trip)
- As option with plugable terminal blocks for easy exchange of devices - with screw terminals
- or with cage clamp terminals
- With RS485 (on request)
- Width MK 9064N: 22.5 mm
- Width MH 9064: 45.0 mm

\section*{More Information}

\section*{- MH 9064}

The MH 9064 has 2 relay outputs.
The voltage monitoring can be assigned ro relay 1 and /or relay 2

\section*{Approvals and Markings}

\section*{Applications}
- Voltage monitoring AC/DC single-phase
- Voltage dependent switching at under- or overvoltage

\section*{Function}

The Device is programmable for AC- or DC- measuring.
On AC-measurement the rectified mean value is measured.
On sinusoidal input signals the RMS value is displayed.
After connecting the auxiliary supply to terminals A1-A2 the startup delay disables the monitoring function so that changes on the input have no influence on the relay output of the VARIMETER.
The device is in display (RUN) mode and continuously measures the actual values. Pressing Esc for more than 3 sec starts the input mode.

If the setting value is exceeded the relay switches and the display indicates this state. The display is inverted, flashes and shows the error.

The fault memory is selectable
With button the fault memory can be deleted.
On the unit MH 9064it is possible to assign different functions to the different relays so one can be used as pre-warning and the other as alarm output. Relay output 1 switches when actual value exceeds the pre-warning setting. If a second setting assigned to relay output 2 the unit gives an Alarm signal.

\section*{Remarks}

The unit needs a connected auxiliary supply.
It is designed for single phase \(A C / D C\) measurement.

\section*{Setting}

\section*{Indication}

The LED indicate the state.
green:
orange (flashes):
red (short On, short Off):
on, when auxiliary voltage present
No measurement; unit in input mode

Failure overvoltage

If the measured value is higher then the upper end of scale value, the display shows the fault message "OL"

\section*{Cursor LCD Display}

Manual reset activated: flashes when memory mode is ON and relay in failure state.
Reset with button "
Contact state of the output relays
\begin{tabular}{|c|c|}
\hline Operating & \\
\hline Display (Run) - Mode & Input-Mode \\
\hline \multicolumn{2}{|l|}{(UP / + DOWN} \\
\hline \begin{tabular}{l}
After power up the relay is in display (Run) mode. \\
(t) buttons have no function
\end{tabular} & \begin{tabular}{l}
The measurement is interrupted, the relays are in failure state and the indicator LED has orange color \\
(1) Selection of parameters and setting of thresholds
\end{tabular} \\
\hline \multicolumn{2}{|l|}{- ENTER} \\
\hline Manual reset, when manual reset is selected for output relay Reset works only when fault is removed & \begin{tabular}{l}
- Shifts cursor to the right \\
- Saves the value no-voltage safe \\
- Pressing for more than 3 sec: Change to display (Run) mode.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{(Esc) Esc} \\
\hline - Pressing for more than 3 sec : Change to input mode & \begin{tabular}{l}
- Shifts cursor to the left \\
- Leave setting without saving
\end{tabular} \\
\hline \multicolumn{2}{|l|}{LCD-Display} \\
\hline & \\
\hline
\end{tabular}

\section*{Setting Parameter}
\(<U \quad\) Fault, when value drops under set point
\(>U \quad\) Fault, when value exceeds set point
OFF Measurement disabled

If the adjusted threshold of at least one measuring function is exceeded, the corresponding relay output switches after the selected time delay tv and the fault is indicated on the display.

Manual reset can be activated or de-activated and is operated with
d on the unit.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Adjustable Parameter} \\
\hline \multicolumn{2}{|l|}{Limit values for Rel. 1 and Rel. 2 Selectable with buttons} & Factory setting \\
\hline <U: & Response value undervoltage (Undervoltage relay) & OFF \\
\hline >U: & Response value overvoltage, (Overvoltage relay) & * \\
\hline Hyst: & response value hysteresis & \(5 \%\) \\
\hline tv: & On delay for relays (\(0 \ldots 10 \mathrm{sec}\)) & 0 s \\
\hline A / R: & Seting open- / closed circuit operation & R \\
\hline Sp: & Error storage (ON / OFF) & OFF \\
\hline
\end{tabular}

Response values can be deactivated. (OFF)
*) dependent to device-variant (measuring range)

After connecting the auxiliary supply \(\mathrm{A} 1 / \mathrm{A} 2\) the unit is in display (Run) mode:

The actual measured value is displayed continuously (AC or DC)
The display is inverted when a measured value is exceeds the settings..
With button the fault memory is reset.
Pressing button Esc for more than 3 sec the unit changes to input mode.
In input mode the measurement is disabled, the relays are in failure mode and the indicator LED is orange.

With the buttons the different setting values can be chosen.
Move cursor position
d One character to the right
Esc One character to the left

\section*{Back to the Display (Run)-Mode}
\begin{tabular}{|c|c|c|}
\hline Press button 3 s & OK & New values stored \\
\hline \multicolumn{3}{|l|}{or} \\
\hline Press button Esc 3 s ; & Break & Values unchanged \\
\hline R on the display co & th & o change to display \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Display (Run) - Modus } & \\
\hline Display inverted when the actual value is in failure state. & \begin{tabular}{l}
Measurement interrupted, relays are in failure state, \\
indicator LED orange color
\end{tabular} \\
\hline no function & \begin{tabular}{c}
Chose Rel1, Rel2, \(\mathrm{T}_{2}, \mathrm{AC} / \mathrm{DC}\) and RUN \\
As option address for RS485 Bus
\end{tabular} \\
\hline Reset fault memory: & \begin{tabular}{l}
Esc \\
Chose parameter \\
Change and set response values for Rel1 and Rel2.
\end{tabular} \\
\hline Shift cursor to the left \\
Shift cursor to the right
\end{tabular}

\section*{Options with Pluggable Terminal Blocks}

Screw terminal

\section*{Notes}

Removing the terminal blocks with cage clamp terminals
1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

\section*{Safety notes}

\section*{Dangerous voltage.}

Electric shock will result in death or serious injury.

Disconnect all power supplies before servicing equipment.
- Faults must only be removed when the relay is disconnected
- The user has to make sure that the device and corresponding components are installed and wired according to the local rules and law (TUEV, VDE, Health and safety).
- Settings must only be changed by trained staff taking into account the safety regulations. Installation work must only be done when power is disconnected.
- Observe proper grounding of all components

\section*{Set Up Procedure}

The connection has to be made according to the connection example.

\section*{Connection Example}

VARIMETER
Voltage Relay
BA 9054, MK 9054N
DOLD 登

BA 9054
BA 9054/_ 2 _

MK 9054N

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage \\
\hline e, f & Voltage measuring input \\
\hline \(11,12,14\) & 1st changeover contact \\
\hline \(21,22,24\) & 2nd changeover contact \\
\hline \begin{tabular}{l}
at MK 9054/1_- : \\
Z1, Z2, Z3
\end{tabular} & \begin{tabular}{l}
remote potentiometer for \\
response value
\end{tabular} \\
\hline
\end{tabular}

\section*{Safety Notes}

Please observe when connecting a remote potentiometer to MK 9054N/1__ Measuring circuit and remote potentiometer not galvanically separated. The remote potentiometer on terminals \(\mathrm{Z} 1, \mathrm{Z2}, \mathrm{Z} 3\) is related to terminal "e". Therefore "e" should be connected to "N", "-" or GND, so that the remote potentiometer is not connected to the Phase voltage. The remote potentiometer has to be connected volt- and ground-free.

\section*{Your Advantages}
- Protection against defect by overvoltage
- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

\section*{Features}
- According to IEC/EN 60255-1, IEC/EN 60947-1
- to: monitor DC and AC
- BA 9054 with measuring ranges from 15 mV to 1000 V
- MK 9054N with measuring ranges from 15 mV to 500 V
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between Auxiliary Circuit - measuring ciruit
- Auxiliary supply AC/DC; BA 9054 with AC
- BA 9054 optionally with start-up delay (MK = standard)
- with time delay, up to max. 100 sec
- BA 9054 optionally with safe separation to IEC/EN 61140
- MK 9054N optionally with remote potentiometer
- As option with manual reset
- Option withfixed settings possible
- LED indicators for operation and contact position
- MK 9054N as option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- Width BA 9054: 45 mm

Width MK 9054N: 22.5 mm

\section*{Approvals and Markings}

\section*{}
* see variants

\section*{Applications}
- Monitoring voltage in AC or DC systems
- For industrial and railway applications

\section*{Function}

The relays measure the arithmetic mean value of the rectified measuring voltage. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overvoltage relays but can also be used for undervoltage detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay \(\mathrm{t}_{\mathrm{a}}\) operates only when connecting the auxiliary supply. The response delay \(t_{v}\) is active after exceeding a response value. On overvoltage relays the delay is active when the voltage goes over the tripping value, on undervoltage relays when the voltage drops below the hysteresis value.

\section*{Indicators}
green upper LED: on, when auxiliary supply connected
yellow lower LED:

Function Diagram without Start-up Delay

Function Diagram with Start-up Delay

Version BA 9054/_1_: 2 changeover contacts
Version BA 9054/_20, /_21, /_22, /_23, /_24: 1 changeover contact, measuring range \(\geq 70\)... 700 V
At version BA 9054/6__ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

\section*{Technical Data}

\section*{Input (e, f)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{BA 9054 with 1 Measuring range for AC and DC} \\
\hline \multicolumn{2}{|l|}{Measuring range \({ }^{1)}\)} & internal & max. permissible \\
\hline AC & DC & resistance & contin. voltage \\
\hline \(6 \ldots 60 \mathrm{mV}\) & \(5.4 \ldots 54 \mathrm{mV}\) & \(20 \mathrm{k} \Omega\) & 10 V \\
\hline \(15 \ldots 150 \mathrm{mV}\) & 13.5 ... 135 mV & \(40 \mathrm{k} \Omega\) & 100 V \\
\hline \(50 \ldots 500 \mathrm{mV}\) & \(45 . . .450 \mathrm{mV}\) & \(270 \mathrm{k} \Omega\) & 250 V \\
\hline \(0.5 \ldots 5 \mathrm{~V}\) & 0.45 ... 4.5 V & \(500 \mathrm{k} \Omega\) & 300 V \\
\hline \(1 . .10 \mathrm{~V}\) & \(0.9 \ldots 9.0 \mathrm{~V}\) & \(1 \mathrm{M} \Omega\) & 300 V \\
\hline \(5 \ldots 50 \mathrm{~V}\) & 4.5 ... 45 V & \(2 \mathrm{M} \Omega\) & \(500 \mathrm{~V}^{2)}\) \\
\hline \(25 \ldots 250 \mathrm{~V}\) & \(22.5 \ldots 225 \mathrm{~V}\) & \(2 \mathrm{M} \Omega\) & \(500 \mathrm{~V}^{21}\) \\
\hline \(50 \ldots 500 \mathrm{~V}\) & 45 ... 450 V & \(2 \mathrm{M} \Omega\) & \(500 \mathrm{~V}^{2)}\) \\
\hline \(70 \ldots 700 \mathrm{~V}^{3)}\) & \(63 . . .630 \mathrm{~V}\) & \(3 \mathrm{M} \Omega\) & \(700 \mathrm{~V}^{4}\) \\
\hline \(\left.100 \ldots 1000 \mathrm{~V}^{3}\right)\) & 90 ... 900 V & \(3 \mathrm{M} \Omega\) & \(1000 \mathrm{~V}^{4}\) \\
\hline
\end{tabular}
1) DC or AC voltage \(50 \ldots 5000 \mathrm{~Hz}\)
(Other frequency ranges of \(10 \ldots 5000 \mathrm{~Hz}\), e.g. \(16 \frac{2}{3} \mathrm{~Hz}\) on request)
\({ }^{\text {2) }}\) at Overvoltage category II: 600 V
3) only with BA 9054/_20; /_21;/_22; /_23; /_24
(Version: 1 changeover contact)
\({ }^{4}\)) at overvoltage category II: 1000 V

\section*{Please note:}

Measuring ranges \(6 \ldots 60 \mathrm{mV}\) only available at variant BA 9054/08 (Using only for current sensing via shunt!)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{MK 9054N with 1 Measuring range for AC and DC} \\
\hline \multicolumn{2}{|r|}{Measuring range \({ }^{1 /}\)} & internal & max. permissible \\
\hline AC & DC & resistance & contin. voltage \\
\hline 6 ... 60 mV & \(5.4 \ldots 54 \mathrm{mV}\) & \(20 \mathrm{k} \Omega\) & 10 V \\
\hline \(15 \ldots 150 \mathrm{mV}\) & 13.5 ... 135 mV & \(40 \mathrm{k} \Omega\) & 100 V \\
\hline \(50 \ldots 500 \mathrm{mV}\) & \(45 . . .450 \mathrm{mV}\) & \(270 \mathrm{k} \Omega\) & 250 V \\
\hline 0.5 ... 5 V & 0.45 ... 4.5 V & \(500 \mathrm{k} \Omega\) & 300 V \\
\hline 1 ... 10 V & 0.9 ... 9.0 V & \(1 \mathrm{M} \Omega\) & 300 V \\
\hline 5 ... 50 V & 4.5 ... 45 V & \(2 \mathrm{M} \Omega\) & \(500 \mathrm{~V}^{2}\) \\
\hline \(25 . . .250 \mathrm{~V}\) & 22.5 ... 225 V & \(2 \mathrm{M} \Omega\) & \(500 \mathrm{~V}^{2}\) \\
\hline \(50 . . .500 \mathrm{~V}\) & \(45 . . .450 \mathrm{~V}\) & \(2 \mathrm{M} \Omega\) & \(500 \mathrm{~V}^{2}\) \\
\hline
\end{tabular}
1) DC or AC voltage \(50 \ldots 5000 \mathrm{~Hz}\)
(Other frequency ranges of \(10 \ldots 5000 \mathrm{~Hz}\), e.g. \(16 \frac{2}{3} \mathrm{~Hz}\) on request)
\({ }^{2)}\) Not suitable for 400 / 690 V -mains (systems)

\section*{Please note:}

To avoid measuring mistakes, on units with mV input the input must always be terminated. In addition screened wires should be used..

Measuring ranges \(6 \ldots 60 \mathrm{mV}+15 \ldots 150 \mathrm{mV}\)
(Using only for current sensing via shunt!)

Measuring principle:
Adjustment:

Temperature influence:
arithmetic mean value
The AC-devices can also monitor DCvoltage. The scale offset in this case is \(\left(\bar{U}=0.90 U_{\text {eff }}\right)\) \(<0.05 \% / K\)

\section*{Technical Data}

\section*{Setting Ranges}

\section*{Setting}

Response value:
Hysteresis
at AC:
at DC:
Accuracy:
Response value at
Potentiometer right stop (max): \(0 \ldots .+8 \%\)
Potentiometer left stop (min): - \(10 \ldots .+8 \%\)
Repeat accuracy: \(\leq \pm 0.5 \%\)

\section*{Recovery time}
at devices with manual reset
(Reset by braking
of the auxiliary voltage)
BA 9054/6__; MK 9054N/6
Time delay \(\mathrm{t}_{\mathrm{v}}\) :

Start-up delay \(\mathrm{t}_{\mathrm{a}}\) :
BA 9054/1

MK 9054N:
infinite variable \(0.1 U_{N} \ldots 1 U_{N}\) relative scale
infinite variable \(0.5 \ldots 0.98\) of setting value infinite variable \(0.5 \ldots 0.96\) of setting value

\section*{Auxiliary Circuit BA 9054 and MK 9054N}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)\)
BA 9054, Nominal voltage:
Voltage range: \(\quad 0.8 \ldots 1.1 \mathrm{U}_{\mathrm{H}}\)
Nominal frequency: \(\quad 50 / 60 \mathrm{~Hz}\)
Frequency range: \(\pm 5 \%\)
Nominal consumption: \(\quad 2.5\) VA
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ BA 9054, MK 9054N: } \\
\hline Nominal voltage & Voltage range & Frequency range \\
\hline \multirow{2}{*}{\(\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}\)} & AC \(18 \ldots 100 \mathrm{~V}\) & \(45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}\) \\
\cline { 2 - 3 } & \(\mathrm{DC} 18 \ldots 130 \mathrm{~V}\) & \(\mathrm{~W} \leq 5 \%\) \\
\hline \multirow{2}{*}{\(\mathrm{AC} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}\)} & \(\mathrm{AC} 40 \ldots 265 \mathrm{~V}\) & \(45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}\) \\
\cline { 2 - 3 } & \(\mathrm{DC} 40 \ldots 300 \mathrm{~V}\) & \(\mathrm{~W} \leq 5 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{ BA 9054} \\
\hline Nominal voltage & Voltage range & Frequency range \\
\hline DC 12 V & DC \(10 \ldots 18 \mathrm{~V}\) & battery voltage \\
\hline
\end{tabular}

Nominal consumption:
4 VA ; 1.5 W at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

\section*{Output}

\section*{Contacts}

BA 9054:
MK 9054N:
Thermal current \(\mathrm{t}_{\mathrm{th}}\)
BA 9054:
MK 9054N:
Switching capacity

\section*{BA 9054}
to AC 15:
NO contact
NC contact:
A. AC 230 V

IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
1.5 A / AC 230 V

IEC/EN 60 947-5-1
to AC 15:
BA 9054, MK 9054N
to DC 13:
1 A / DC 24 V
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
2 changeover contacts
2 changeover contacts
\(2 \times 5 \mathrm{~A}\)
\(2 \times 4 \mathrm{~A}\)

\section*{BA 9054}
to AC 15 at \(3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\)
MK 9054N:
to AC 15 at \(3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short-circuit strength
max. fuse rating:
Mechanical life
BA 9054:
MK 9054N:
\(5 \times 10^{5}\) switching cycles
\(10^{5}\) switching cycles
6A gG (gL)
IEC/EN 60 947-5-1
\(50 \times 10^{6}\) switching cycles
\(30 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}

Operating mode: Temperature range: Operation:

Storage:
Altitude:
Clearance and creepage distances
rated impulse voltage /
pollution degree
BA 9054:
MK 9054N
EMC
Electrostatic discharge:
HF irradiation
80 MHz .. 1 GHz :
1 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
BA 9054:

\section*{MK 9054N}

Screw terminals
(integrated):

Insulation of wires or sleeve length:
Plug in with screw terminals
max. cross section for connection:

Insulation of wires or sleeve length:
Plug in with
cage clamp terminals
max. cross section for connection:
min. cross section for connection: Insulation of wires or sleeve length:
Wire fixing
BA 9054:
MK 9054N:

Stripping length:
Fixing torque:
Mounting:
Weight
BA 9054:
MK 9054N:

Continuous operation
\(-40 \ldots+60^{\circ} \mathrm{C}\)
(higher temperature with limitations
on request)
\(-40 \ldots+70^{\circ} \mathrm{C}\)
< 2.000 m

6 kV /
IEC 60 664-1
\(4 \mathrm{kV} / 2\)
IEC 60 664-1
8 kV (air)
\(20 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3
\(10 \mathrm{~V} / \mathrm{m}\)
IEC/EN 61 000-4-3
4 kV
IEC/EN 61 000-4-4

2 kV
IEC/EN 61 000-4-5
4 kV
IEC/EN 61 000-4-5
10 V
IEC/EN 61 000-4-6
Limit value class B
EN 55011
\begin{tabular}{ll}
IP 40 & IEC/EN 60529 \\
IP 20 & IEC/EN 60529
\end{tabular}

Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency 10 ... 55 Hz
40 / 060 / 04
IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)
or \(2 \times 2.5 \mathrm{~mm}^{2}\) solid
8 mm
\(1 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)

8 mm
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)
\(0.5 \mathrm{~mm}^{2}\)
\(12 \pm 0.5 \mathrm{~mm}\)
Plus-minus terminal screws M3.5 with self-lifting clamping piece IEC/EN 60 999-1 Plus-minus terminal screws M3.5 box terminals with wire protection or cage clamp terminals
10 mm
0.8 Nm

DIN-rail
IEC/EN 60715
AC-device: \(\quad 280 \mathrm{~g}\)
AC/DC-fdevice: 200 g
150 g

\section*{Dimensions}

\section*{Width x height x depth}
BA 9054:
MK 9054N:
\(45 \times 75 \times 120 \mathrm{~mm}\)
\(22.5 \times 90 \times 97 \mathrm{~mm}\)

\section*{Classification to DIN EN 50155 for BA 9054}

Vibration and
shock resistance: Category 1, Class B IEC/EN 61373
Ambient temperature: T1, T2 compliant
T3 and TX with operational limitations
Protective coating of the PCB: No

\section*{UL-Data}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}(\mathbf{A} 1, \mathrm{~A} 2)\)
BA 9054:
AC 24, 42, 48, 110, 115, 120 V
Thermal current \(I_{t h}\) :
BA 9054: \(2 \times 5\) A

MK 9054N: \(2 \times 4\) A
Clearance and creepage distances
BA 9054, MK 9054N: 4 kV / 2
IEC 60 664-1
HF irradiation
BA 9054 (80 MHz ... 2.7 GHz) \(10 \mathrm{~V} / \mathrm{m}\)
IEC/EN 61 000-4-3
Switching capacity: Pilot duty B150
Ambient temperature: \(-40 \ldots+60^{\circ} \mathrm{C}\)

\(\mathrm{nnO}^{2}\)
Technical data that is not stated in the UL-Data, can be found in the technical data section.

CCC-Data
Switching capacity
to AC 15
to DC 13:
1.5 A / AC 230 V

IEC/EN 60 947-5-1
IEC/EN 60 947-5-1

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

\section*{Standard Types}

BA 9054/010 AC 25 ... 250 V AC 230 V
Article number:
0053639
- for Overvoltage monitoring
- Measuring range:
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :
- Time delay \(\mathrm{t}_{\mathrm{v}}\) by \(\mathrm{U}_{\mathrm{an}:}\)
- Width:

AC \(25 \ldots 250 \mathrm{~V}\)
AC 230 V
\(0 \ldots 20 \mathrm{~s}\)
45 mm
BA 9054/012 AC \(25 \ldots 250\) V AC 230 V
Article number:
- for Undervoltage monitoring
- Measuring range:

0053711
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :

AC 25 ... 250 V
- Time delay \(t_{v}\) by \(U_{a b}\) :
- Width:

AC 230 V
0 ... 20 s
45 mm
MK 9054N.12/010 AC \(25 \ldots 250 \mathrm{~V}\) AC/DC \(80 \ldots 230 \mathrm{~V}\) t \(0 \ldots 20 \mathrm{~s} \mathrm{t}_{\mathrm{a}} 0.1 \ldots 20 \mathrm{~s}\)
Article number:
- for Overvoltage monitoring
- Measuring range:

AC 25 ... 250 V
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :

AC/DC 80 ... 230 V
- Time delay \(t_{v}\) by \(U_{\text {an: }}\) :
\(0 \ldots 20 \mathrm{~s}\)
- Start up delay \(\mathrm{t}_{\mathrm{a}}\) : \(0.1 \ldots 20 \mathrm{~s}\) 22.5 mm

\section*{Ordering Example for Variants}

\section*{Options with Pluggable Terminal Blocks}

Screw terminal (PS/plugin screw)

Cage clamp (\(\mathrm{PC} /\) plugin cage clamp)

\section*{Notes}

Removing the terminal blocks with cage clamp terminals
1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

\section*{Accessories}

\section*{AD 3:}

Remote potentiometer 470 kW Article number: 0050174

\section*{Setting}

Example:
Voltage relay BA 9054 / MK 9054N AC 25 ... 250 V
AC according to type plate:
i.e. the unit is adjusted to AC voltage
\(25 \ldots 250 \mathrm{~V}=\) measuring range
Response value AC 150 V
Hysteresis AC 75 V
Settings:
\(\begin{array}{lll}\text { upper potentiometer: } & 0.6 & (0.6 \times 250 \mathrm{~V}=150 \mathrm{~V}) \\ \text { lower potentiometer: } & 0.5 & (0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})\end{array}\)
The AC-devices can also monitor DC voltage. The scale offset in this case is: \(\bar{U}=0.9 \times U_{\text {eff. }}\)

AC 25 ... 250 V is equivalent to \(\mathrm{DC} 22.5 \ldots 225 \mathrm{~V}\)
Response value DC 150 V
Hysteresis DC 75 V
Settings:
\begin{tabular}{lll}
upper potentiometer: & 0.66 & \((0.66 \times 225 \mathrm{~V}=150 \mathrm{~V})\) \\
lower potentiometer: & 0.5 & \((0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})\)
\end{tabular}

\section*{Time delay of measuring circuit}
\(X\) on: Measured value rises \(F=\frac{\text { Meas. value (after rise of meas. value) }}{\text { Setting value }}\)
\(X\) off: Measured value drops \(F=\frac{\text { Meas. value (befor meas. value drops) }}{\text { Setting value (hysteresis) }}\)
The diagram shows the typical delay of a standard devices depending on the measured values " X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter. The total reaction time of the device results from the adjustable delay \(t_{v}\) and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

Example for "X on" (overvoltage detection with BA9054/010):
Adjusted setting value X on \(=230 \mathrm{~V}\).
Caused by a missing neutral the voltage rises suddenly to 400 V
\(F=\frac{\text { Measured value (after rise of meas. value) }}{\text { Setting value }}=\frac{400 \mathrm{~V}}{230 \mathrm{~V}}=1,74\)
Reading from the diagram:
The output relay switches on after 64 ms at a setting \(\mathrm{t}_{\mathrm{v}}=0\).

Example for "X off" (undervoltage detection with BA9054/012):
Adjusted hysteresis setting value is 100 V .
Caused by a broken wire the voltage drops suddenly from 230 V to 0 V .
\(F=\frac{\text { Measured value (befor meas. value drops) }}{\text { Setting value (hysteresis) }}=\frac{230 \mathrm{~V}}{100 \mathrm{~V}}=2,3\)
Reading from the diagram:
The output relay switches off after 70 ms at a setting \(\mathrm{t}_{\mathrm{v}}=0\).

\section*{Function Diagram}

BA 9036

BA 9036/001

BA 9036/010

BA 9036/011

BA 9036/012

BA 9036/013

used as undervoltage relay

- According to IEC/EN 60255-1, IEC/EN 60255-26
- Single-phase
- Measuring ranges from 24 to 400
- Settable response and release value
- Without auxiliary supply
- optionally available with adjustable time delay
- with LED indicators for operation and state of contacts
- 2 changeover contacts
- Width 45 mm

\section*{Approvals and Markings}

* see variants

\section*{Applications}

Monitoring of voltage in DC and AC systems
\begin{tabular}{ll}
\hline Indicators & \\
\begin{tabular}{l}
upper LED: \\
lower LED:
\end{tabular} & \begin{tabular}{l}
on, when voltage connected \\
on, when output contact activated
\end{tabular} \\
\hline Notes & \\
\hline
\end{tabular}

Mounting instruction for units with external series resistor
The external resistor conducts mains voltage and heats up during operation. It has to be mounted at a suitable location in the cabinet so that touch protection is provided. Because of the heat dissipation a suitable distance to neighbour devices has to be kept.

When using a drop resistor the measuring has to be connected to e and \(f\).

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline\(e, f\) & Nominal voltage \\
\hline\(e, z\) & Series resistor (DC) \\
\hline \(11,12,14,21,22,24\) & changeover contact \\
\hline
\end{tabular}

\section*{Characteristic}

\section*{Diagram switching delay}

Switching delay \(\mathrm{t}_{\mathrm{M}}\) :
The characteristic shows the switching delay depending on the values of \(X_{\text {on }}-X_{\text {off }}\) when switching the voltage on or off. A slow voltage change reduces the delay.

Example:
\begin{tabular}{ll}
U setting \(=200 \mathrm{~V}\) & \(F=\frac{230 \mathrm{~V}}{200 \mathrm{~V}}=1.1\) \\
U applied \(=230 \mathrm{~V}\) & \(\mathrm{~F}=\frac{\mathrm{U} \text { applied }}{U \text { setting }}\) \\
\begin{tabular}{l}
\(\mathrm{t}_{\mathrm{M}} \circ \mathrm{O}=\) approx. 300 ms \\
\(\mathrm{t}_{\mathrm{M}} \mathrm{Off}=\) approx. 60 ms
\end{tabular} &
\end{tabular}

\section*{Accessories}

\section*{ZWS 20 SL, ZWS 35 SL \\ Drop resistor}

VARIMETER
Voltage Relay
BA 9037

- According to IEC 255, EN 30 255, VDE 0435 part 303
- Single phase
- Measuring ranges from 24 to 660 V
- Response and release value adjustable independent of each other
- Under- and overvoltage detection
- Without auxiliary supply
- Large setting range
- With time delay
- Closed circuit operation
- Insensitive to harmonics
- LED indicators for operation and state of contacts
- Width 45 mm

\section*{Function Diagram \\ }
* \(U_{\text {min }}\) and \(U_{\text {max }}\) can also be exchanged. The hysteresis of the setting values is \(<4 \%\) of the response value

\section*{Circuit Diagram}

BA 9037.12

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Applications}

Under- and overvoltage detection in AC or DC voltage systems
\begin{tabular}{ll}
\hline Indicators & \\
\begin{tabular}{ll}
upper LED: & on, when voltage connected \\
lower LED: & on, when output contact activated
\end{tabular} \\
\hline Technical Data & \\
\hline
\end{tabular}

\section*{Input}

Nominal voltage \(\mathbf{U}_{\mathrm{N}}\) : wrong
\begin{tabular}{|c|c|}
\hline & 0.7 ... 1.3 U \\
\hline Measuring ranges: & \(0.7 \ldots 1.3 \mathrm{U}^{\mathrm{N}}\) \\
\hline Voltage range: & \(0.6 \ldots 1.4 \mathrm{U}^{\text {N }}\) \\
\hline Nominal consumption: & DC 24 V 1 W \\
\hline & AC 24 V 2 VA \\
\hline & AC 230 V 5 VA \\
\hline & AC 500 V 10 VA \\
\hline Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
\hline Frequency range: & \(\pm 5 \%\) \\
\hline Temperature influence: & < 0.05 \% / K \\
\hline Setting Ranges & \\
\hline Response value: & \(U_{\text {min }}\) infinite \(0.7 \ldots 1.3 \mathrm{U}_{\mathrm{N}}\) \\
\hline & \(\mathrm{U}_{\text {max }}\) infinite \(0.7 \ldots 1.3 \mathrm{U}_{\mathrm{N}}\) \\
\hline Hysteresis: & at \(\mathrm{U}_{\text {min }}\) bzw. \(\mathrm{U}_{\text {max }}<0.96\) \\
\hline Setting accuracy: & < \(\pm 5 \%\) \\
\hline Repeat accuracy: & < \(\pm 0.5\) \% \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{Output}

Contacts
BA 9037.12:

\section*{Release delay:}

Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life
to \(A C 15\) at 3 A, AC 230 V :
Permissible switching frequency:
Short circuit strength max. fuse rating: Mechanical life:

2 changeover contacts
\(24 \mathrm{~V}<20 \mathrm{~ms}\) \(220 \mathrm{~V}<150 \mathrm{~ms}\)
\(500 \mathrm{~V}<150 \mathrm{~ms}\)
5 A

3 A / AC \(230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
1 A / AC \(230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1 IEC/EN 60 947-5-1
\(5 \times 10^{5}\) switching cycles
6000 switching cycles / h
4 AgL
\(>30 \times 10^{6}\) switching cycles

General Data
Operating mode:
Temperature range:
Clearance and creepage

\section*{distances}
rated impulse voltage / pollution degree:
EMC
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages:
Interference suppression:

\section*{Degree of protection}

Housing:
Terminals:
Housing:
\begin{tabular}{|c|c|}
\hline Vibration resistance: & Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency 10 ... 55 Hz \\
\hline Climate resistance: & 20/060/04 IEC/EN 60 068-1 \\
\hline Terminal designation: & EN 50005 \\
\hline Wire connection: & \begin{tabular}{l}
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or \\
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve \\
DIN 46 228-1/-2/-3/-4
\end{tabular} \\
\hline Wire fixing: & Flat terminals with self-lifting clamping piece IEC/EN 60 999-1 \\
\hline Fixing torque: & 0.8 Nm \\
\hline Mounting: & DIN rail IEC/EN 60715 \\
\hline Weight: & 240 g \\
\hline
\end{tabular}

Dimensions
Width x height x depth: \(45 \times 73 \times 132 \mathrm{~mm}\)

\section*{Classification to DIN EN 50155}

Vibration and
shock resistance:
Category 1, Class B IEC/EN 61373
Protective coating of the PCB: No

\section*{Standard Type}

\section*{BA 9037.12/001 AC / DC 24 V}

Article number:
0030758
- without time delay
- Output: 2 changeover contacts
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : AC / DC 24 V
- Width: 45 mm

\section*{Variant}

BA 9037.--/011:
adjustable time delay \(\mathrm{t}_{\mathrm{v}} 1 \ldots 20 \mathrm{sec}\). If the voltage drops below \(0.5 \mathrm{U}_{\mathrm{N}}\) the time delay is inactive, and the contacts fall back immediately.

\section*{Ordering example for variant}

Operate delay \(\mathrm{t}_{\mathrm{M}}\) :
The diagram shows the relation of the operate delay to the applied measuring voltage \(U_{\text {applied }}\) and the setting of \(U_{\text {min }}\), when the voltage is switched on. A slow voltage change reduces the delay.

\section*{Circuit Diagram}

IK 9044
\begin{tabular}{l}
\hline \multicolumn{1}{|c|}{ Connection Terminals } \\
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline\(e+, f\) & \begin{tabular}{l}
Measuring- and supply voltage \\
DC 24 V
\end{tabular} \\
\hline 11,12 & NC contact \\
\hline 23,24 & NO contact \\
\hline
\end{tabular} \\
\hline
\end{tabular}
- According to IEC/EN 60 255-1
- For monitoring direct current voltage supply systems to detect undervoltage, overvoltage and residual ripple
- For DC 24 V
- IK 9046 with adjustable residual ripple
- Width 17.5 mm

\section*{Approvals and Markings \\ \\ Application}

For monitoring direct current voltage supply systems, e.g. of PLC (threephase bridges), automobile industry, welding.

\section*{Indicator}

Yellow LED: on, when there are no faults in the supply system

\section*{Technical Data}

Input
\begin{tabular}{|c|c|}
\hline Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & DC 24 V \\
\hline Maximum overload: & DC 33 V permanent \\
\hline & DC 35 V 0.5 s \\
\hline & DC 45 V 10 ms \\
\hline Nominal consumption: & 0.6 W \\
\hline Overvoltage & \\
\hline setting value: & \(0.82 \times \mathrm{U}_{\mathrm{N}}\) \\
\hline Undervoltage & \\
\hline setting value: & \(1.18 \times \mathrm{U}_{\mathrm{N}}\) \\
\hline Hysteresis: & \(<4 \% \times \mathrm{U}_{\mathrm{N}}\) \\
\hline Residual ripple actuation & \\
\hline IK 9044: & approx. 15 \% \\
\hline IK 9046: & 0 ... 15 \%, adjustable \\
\hline Output & \\
\hline Contacts: & 1 NC contact, 1 NO contact \\
\hline Thermal current \(\mathrm{I}_{\text {th }}\) : & 4 A \\
\hline Switching capacity to AC 15 & \\
\hline NO contact: & 3 A AC 230 V IEC/EN 60 947-5-1 \\
\hline NC contact: & 1 A / AC 230 V IEC/EN 60 947-5-1 \\
\hline Electrical life: & IEC/EN 60 947-5-1 \\
\hline AC 15 at 1 A, AC 230 V : & \(5 \times 10^{5}\) switching cycles \\
\hline Short circuit strength & \\
\hline max. fuse rating: & 4 AgL IEC/EN 60 947-5-1 \\
\hline Mechanical life: & \(30 \times 10^{6}\) switching cycles \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{General Data}

Operating mode: Temperature range
Operation:
Storage:

\section*{Altitude:}

Continuous operation
\(-25 \ldots+70^{\circ} \mathrm{C}\)
\(-25 \ldots+85^{\circ} \mathrm{C}\)
<2,000 m

\section*{distances}
rated impulse voltage/
pollution degree:
EMC
Electrostatic discharge:
HF irradiation
80 MHz ... 2.7 GHz :
Fast transients:
Surge voltages
between wire and ground: Interference suppression:
Degree of protection
Housing:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
Cross section:

Stripping length:
Wire fixing:
Fixing torque:
Mounting:

\section*{Weight:}

4 kV / 2 (basis insulation)
IEC 60 664-1
6 kV (air)
\(10 \mathrm{~V} / \mathrm{m}\)
2 kV
4 kV
Limit value class B

IP 40
IP 20
EC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm ,
frequency \(10 \ldots 55 \mathrm{~Hz}\) IEC/EN 60 068-2-6
25/070/04 IEC/EN 60 068-1 EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
10 mm
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1 0.8 Nm

DIN rail IEC/EN 60715 or screw attachment 67 g

Dimensions
Width x height x depth: \(\quad 17.5 \times 90 \times 58 \mathrm{~mm}\)

\section*{Standard Type}

IK 9044 DC 24 V
Article number:
- Residual ripple actuation:
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\)
- Width:

0027841
DC 24 V

IK 9046 DC 24 V
Article number:
- Residual ripple actuation
- Nominal voltage \(U_{N}\) :

0 ... 15 \%, adjustable
- Width:
17.5 mm

\section*{Connection Example}

\section*{VARIMETER \\ Overvoltage Relay, 3-phase \\ IK 9170, SK 9170}

\section*{Function Diagram}

\section*{Circuit Diagram}

IK 9170.11, SK 9170.11
- According to IEC/EN 60 255, DIN VDE 0435-303
- Monitoring of overvoltage in 3-phase systems
- Also for single phase
- Without auxiliary supply
- Settable response value
- N.C. circuit operation (optionally N.O. circuit operation)
- Optionally with or without N
- Optionally with delay 11 on trip
- Optionally with delay t 2 on reset
- LED indicator for state of output relay
- Indepenent of phase sequence
- 1 changeover contact
- Devices available in 2 enclosure versions:

IK 9170: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SK 9170: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 17.5 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Applications}

Monitors overvoltage, in 3-phase voltage systems

\section*{Notes}

The arithmetic mean value of each phase is measured against \(N\). The variants without N measure L 1 and L 3 against L 2 .
Indicators

Yellow LED:
output contact active (11-14 closed)

\section*{Technical Data}

Input Circuit
Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
3/N AC 400/230 V (with neutral) 3 AC 400 V (without neutral)
Voltage range:
Max. overload:
Nominal consumption:
Frequency range: \(0.7 \ldots 1.3 \mathrm{U}_{\mathrm{N}}\) \(1.35 \mathrm{U}_{\mathrm{N}}\), continuously approx. 4 VA

Setting Ranges
Response value:
Hysteresis:
Time delay \(\mathrm{t}_{1} / \mathrm{t}_{2}\) :
Output
Contacts
IK 9170.11, SK 9170.11: 1 changeover contact
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NO contact:
\(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
IEC/EN 60 947-5-1
\(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
Electrical contact life
at AC \(230 \mathrm{~V}, 1 \mathrm{~A}(\cos \varphi=0.5)\) : \(\geq 3 \times 10^{5}\) switching cycles
Short circuit strength
max. fuse rating:
4 A gL
IEC/EN 60 947-5-1
Mechanical life: \(\quad \geq 30 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}

Operating mode:
Temperature range:
Clearance and creepage distances
rated impulse voltage / pollution degree:
EMC
Electrostatic discharge:
HF irradiation
80 MHz ... 1 GHz :
\(1 \mathrm{GHz} \ldots 2 \mathrm{GHz}\) :
2 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground:
Interference suppression:

\section*{Degree of protection}

Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation: Wire connection:

Wire fixing:
Mounting:
Weight
IK 9170:
SK 9170:

Continuous operation \(-20 \ldots+60^{\circ} \mathrm{C}\)

4 kV / 2
IEC 60 664-1

8 kV (air)
\(20 \mathrm{~V} / \mathrm{m}\)
\(20 \mathrm{~V} / \mathrm{m}\)
\(1 \mathrm{~V} / \mathrm{m}\)
4 kV

1 kV
2 kV
Limit value class B
IP 40 IEC/EN 60529

IP 20
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm ,
frequency 10 ... 55 Hz , IEC/EN 60 068-2-6 20 / 060 / 04 IEC/EN 60 068-1 EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting clamping piece IEC/EN 60 999-1 DIN rail IEC/EN 60715

\section*{Dimensions}

\section*{Width x height x depth}

IK 9170:
SK 9170:
\(17.5 \times 90 \times 59 \mathrm{~mm}\) \(17.5 \times 90 \times 98 \mathrm{~mm}\)

\section*{Standard Types}

IK \(9170.113 / \mathrm{N}\) AC \(400 / 230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 0.9\)... \(1.3 \mathrm{U}_{\mathrm{N}}\)
Article number: 0048645
SK 9170.11 3/N AC 400/230V 50/60Hz \(0.9 \ldots 1.3 U_{N}\)
Article number: 0054743
- Adjustable response value: \(0.9 \ldots 1.3 \mathrm{U}_{\mathrm{N}}\)
- Without time delay
- with N
- Closed circuit operation
- Output: 1 changeover contact
- Nominal voltage \(U_{N}: \quad 3 /\) N AC \(400 / 230 \mathrm{~V}\)
- Width: 17.5 mm

\section*{Variants}

IK 9170/001

Ordering example for variants

\section*{VARIMETER \\ Overvoltage Relay, Single Phase \\ IK 9172, SK 9172}

Function Diagram

\section*{Circuit Diagram}

IK 9172.11, SK 9172.11
- According to IEC/EN 60 255, DIN VDE 0435-303
- Monitoring of overvoltage
- Without auxiliary supply
- Settable response value
- De-energized on trip
- LED indicator for state of output relay
- 1 changeover contact
- As option energized on trip
- As option with delay t1 on trip
- As option with delay t 2 on reset
- Devices available in 2 enclosure versions:

IK 9171: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SK 9171: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 17.5 mm

Approvals and Markings
C \(\epsilon\)

\section*{Applications}

Monitors overvoltage, in single-phase voltage systems

\section*{Function}

The arithmetic mean value of the voltage L-N ist measured.

Indicators

Yellow LED:
output contact active (11-14 closed)

\section*{Technical Data}

Input Circuit
Nominal voltage \(\mathrm{U}_{\mathrm{N}}: \quad \mathrm{AC} 24,42,110,230 \mathrm{~V}\)
Voltage range:
Max. overload:
Nominal consumption:
Frequency range:
DC 24, 48, 60, 110 V
\(0.7 \ldots 1.3 \mathrm{U}_{\mathrm{N}}\)
\(1.35 \mathrm{U}_{\mathrm{N}}\) continuously
max. 5 VA / DC 1 W
\(45 \ldots 65 \mathrm{~Hz}\)

Setting Ranges

Response value:
Hysteresis:
Time delay \(\mathrm{t}_{1} / \mathrm{t}_{2}\) :
Output
Contacts
IK 9172.11, SK 9172.11: 1 changeover contact
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NO contact: \(\quad 3\) A / AC 230 V IEC/EN 60 947-5-1
NC contact:
Electrical contact life
at \(\mathrm{AC} 230 \mathrm{~V}, 1 \mathrm{~A}(\cos \varphi=0.5)\)
Short circuit strength
max. fuse rating:
Mechanical life:
adjustable: \(0.9 \ldots 1.3 \mathrm{U}_{\mathrm{N}}\) approx. \(4 \%\) of setting value 0.5 ... 20 s
utput

IEC/EN 60 947-5-1
\(\geq 30 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}

Operating mode: Temperature range:

\section*{Clearance and creepage}
rated impulse voltage / pollution degree:
EMC
\begin{tabular}{|c|c|c|}
\hline Electrostatic discharge: & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline \multicolumn{3}{|l|}{HF irradiation} \\
\hline \(80 \mathrm{MHz} \mathrm{..}\).1 GHz : & \(20 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline \(1 \mathrm{GHz} \ldots 2 \mathrm{GHz}\) : & \(20 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline 2 GHz ... 2.7 GHz : & \(1 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 4 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltages between} \\
\hline wires for power supply: & 1 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 2 kV & IEC/EN 61 000-4-5 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & IP 20 & IEC/EN 60529 \\
\hline Housing: & \multicolumn{2}{|l|}{Thermoplastic with V0 behaviour according to UL subject 94} \\
\hline Vibration resistance: & \multicolumn{2}{|l|}{Amplitude 0.35 mm ,} \\
\hline Climate resistance: & 20 / 060 / 04 & IEC/EN 60 068-1 \\
\hline Terminal designation: & \multicolumn{2}{|l|}{EN 50005} \\
\hline Wire connection: & \multicolumn{2}{|l|}{\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or} \\
\hline & \multicolumn{2}{|l|}{\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled} \\
\hline & \multicolumn{2}{|l|}{DIN 46 228-1/-2/-3/-4} \\
\hline Wire fixing: & \multicolumn{2}{|l|}{Flat terminals with self-lifting} \\
\hline & clamping piece & IEC/EN 60 999-1 \\
\hline Mounting: & DIN rail & IEC/EN 60715 \\
\hline Weight & & \\
\hline IK 9171: & 65 g & \\
\hline SK 9171: & 83 g & \\
\hline
\end{tabular}

Dimensions
Width x height x depth
IK 9172:
SK 9172:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

4 kV / 2
8 kV (air)
\(20 \mathrm{~V} / \mathrm{m}\) \(20 \mathrm{~V} / \mathrm{m}\) \(1 \mathrm{~V} / \mathrm{m}\) 4 kV

1 kV
kV

IP 40
EC/EN 60529

Amplitude 0.35 mm ,
frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
/ 060 / 0
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting
- IEC/EN 60 999-1

65 g
83 g

\section*{Standard Types}

IK 9172.11 AC 230 V 50/60 Hz 0.9 ... \(1.3 \mathrm{U}_{\mathrm{N}}\)
Article number: 0048644
SK 9172.11 AC \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 0.9 \ldots 1.3 U_{N}\)
Article number: 0054745
- Adjustable response value: \(0.9 \ldots 1.3 U_{N}\)
- Without time delay
- De-energized on trip
- Output:

1 changeover contact
- Nominal voltage \(U_{N}\) : AC 230 V
- Width: 17.5 mm

\section*{Variants}

IK 9172/001

\section*{Ordering example for variants}

\section*{VARIMETER \\ Undervoltage Relay \\ BA 9043, AA 9943}

Function Diagram

\section*{Circuit Diagrams}

BA 9043, BA 9043/002
AA 9943

BA 9043/001, BA 9043/003 AA 9943/001
- According to EC/EN 60255-1
- 3-phase
- For nominal voltage of 3 AC 100 / 57 to 690 / 400 V
- Measures arithmetic mean value
- Adjustable operate and release value
- For 3p3w or 3p4w systems
- BA 9043 with optionally adjustable time delay
- De-energized on trip operation
- LED indicator for operation and state of contact
- Insensitive to harmonics
- Frequency up to 400 Hz
- Width 45 mm

\section*{Approvals and Markings}

\section*{c \(\epsilon\)}

\({ }^{\text { }}\)) see variants

\section*{Application}
- Undervoltage detection in 3 phase systems
- For industrial and railway applications

\section*{Indicators}
upper LED (only BA 9043):
on, when voltage connected
lower LED:
on, when output contact activated

\section*{Notes}

For determination of the arithmetic mean value of the voltage the 3 phases are measured against \(N\).
The variants without N (/ 001 and /003) measure L1 and L2 against L3. delay the delay is only active at \(U \geq 0,6 U_{N}\). At \(<0.4 U_{N}\) the relay switches off without delay.

\section*{Technical Data}

Input
Nominal voltage \(U_{N}\)
BA 9043, BA 9043/002
AA 9943:
3/N AC 100/57 V; 220/127 V; 400/230 V
415/240 V; 440/254 V; 500/290 V
3/N AC 690/400 V
3 AC \(100 \mathrm{~V} ; 220 \mathrm{~V} ; 400 \mathrm{~V} ; 415 \mathrm{~V}, 440 \mathrm{~V}\); 500 V
3 AC 690 V
BA 9043/001, BA 9043/003:
Max. overload
BA 9043:
\(1.2 \mathrm{U}_{\mathrm{N}}\) continuously
AA 9943: \(\quad 1.1 \cup_{N}\) continuously
Nominal consumption: AC 4 VA
Nominal frequency:
Frequency range:
Temperature influence:
\(50 \ldots 400 \mathrm{~Hz}\)
\(\pm 5\) \%
\(<0.05 \% / K\)

\section*{Setting Ranges}

\section*{Response value:}

Hysteresis:
Setting accuracy:
Switching delay \(\mathrm{t}_{\mathrm{m}}\) :
Time delay \(\mathrm{t}_{\mathrm{v}}\) :
\(0.85 \ldots 1.05 U_{N}\), infinite variable with upper potentiometer \(0.75 \ldots 0.95\) of operate value \(\leq \pm 10 \%\)
see diagram switching delay infinite variable from \(0.5 \ldots 10 \mathrm{sec}\) for BA 9043/002, BA 9043/003 Between 0.4 and \(0.6 \mathrm{U}_{\mathrm{N}}\) the contacts fall back according to the diagram without additional delay

Characteristics

Continuous current limit curve
A = Devices mounted with 2 cm distance
\(B=\) Devices mounted without distance

Diagram switching delay

\section*{Switching delay \(\mathrm{t}_{\mathrm{M}}\) :}

When the voltage changes fast on the measuring input, the arithmetic mean value can only adjust after a short delay.

Example:
\(F=\frac{U \text { applied }}{U \text { setting }}\)
\(F=\frac{240 \mathrm{~V}}{190 \mathrm{~V}}=1.26\)
U setting \(=190 \mathrm{~V}\)
U applied \(=240 \mathrm{~V}\)
according to diagram:
\(\mathrm{t}_{\mathrm{M}} \mathrm{on}=\) approx. 800 ms \(\mathrm{t}_{\mathrm{M}}\) off \(=\) approx. 100 ms

\section*{Function Diagram}

\section*{Circuit Diagram}

- According to IEC/EN 60 255, DIN VDE 0435-303
- Fast detection of undervoltage and phase failure in AC voltage systems
- Detects voltage drops (reaction time \(\leq 20 \mathrm{~ms}\))
- Response value 0.8 or \(0.7 \mathrm{U}_{\mathrm{N}}\) selectable by wire link
- Without auxiliary supply
- De-energized on trip
- LED indicator for contact position
- Adjustable operate delay after return of voltage
- As option adjustable fleeting on make pulse after return of voltage (variant BC 9190N.11/001)
- 1 changeover contact
- Wire connection: also \(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated), DIN 46 228-1/-2/-3/-4 or
\(2 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled DIN 46 228-1/-2/-3/-4
- Width 22.5 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Applications}

Monitoring of voltage systems to detect auto reclosing as e.g. generated by the energy supplier in the case of flash-overs or switching procedures. It is possible that in control circuits some of the devices are resetted during auto reclosing and some not. Because of this uncontrollable situations may occur.
By detecting these fast auto reclosings and addition of a certain time delay at reclosing the OFF-time is lengthened and every device has the time to reset. The circuit goes into a defind OFF-state and is automatically resetted after the adjusted time delay or by manual reset if the automatic reset is disabled by an external circuit (see Connection Examples).

\section*{Function}

If the \(B C 9190 N\) detects a voltage drop below 0.8 or 0.7 of \(U_{N}\) the yellow LED goes off and the relay de-energises (fault condition). The setting of the response value \(0.7 \mathrm{U}_{\mathrm{N}}\) is done by linking terminal X 1 to A1. Without link the response value is \(0.8 \mathrm{U}_{\mathrm{N}}\)
If the voltage returns to normal (2 \% Hysteresis above response value) the output relay energises after the time delay \(t\) and the yellow LED switches on (good condition).
The BC 9190N.11/001 energises the output relay immediately after the voltage returns for an adjustable pulse time. After the time delay the relay is de-energized.
\begin{tabular}{ll}
\hline Indication & \begin{tabular}{l}
on when output relay activated \\
(contacts 15-18 are closed)
\end{tabular} \\
\hline NED: & \\
\hline Notes & \\
\hline
\end{tabular}

The BC 9190N is designed for mains frequency of 50 Hz . It can also be operated on 60 Hz but the response values are reduced to approx. 0.75 and \(0.65 \mathrm{U}_{\mathrm{N}}\).

\section*{VARIMETER}

Undervoltage Relay, 3-phase
IK 9171, IL 9171, SK 9171, SL 9171
DOLD 発

\section*{Function Diagram}

IK 9171.11,

IL 9171.12,
SK 9171.11
- According to IEC/EN 60 255-1
- Monitoring of undervoltage in 3-phase system
- Also for single phase
- Without auxiliary supply
- Optionally for 3p3w systems
- LED indicator for state of output relay
- Independent of phase sequence
- 1 or 2 changeover contacts
- Optionallyfixed or settable response value
- As option with phase sequence detection
- Optionally with or without N
- Optionally with off-delay \(\ddagger\)
- Opionally with on delay t
- Devices available in 2 enclosure versions:

I-model: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
S-model: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width:

IK 9171, SK 9171: 17.5 mm
IL 9171, SL 9171: 35 mm

\section*{Approvals and Markings}

*) only IL 9171

\section*{Application}

Monitoring of voltage systems on undervoltage. Automatic switching to emergency supply or of emergency light in the case of phase loss according to DIN VDE 0100-710 or DIN VDE 0108.

Variant with \(\mathrm{t}_{2}\) is used in unstable voltage systems, where after phase failure detection the consumers should be energized one after the other. This ist done by setting the operate delay e.g. 0.1 ... 20 s of the different relays to different values.
This variant ist also used where a consumer after only short phase failure should not be started immediately (e.g. compressors).

\section*{Function}

The arithmetic mean value of each phase is measured against \(N\). The variants without N measure L1 and L3 against L2 (IK/SK 9171) and L1 and L2 against L3 (IL/SL 9171).

\section*{Indicators}

Yellow LED:
output contact active (11-14 closed)

\section*{Notes}

To measure single-phase voltage terminals L1, L2, L3 have to be linked together.
The time delay t 1 is only active if the voltage L1-N (IK/SK 9171) or L3-N (IL/SL 9171) is at least \(0,5 U_{N}\).

\section*{Technical Data}

\section*{Input Circuit}

Nominal voltage \(U_{N}\)
3-phase without neutral:

3-phase with neutral

Max overload:
Nominal consumption
IK/SK 9171.11:
IL/SL 9171.12:
Frequency range:
Setting ranges

\section*{Response value:}

Hysteresis:
Time delay \(t_{1} / t_{2}\) :
Reaction time:

\section*{Output}

Contacts
IK/SK 9171.11:
IL/SL 9171.12:
Contact material:
Switching voltage:
Thermal current \(I_{t h}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life
to AC 15 at 1 A, AC 230 V:
Short circuit strength
max. fuse rating:
Mechanical life:
General Data
Operating mode:
Temperature range:
Operation:
Storage:
Relative air humidity:
Altitude:
Clearance and creepage

\section*{distances}
rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge:
HF irradiation
80 MHz ... 1 GHz
1 GHz ... 2 GHz :
\(2 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}\) :
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:

\section*{Vibration resistance:}

Climate resistance:
Terminal designation: Wire connection:

Wire fixing:
Fixing torque:

3 AC 100 V, 110 V, 127 V, 220 V, 230 V, 3 AC 240 V, 290 V, 400 V, \(415 \mathrm{~V}, 440 \mathrm{~V}\), 3 AC \(480 \mathrm{~V}, 500 \mathrm{~V}\)

3/N AC \(100 \mathrm{~V} / 58 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(110 \mathrm{~V} / 64 \mathrm{~V}\); 3/N AC \(220 \mathrm{~V} / 127 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(230 \mathrm{~V} / 133 \mathrm{~V}\); 3/N AC 380 V /220 V; 3/N AC \(400 \mathrm{~V} / 230 \mathrm{~V}\); \(3 / \mathrm{N}\) AC \(415 \mathrm{~V} / 240 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(440 \mathrm{~V} / 254 \mathrm{~V}\); 3/N AC \(480 \mathrm{~V} / 277 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(500 \mathrm{~V} / 290 \mathrm{~V}\) \(1.15 \mathrm{U}_{\mathrm{N}}\) continuously
approx. 6 VA
approx. 8 VA
\(45 \ldots 65 \mathrm{~Hz}\)
fixed: \(\quad 0.7\) or 0.85 U adjustable: \(0.55 \ldots 1.05 \mathrm{U}_{\mathrm{N}}\) approx. \(4 \%\) of setting value 0.5 ... 20 s
approx. 100 ms

1 changeover contact
2 changeover contacts
AgNi
AC 250 V
4 A

3 A / AC 230 V IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
\(\geq 3 \times 10^{5}\) switching cycles
4 A gL
IEC/EN 60 947-5-1
\(\geq 30 \times 10^{6}\) switching cycles

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
\(-25 \ldots+60^{\circ} \mathrm{C}\)
\(93 \%\) at \(40^{\circ} \mathrm{C}\)
<2,000 m

4 kV / 2

8 kV (air)
\(20 \mathrm{~V} / \mathrm{m}\)
\(20 \mathrm{~V} / \mathrm{m}\)
\(1 \mathrm{~V} / \mathrm{m}\)
2 kV

2 kV
4 kV
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
Imit
Limit value class B
EN 55011
IP 40
IEC/EN 60529
IP 20
IEC 60 664-1
IEC/EN 61 000-4-2
IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

IEC/EN 61 000-4-6

529

Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm ,
frequency \(10 \ldots 55 \mathrm{~Hz}\),IEC/EN 60 068-2-6 20 / 060 / \(04 \quad\) IEC/EN 60 068-1 EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1 0.8 Nm

\section*{Technical Data}
\begin{tabular}{lll}
Mounting: & DIN rail & IEC/EN 60715 \\
Weight & & \\
IK 9171: & 65 g & \\
SK 9171: & 83 g & \\
IL 9171: & 110 g & \\
SL 9171: & 137 g & \\
Dimensions & & \\
\hline
\end{tabular}

Width x height x depth
IK 9171:
\(17.5 \times 90 \times 59 \mathrm{~mm}\)
SK 9171: \(\quad 17.5 \times 90 \times 98 \mathrm{~mm}\)
IL 9171: \(\quad 35 \times 90 \times 59 \mathrm{~mm}\)
SL 9171:
\(35 \times 90 \times 98 \mathrm{~mm}\)

Classification to DIN EN 50155 for IK 9171
Vibration and
shock resistance: Category 1, Class B IEC/EN 61373
Protective coating of the PCB: No

\section*{Standard Type}

IK 9171.11/200 3/N AC 400/230 V 50/60 Hz \(0.85 \mathrm{U}_{\mathrm{N}}\)
Article number:
0049292
SK 9171.11/200 3/N AC 400/230V 50/60Hz \(0.85 U_{N}\)
Article number: 0054744
- Output: 1 changeover contact
- Nominal voltage \(\mathbf{U}: \quad 3 / \mathrm{N}\) AC \(400 / 230 \mathrm{~V}\)
- Detection of undervoltage at \(<0.85 \mathrm{U}_{\mathrm{N}}\)
- Fixed response value: \(0.85 \mathrm{U}_{\mathrm{N}}\)
- No time delay
- For 3p3w connection
- Width: 17.5 mm

\section*{Variants}

IL 9171.12/801: as Standard Type /200 but
output relay with \(5 \mu \mathrm{~m}\) goldplated contacts.
This module is also suitable for switching small loads of \(1 \mathrm{mVA} . .7 \mathrm{VA}, 1 \mathrm{~mW} . .7 \mathrm{~W}\) in the range 0.1 ... \(60 \mathrm{~V}, 1 \ldots 300 \mathrm{~mA}\). The contacts also permit the maximum switching current (4A). However, since the gold plating will be burnt off at this current level, the device is no longer suitable for switching small loads after this.

Ordering example for variants

\author{
VARIMETER \\ Undervoltage Relay, Single-Phase \\ IK 9173, SK 9173
}

DOLD

\section*{Function Diagram}

IK 9173.11, SK 9173.11
- According to IEC/EN 60 255, DIN VDE 0435-303
- Monitoring of undervoltage
- Without auxiliary supply
- Optionally fixed or settable response value
- N.C. circuit operation
- Optionally with off-delay \(t_{1}\)
- Optionally with on-delay \(t_{2}\)
- LED indicator for state of output relay
- 1 changeover contact
- Devices available in 2 enclosure versions:

IK 9173: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SK 9173: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 17.5 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Applications}

Monitoring of voltage systems on undervoltage. Automatic switching to emergency supply or of emergency light in the case of phase loss according to DIN VDE 100-710, or DIN VDE 0108.

Variant with \(t_{2}\) is used in unstable voltage systems, where after phase failure detection the consumers should be energized one after the other. This is done by setting the operate delay of the different relays to different values. This variant is also used where a consumer after only short phase failure should not be started immediately (e.g. compressors).

Suitable for industrial and railway applictions.

\section*{Function}

The arithmetic mean value of the voltage L-N is measured.
\begin{tabular}{|ll}
\hline Indication & \\
yellow LED: \(\quad\) output contact active (11-14 closed)
\end{tabular}
Notes

The time delay for the models with delay \(t_{1}\) is only active as long as the phase voltage L-N is above \(0.5 \mathrm{U}_{\mathrm{N}}\).

\section*{Technical Data}

Input Circuit

Nominal voltage \(U_{N}\) :
Max. overload:
Nominal consumption:
Frequency range:

AC 24, 42, 110, 230 V DC 24, 48, 60, 110, 125 V \(1.15 U_{\mathrm{N}}\) continuously approx. 6 VA / DC 1 W \(45 \ldots 65 \mathrm{~Hz}\)

\section*{Setting Ranges}

Response value:

Hysteresis:
Time delay \(t_{1} / t_{2}\) :
Reaction time of the measuring input at phase failure:
approx. 100 ms
Output

\section*{Contacts}

IK 9173.11, SK 9173.11:
Thermal current \(t_{\text {th }}\) :
Switching capacity
to AC 15:
\begin{tabular}{lll}
NO contact: & \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
Electrical life & & IEC/EN 60 947-5-1
\end{tabular}

Electrical life
1 changeover contact
4 A
0.7 or 0.85 adjustable: \(0.55 \ldots 1.05 \mathrm{U}_{\mathrm{N}}\) (0.7 ... \(1.0 \mathrm{U}_{\mathrm{N}}\) at DC 24 V) approx. 4 \% of setting value
0.5 ... 20 s
at AC \(230 \mathrm{~V}, 1 \mathrm{~A}(\cos \varphi=0.5): \geq 3 \times 10^{5}\) switching cycles
Short circuit strength
max. fuse rating: 4 A gL IEC/EN 60 947-5-1
Mechanical life: \(\quad \geq 30 \times 10^{6}\) switching cycles
General Data

Operating mode:
Temperature range:
Clearance and creepage

\section*{distances}
rated impulse voltage/
pollution degree:
EMC
Electrostatic discharge
HF irradiation
80 MHz ... 1 GHz :
1 GHz ... 2 GHz :
\(2 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}\) :
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground: Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

4 kV / 2
IEC 60 664-1

8 kV (air)
\(20 \mathrm{~V} / \mathrm{m}\)
\(20 \mathrm{~V} / \mathrm{m}\)
\(1 \mathrm{~V} / \mathrm{m}\)
2 kV

2 kV IEC/EN 61 000-4-5
\(4 \mathrm{kV} \quad\) IEC/EN 61 000-4-5
Limit value class B
IP 40 IEC/EN 60529
IP 20
IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm ,
frequency 10 ... 55 Hz , IEC/EN 60 068-2-6 20/060/04 IEC/EN 60 068-1 EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4

Flat terminals with self-lifting clamping piece IEC/EN 60 999-1 0.8 Nm

DIN rail mounting (IEC/EN60715) or screw mounting M4, 90 mm hole pattern, with additional clip available as accessory
Weight
IK 9173: \(\quad 65 \mathrm{~g}\)
SK 9173:

83 g

Dimensions
Width x height x depth
IK 9173:
\(17.5 \times 90 \times 59 \mathrm{~mm}\)
SK 9173 :
\begin{tabular}{ll}
Wire fixing: & \begin{tabular}{l}
Flat terminals with self-lifting \\
clamping piece \(\quad\) IEC/EN 60 999-1
\end{tabular} \\
Fixing torque: & 0.8 Nm \\
Mounting: & \begin{tabular}{l}
DIN rail mounting (IEC/EN60715) or \\
\\
\end{tabular} \\
& \begin{tabular}{l}
screw mounting M4, 90 mm hole pattern, \\
with additional clip available as accessory
\end{tabular}
\end{tabular}

\section*{Classification to DIN EN 50155}

Vibration and
shock resistance: Category 1, Class B IEC/EN 61373
Protective coating of the PCB: No

\section*{Standard Types}

IK 9173.11/200, AC \(230 \mathrm{~V}, 0.7 \mathrm{U}_{\mathrm{N}}\)
Article number:
0049812
SK 9173.11/200, AC \(230,0.7 U_{N}\)
Article number:
0054746
- Detection of undervoltage at \(<0.7 \mathrm{U}_{\mathrm{N}}\)
- Fixed response value
- Without time delay
- Output: 1 changeover contact
- Nominal voltage U: AC 230 V
- Width: 17.5 mm

\section*{Variants}

IK 9173.11/000
\begin{tabular}{||ll}
L_ 0 & NC circuit operation \\
0 & without time delay \\
3 & settable time delay \(t_{1}\) \\
4 & settable time delay \(t_{2}\) \\
0 & \\
0 & settable response value \\
2 & fixed response value
\end{tabular}

Odering example for variants

VARIMETER
Undervoltage Relay
IL 9071, SL 9071
DOLD
4

IL 9071.12, SL 9071.12
- According to IEC/EN 60 255-1
- Identiication of
- undervoltage
- phase failure
- asymmetry also with reverse voltage
- missing neutral in the system
- broken neutral on IL/SL 9071
- neutral exchanged against phase
- Single phase connection possible
- According to DIN VDE 0100-710
(for rooms used for medical purposes) as an option
- Fixed setting value (variable as an option)
- De-energized on trip
- LED indicator
- With safe disconnection according to IEC/EN 61 140,

IEC/EN 60 947-1 between the Measuring Circuit and the contacts
- Independant of phase sequence
- 2 changeover contacts
- Devices available in 2 enclosure version:

IL 9071: depth 61 mm with terminals at the bottom for installations systems and industrial distribution systems according to DIN 43880
SL 9071: depth 98 mm with terminals at the top for cabinets with mounting plate and cable duct
- Width 35 mm

\section*{Additional Information about this topic}
- Datasheet undervoltage relay IK/LL 9171
- Relay workshop No. 15 and No. 16:

The meaning of asymmetry in 3 phase systems (only in German)

\section*{Approvals and Markings}

*) only IL 9071

\section*{Applications}

Monitoring of three-phase voltage systems to identify undervoltage, asymmetry or phase failure and switching-on of safety lighting in accordance with DIN VDE 0108.

Neutral monitoring in 3-phase systems. In 3-phase systems with neutral often also single phase load are connected between phase and neutral. If the neutral is missing in a system like this unsymmetric voltages occur that could damage single phase consumers if the voltage rises too high. Also consumers can stop to work if the phase-neutral voltage gets too low. The IL 9071 detects this problem and can switch of the system immediately.

\section*{Indicators}
green LED:
on, when the mains system is working properly
(contact 11-14 and 21-24 closed)

\section*{Notes}

For single phase operation the terminals L1, L2 and L3 have to be bridged

\section*{Technical Data}

Input
Nominal voltage \(\mathbf{U}_{\mathrm{N}}\) : single-phase connection:

3-phase without neutral connection:

3-phasig with
neutral connection:

Overload:

Voltage range:
Nominal consumption
Nominal frequency: Frequency range:
Input current at \(\mathrm{U}_{\mathrm{N}}\) :

AC 100 V, 115 V, 220 V, 230 V,
AC \(400 \mathrm{~V}, 415 \mathrm{~V}, 440 \mathrm{~V}, 500 \mathrm{~V}\)
3AC \(100 \mathrm{~V}, 115 \mathrm{~V}, 220 \mathrm{~V}, 230 \mathrm{~V}\),
3AC \(400 \mathrm{~V}, 415 \mathrm{~V}, 440 \mathrm{~V}, 500 \mathrm{~V}\)

3/N AC 100 V / 58 V; 3/N AC 110 V / 64 V; 3/N AC \(200 \mathrm{~V} / 115 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(220 \mathrm{~V} / 127 \mathrm{~V}\); \(3 / \mathrm{N}\) AC \(230 \mathrm{~V} / 133 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(400 \mathrm{~V} / 230 \mathrm{~V}\); \(3 / \mathrm{N}\) AC \(415 \mathrm{~V} / 240 \mathrm{~V} ; 3 / \mathrm{N}\) AC \(440 \mathrm{~V} / 254 \mathrm{~V}\); \(3 / \mathrm{N}\) AC \(500 \mathrm{~V} / 290 \mathrm{~V}\)
AC 440 V on all measuring inputs for at least 1 h
\(0.7 \ldots 1.1 U_{N}\) approx. 6 VA (L3-N)
50 / 60 Hz
\(45 \ldots 65 \mathrm{~Hz}\)
L1-N, L2-N: approx. 1.5 mA
L3-N: approx. 25 mA

\section*{Setting Ranges}

Setting value \(U_{\text {off }}\)
IL 9071/010, SL \(9071 / 010\) :
IL 9071/117, SL 9071/117:
Asymmetry identification
IL 9071/117, IL 9071/010,
SL 9071/117, SL 9071/010:
\(0.7 \mathrm{U}_{\mathrm{N}}\) or \(0.85 \mathrm{U}_{\mathrm{N}}\) (hysteresis approx. \(4 \%\))
\(0.7 \ldots 0.95 \mathrm{U}_{\mathrm{N}}\) (hysteresis approx. 4 \%)
approx. \(5 \ldots 10 \%\) phase asymmetry

Output
Contacts
IL 9071.12, SL 9071.12:
Contact material:
Switching voltage:
Thermal current \(I_{\text {th }}\) :
Switching capacity
AC 15
NO contact:
NC contact:
Electrical life
AC 15 at 1 A, AC 230 V:
Short circuit strength
max. fuse rating:
Mechanical life:
2 changeover contacts
AgNi
AC 250 V
4 A
IEC/EN 60 947-5-1
3 A / AC 230 V
2 A / AC 230 V
IEC/EN 60 947-5-1
\(5 \times 10^{5}\) switching cycles
4 AgL
IEC/EN 60 947-5-1

General Data

Operating mode:
Temperature range:
Operation:
Storage:
Relative air humidity:
Altitude:

\section*{Clearance and creepage}
distances
rated rated impulse voltage voltage
pollution degree:
between Measuring Circuit and contacts
EMC
Electrostatic discharge:
HF irradiation
80 MHz ... 1 GHz :
\(1 \mathrm{GHz} . .2 \mathrm{GHz}\) :
2 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground: Interference suppression:

4 kV / 2

6 kV / 2

8 kV (air)
\(10 \mathrm{~V} / \mathrm{m}\)
\(10 \mathrm{~V} / \mathrm{m}\)
\(10 \mathrm{~V} / \mathrm{m}\)
4 kV

2 kV
2 kV
Limit value class B

IEC 60 664-1
\(-20 \ldots+60^{\circ} \mathrm{C}\)
\(-25 \ldots+60^{\circ} \mathrm{C}\)
\(93 \%\) at \(40^{\circ} \mathrm{C}\)
<2,000 m

\section*{Technical Data}

Degree of protection
Terminals: IP 20

IEC/EN 60529
Housing: Thermoplastic with V0 behaviour according to UL subject 94 Amplitude 0.35 mm ,
frequency \(10 \ldots 55 \mathrm{~Hz}\), IEC/EN 60 068-2-6
20 / 060 / 04
IEC/EN 60 068-1
Climate resistance:
Terminal designation:
Wire connection:
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting clamping piece IEC/EN 60 999-1 0.8 Nm

DIN rail
IEC/EN 60715
Fixing torque:
Mounting
IL 9071/010: \(\quad 122 \mathrm{~g}\)
SL 9071/010:
168 g

\section*{Dimensions}

Width x height x depth
IL 9071:
\(35 \times 90 \times 61 \mathrm{~mm}\)
SL 9071:
\(35 \times 90 \times 98 \mathrm{~mm}\)

\section*{Standard Types}

IL 9071.12/010 3/N AC 400 / \(230 \mathrm{~V} 0.85 \mathrm{U}_{\mathrm{N}}\)
Article number: 0047074

SL 9071.12/010 3/N AC \(400 / 230 \mathrm{~V} 0.85 \mathrm{U}_{\mathrm{N}}\)
Article number: 0051006
- with asymmetry detection
- 2 changeover contacts
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :

AC 230 / 3 AC 400 V
- Setting value: \(\quad 0.85 \mathrm{U}_{\mathrm{N}}\)
- Width: 35 mm

\section*{Variants}

IL 9071/117, SL 9071/117:
according to DIN VDE 0100-710, rooms used for medical purposes, variable setting value

\section*{Ordering example for variants}

\section*{Function Diagramm}

\section*{Circuit Diagrams}

RK 9871.71

RK 9871.72

\section*{Your Advantages}
- Higher safety in buildings

\section*{Features}
- According to IEC/EN 60255-1
- For installations according to DIN VDE 0100-718 and DIN VDE 0108-100 (replacement of DIN VDE 0108)
- Detection of undervoltage in 3-phase systems
- Without separately auxiliary voltage
(internal supply from all 3 phases)
- LED indication for für operation voltage and contact position
- De-energised on trip
- RK 9871.71: 1 changeover contact

RK 9871.72: 2 changeover contacts
- Withfixed time delay of 0.5 s for fault indication
- Withfixed time delay of 1 min for reset
- Withfixed response value at AC 195.5V
- As option with test-button for function control
- Width \(17,5 \mathrm{~mm}\)

\section*{Approvals and Markings}

\section*{C}

\section*{Application}

Monitoring of undervoltage in 3 phase voltage systems and switch over to emergency supply
For installations according to
- DIN VDE 0108-100 (emergency lightings)
- VDE 0100-718 (locations for a larger number of people)

\section*{Function}

When connecting the measuring voltage to the measuring inputs L1-L2-L3 at healthy voltage the output relay switches on after the voltage is healthy for at least 1 min .
During this time delay of 1 min the yellow led flashes. After detection of an undervoltage on one or several phases for at least 0.5 sec the output relay de-energises.
The undervoltage relay measures the arithmetic mean value of each of the three phases against neutral.

To measure single-phase voltage terminals L1, L2, L3 have to be linked together.

If a feed back voltage is generated by the load, that is higher then the setting value \(U_{S}\), the unit will not detect phase failure.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Indication} \\
\hline \begin{tabular}{l}
LED green: \\
LED yellow: \\
LED yellow:
\end{tabular} & on, when supply connected on, when the output relay is energized flashes during 1 min reset delay time \\
\hline \multicolumn{2}{|l|}{Safety Notes} \\
\hline \begin{tabular}{l}
- Never cle \\
- The user are mou regulation \\
- Adjustme the applic
\end{tabular} & \begin{tabular}{l}
device is switched on. \\
he device and the necessary components ed according to the locally applicable ndards. \\
ried out by instructed specialist staff, while ust be observed.
\end{tabular} \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{Input}

Measuring voltage \(=\) supply voltage

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
Max. overload:
Nominal consumption:
Nominal frequency:
Measuring frequency range:
Response value:
Hysteresis:
Overvoltage category:
Accuracy:
Repeat accuracy:
Temperature influence:
Output
Contacts
RK 9871.71
RK 9871.72:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15:
NO contact:
NC contact:
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:

3/N AC 400/230V
\(1.15 \mathrm{U}_{\mathrm{N}}\) continuous
ca. 6 VA
\(50 / 60 \mathrm{~Hz}\)
45 ... 65 Hz
195.5V fixed
approx. 5\%
III (according to IEC 60664-1)
\(\pm 5 \%\)
\(<2 \%\)
< \(1 \%\)

\section*{General Data}

Nominal operating mode: continuous operation
Temperature range:
operation:
\(-25 \ldots+55^{\circ} \mathrm{C}\)
storage: \(\quad-25 \ldots+70^{\circ} \mathrm{C}\)
Clearance and creepage distance
rated impulse voltage /
pollution degree: \(\quad 4 \mathrm{kV} / 2\)
EMC
Electrostatic discharge (ESD):
8 kV (air)
IEC 60 664-1

2 kV
Surge voltage
between
wires for power supply:
1 kV
between wire and ground:
HF-wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Mounting:
Weight:
,
10 V
Limit value class B
IP \(40 \quad\) IEC/EN 60529
IP 20 IEC/EN 60529
thermoplastic with V0 behaviour acc. to
UL subject 94
Amplitude 0.35 mm ,
Frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
25/060/04
IEC/EN 60 068-1
EN 50005
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2,5 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46 228-1/-2/-3/-4
Plus-minus terminal screws M3,5
box terminals with wire protection
DIN-rail
IEC/EN 60715
approx. 70 g IEC/EN 61 000-4-5 IEC/EN 61 000-4-6 EN 55011

IEC/EN 61 000-4-2
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5

Dimensions
Width x height x depth: \(\quad 17.5 \times 90 \times 66 \mathrm{~mm}\)

\section*{Standard Type}

RK 9871.72 3/N AC 400/230V \(50 / 60 \mathrm{~Hz}\)
Article number: 0062759
- Output: 2 changeover contact
- Nominal voltage UN: \(\quad 3 / \mathrm{N} \mathrm{AC} 400 / 230 \mathrm{~V}\)
- Width: 17.5 mm

\section*{Variant}

RK 9871.72/100: with test-button for simulation of undervoltage

\section*{Connection Examples}

3-phase

1-phase

VARIMETER

\section*{Function Diagram}

\section*{Circuit Diagram}

\section*{BA 9054/331}

\footnotetext{
BA 9054/332
}

\section*{BA 9054/331}
- According to IEC/EN 60255
- To monitor for battery systems (emergency power supply)
- Measuring rang DC 0.12 ... 1.2 V or 0.2 ... 2 V
- Without separately auxiliary voltage
- High overload possible
- With time delay 10 s
- LED indicators for operation and contact position
- Width: 45 mm

\section*{BA 9054/332}
as BA 9054/331 but with
- battery voltages up to 500 V
- separately auxiliary voltage

\section*{Approvals and Markings}

\section*{c \(\epsilon\)}

\section*{Applications}

Monitoring of battery systems to find voltage inversions of single cells, internal short circuits and sulphating

\section*{Function}

The middle connection of a Battery system is connected to terminal " \(M\) " of the BA 9054/331. If the two parts of the voltage differ more then the adjusted value for 10 s , the output relay trips. It trips also on broken wire on terminal "M".
The test button allows a test of the unit. It has to be pressed for at least 10 sec .

\section*{Indicators}
green upper LED:
on, when auxiliary supply connected
yellow lower LED:
on, when output relay acitvated

\section*{Remark}

Attention:
New batteries are not symmetric in the beginning. The battery monitor has to be readjusted after some time of operation. (see setting). The adjustment has to be verifi

\section*{Technical Data}

\section*{Input}

Sensitivity of tripping: (Measuring range):

Resetting value:
Repeat accuracy:
Time delay \(\mathrm{t}_{\mathrm{t}}\) :
Current middle connection
(terminal M):
Principe de mesure:
Temperature influence:

\section*{Auxiliary Circuit}

\section*{BA 9054/331:}

Battery voltage = auxiliary

\section*{voltage: \\ Voltage range:}

BA 9054/332:
Battery voltage (\(\mathrm{U}_{\mathrm{B}}\)): \(\quad\) DC \(200 \ldots 500 \mathrm{~V}\)
Auxiliary voltage (A1/A2):
Voltage range:
Nominal consumption:
Nominal frequency:
Frequency range:

\section*{Output}

DC \(0.12 \ldots 1.2 \mathrm{~V}\) absolute scale or
DC 0.2 ... 2 V absolute scale \(98 \%\) of operate value, fixed \(\leq \pm 0.5\) \% 10 s
max \(12 \mu \mathrm{~A}\) (bei 60 V bzw. 220 V) arithmetic mean value < \(0.05 \% / K\)

DC 24 ... 60 V / DC 110 ... 220 V
DC 19 ... 80 V / DC \(60 \ldots 300 \mathrm{~V}\)

230 V
\(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{H}}\) approx. 2.5 VA
\(50 / 60 \mathrm{~Hz}\)
\(\pm 5 \%\)

\section*{Contacts:}

\section*{Switching capacity}
to AC 15:
NO contact:
NC contact:
to DC :

\section*{Electrical life}
to AC 15 at \(3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short-circuit strength
max. fuse rating:
Mechanical life:

\section*{General Data}

\section*{Operating mode:}

Temperature range:
Clearance and creepage

\section*{distances}
rated impulse voltage/
pollution degree
In-/output:
EMC
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground: Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:

\section*{Vibration resistance:}

Climate resistance:
Terminal designation: Wire connection:

2 changeover contacts with \(5 \mu \mathrm{~m}\) gold contacts max. DC 60 V / 300 mA

3 A / AC \(230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1 \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1
8 A / DC 24 V or 0.3 A / DC 220 V

\section*{IEC/EN 60 947-5-1}
\(5 \times 10^{5}\) switching cycles
6 AgL IEC/EN 60 947-5-1
\(50 \times 10^{6}\) switching cycles

Continuous operation
\(-40 \ldots+60^{\circ} \mathrm{C}\)
\(4 \mathrm{kV} / 2\)
IEC 60 664-1
8 kV (air)
\(10 \mathrm{~V} / \mathrm{m}\)
IEC/EN 61 000-4-2 IEC/EN 61 000-4-3 4 kV

IEC/EN 61 000-4-5 4 kV

IEC/EN 61 000-4-5 Limit value class B EN 55011
IP \(40 \quad\) IEC/EN 60529

IP \(20 \quad\) IEC/EN 60529
Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency 10 ... 55 Hz 20 / 060 / 04

IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4
Wire fixing:
Mounting:
Weight:
flat terminals with self-lifting clamping piece IEC/EN 60 999-1 DIN rail IEC/EN 60715
200 g

Dimensions

\section*{Standard Types}

BA 9054/331 DC 0.12 ... 1.2 V DC \(24 \ldots 60 \mathrm{~V} 10 \mathrm{~s}\)
Article number: 0056172
- Measuring range: DC \(0.12 \ldots 1.2 \mathrm{~V}\)
- Auxiliary voltage: DC \(24 \ldots 60 \mathrm{~V}\)
- Time delay: 10 s
- Width: 45 mm

BA 9054/331 DC 0.12 ... 1.2 V DC 110 ... 220 V 10 s
Article number: 0056204
- Measuring range: DC \(0.12 \ldots 1.2 \mathrm{~V}\)
- Auxiliary voltage: DC \(110 \ldots 220\) V
- Time delay: 10 s
- Width: 45 mm

BA 9054/332 DC 0.12 ... 1.2 V DC 200 ... 500 V 10 s
Article number: 0062251
- Measuring range: DC \(0.12 \ldots 1.2 \mathrm{~V}\)
- Auxiliary voltage: AC 230 V
- Battery voltage

DC 200 ... 500 V
- Time delay: 10 s
- Width:

45 mm

Ordering example
BA \(9054 / 33\) DC 0.12 ...1.2V DC \(24 \ldots 60 \mathrm{~V}\) AC 230 V 10 s

\section*{Setting}
- Connect the device as shown in application example
- Connect nominal voltage (battery voltage) to A1/A2 (/331 e.g.U \(\mathrm{U}_{\mathrm{B}} / 332\)).
- Set potentiometer for response value to min setting (0.12 V)
- Connect auxiliary \(U_{H}(/ 332)\) to \(A 1, A 2\)
- Find the middle of the battery voltage with the potentiometers for symmetry "grob" and "fein" (tuning and fine tuning). Differences of block batteries can be adjusted up to 12 V . The correct setting is indicated by a green LED.
- Adjust potentiometer for response value to the required value. The device is now ready to use.

Application Example

\section*{BA 9054/331}

BA 9054/332

\section*{Set-up Procedure}

\section*{Example 1}

Symmetric battery
P1= \(1 / 2\) battery voltage
Adjust P2 with tuning and fine tuning potentiometer to 0 V

\section*{Example 2}

\section*{60 V battery set, combination of 12 V Block batteries}

P1 \(=36 \mathrm{~V}\)
Adjust P2 with tuning and fine tuning potentiometer to 0V

\section*{Example 3}

Non symmetric battery (compensation of battery tolerances)
P1 \(=1 / 2\) battery voltage +200 mV
Adjust P2 with tuning and fine tuning potentiometer to 200 mV

\author{
VARIMETER \\ Undervoltage Relay To Detect Auto-Reclosing \\ IL 9079, SL 9079
}

\section*{Function Diagram}

IL 9079.12, SL 9079.12
- According to IEC/EN 60 255-1
- Fast detection of undervoltage or phase failure in three-phase voltage systems
- Detects auto reclosing of 20 ms
- Adjustable response value 0.55 ... \(1.05 \mathrm{U}_{\mathrm{N}}\)
- Operate delay to generate a deined reset signal
- Manual reset possible with external circuit
- Single-phase connection possible
- Optionallyfixed response value \(0.8 \mathrm{U}_{\mathrm{N}}\)
- De-energized on trip
- Green LED indicate for closed contact
- Independant of phase sequence
- 3p4w connection
- Optionally for 3p3w systems
- 2 changeover contacts
- Devices available in 2 enclosure versions:

IL 9079: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SL 9079: depth 98 mm , with terminals at the top for cabinets for mounting plate and cable duct
- Width 35 mm

\section*{Approvals and Markings}
c \(\epsilon\)

A025518
*) nur IL 9079

\section*{Applications}

Monitoring of voltage systems to detect auto reclosing as e.g. generated by the energy supplier in the case of flash-overs or switching procedures. It is possible that in control circuits some of the devices are resetted during auto reclosing and some not. Because of this uncontrollable situations may occur.
By detecting these fast auto reclosings and addition of a certain time delay at reclosing the OFF-time is lengthened and every device has the time to reset. The circuit goes into a defined OFF state and is automatically resetted after the adjusted time delay or by manual reset if the automatic reset is disabled by an external circuit (see connection examples).

\section*{Function}

The voltage of each phase is measured against \(N\) (with devices without N L1 and L2 are measured against L3). If at least 1 phase voltage goes under the response value (e.g. \(0.8 \mathrm{U}_{\mathrm{N}}\)) the green LED goes off and the output relay deenergizes (fault condition). Only when all 3 phases go over the reset value (e.g. \(0.85 \mathrm{U}_{\mathrm{N}}\)) again the output relay energizes after the adjustable operate delay \(\mathrm{t}_{\mathrm{v}}\) and the green LED comes on.

\section*{Indicators}
green LED:
on, when the mains system is working properly
(contact 11-14 and 21-24 closed)

\section*{Notes}

For single phase operation the terminals L1, L2 and L3 have to be bridged.

\section*{Connection Examples}

IL/SL 9079 and IL/SL 9079/002

IL/SL 9079 and IL/SL 9079/002

\section*{Connection Examples}

IL/SL 9079/001 and /003; SL 9079/103

IL/SL 9079/001 and /003; SL 9079/103

\section*{Product Description}

The measuring relay RL 9853 of the VARIMETER series monitors overcurrent and undercurrent in AC or DC current systems. The monitoring functions are easily selectable using a single turn switch without complex menu structure. The early detection of up-coming break downs and preventive maintenance avoid expensive damages. As user you profit from the reliability and availability of your plant.

\section*{Circuit Diagram}

Terminals i1/k: \(2 \mathrm{~mA} . .11 \mathrm{~mA} ; \quad 0,1 \mathrm{~A} \ldots 1,1 \mathrm{~A}\)
Terminals i2/k: \(10 \mathrm{~mA} \ldots 110 \mathrm{~mA}\); \(1 \mathrm{~A} \ldots 10 \mathrm{~A}\)

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage \\
\hline \(\mathrm{i} 1, \mathrm{i} 2, \mathrm{k}\) & Current measuting input \\
\hline \(11,12,14\) & Changeover contact (outputrelays) \\
\hline
\end{tabular}

\section*{Your Advantages}
- Preventive maintenance
- For better productivity
- High repeat accuracy
- Wide measuring voltage range
- Easy setting

\section*{Features}
- According to IEC/EN 60 255-1
- For monitoring of current in DC and AC systems
- Detection of over- or undercurrent in AC- or DC mains
- Wide auxiliary range
- Output: 1 changeover contact
- De-Energized on trip
- Adjustable switching current
- Adjustable hysteresis for reset
- Adjustable switching delay
- Fast fault detection
- Width: 35 mm

\section*{Approvals and Markings}

\section*{Application}
- Monitoring of current in DC and AC systems to identify overcurrent and undercurrent
- Switch over to emergency supply after fault detection
\begin{tabular}{ll}
\hline Indicator & \\
green LED "ON": & on, when supply connected \\
red LED „>1/": & on, when overcurrent \\
red LED „<< \(l_{N}:\) & on, when undercurrent
\end{tabular}

\section*{Function}

When monitoring overcurrent or undercurrent the exceeding of the setting values above or below the thresholds is indicated by flashing of the current indicating LED. After the time delay the current indicating is continuously on and the relay de-energises. If the current returns to normal value, the LED goes immediately off and the output relay energises.

\section*{Notes}

The current to be measured can also be sourced from the auxiliary supply. In this case the galvanic separation between auxiliary supply and measuring circuit is without effect. Depending on the required net form the following monitoring functions can be set using the function switch:
\begin{tabular}{|c|c|c|}
\hline Function select & Type of current & Monitoring function \\
\hline\(A C>I_{N}\) & \(A C\) & Overcurrent \\
\hline\(A C<I_{N}\) & \(A C\) & Undercurrent \\
\hline\(D C>I_{N}\) & \(D C\) & Overcurrent \\
\hline\(D C<I_{N}\) & \(D C\) & Undercurrent \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ AC/DC measuring ranges (variant 100 mA) } \\
\hline \multirow{2}{*}{ Terminals } & \multicolumn{2}{|c|}{ Measuring range } & \begin{tabular}{c}
Internal \\
resistance
\end{tabular} & \begin{tabular}{c}
Max. \\
therm.contin. \\
current
\end{tabular} \\
\hline \multirow{2}{*}{\(\mathrm{i} 1 / \mathrm{k}\)} & DC & \(2 \mathrm{~mA} \ldots 11 \mathrm{~mA}\) & \multirow{2}{*}{\(10 \Omega\)} & 50 mA \\
\cline { 2 - 3 } & AC & \(2 \mathrm{~mA} \ldots 11 \mathrm{~mA}\) & & \\
\hline \multirow{2}{*}{\(\mathrm{i} 2 / \mathrm{k}\)} & DC & \(10 \mathrm{~mA} \ldots 110 \mathrm{~mA}\) & \multirow{2}{*}{\(1,0 \Omega\)} & 200 mA \\
\cline { 2 - 3 } & AC & \(10 \mathrm{~mA} \ldots 110 \mathrm{~mA}\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ AC/DC measuring ranges (variant 10 A) } \\
\hline \multirow{2}{*}{ Terminals } & \multicolumn{2}{|c|}{ Measuring range } & \begin{tabular}{c}
Internal \\
resistance
\end{tabular} & \begin{tabular}{c}
Max. \\
therm.contin. \\
current
\end{tabular} \\
\hline \multirow{2}{*}{\(\mathrm{i} 1 / \mathrm{k}\)} & DC & \(0.1 \mathrm{~A} \ldots 1.1 \mathrm{~A}\) & \multirow{2}{*}{\(40 \mathrm{~m} \Omega\)} & 2 A \\
\cline { 2 - 3 } & AC & \(0.1 \mathrm{~A} \ldots 1.1 \mathrm{~A}\) & & \multirow{2}{*}{\(4 \mathrm{~m} \Omega\)} \\
\hline \multirow{2}{*}{\(\mathrm{i} 2 / \mathrm{k}\)} & DC & \(1 \mathrm{~A} \ldots 10 \mathrm{~A}\) & A \\
\cline { 2 - 3 } & AC & \(1 \mathrm{~A} \ldots 10 \mathrm{~A}\) & & \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{Auxiliary circuit}
\begin{tabular}{ll}
Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}:\) & DC 24 \\
& AC \(110 \ldots 230 \mathrm{~V}\) \\
& 1 -phase with neutral \\
Voltage range: & \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{H}}\) \\
Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
Nominal consumption: & approx. 5 VA \\
Input & \\
\hline Operating current \(\mathrm{I}_{\mathrm{B}}:\) & AC/DC \(2 \mathrm{~mA} \ldots 100 \mathrm{~mA}, 100 \mathrm{~mA} \ldots 10 \mathrm{~A}\)
\end{tabular}

\section*{Output}
\begin{tabular}{|c|c|}
\hline Contact: & 1 changeover contact \\
\hline Contact material: & AgNi \\
\hline Switching voltage: & AC 250 V \\
\hline Thermal current \(\mathrm{I}_{\mathrm{th}}\) : & 5 A \\
\hline \multicolumn{2}{|l|}{Switching capacity to AC 15} \\
\hline NO contact: & 3 A / AC 230 V IEC/EN 60 947-5-1 \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline \multicolumn{2}{|l|}{Electrical life} \\
\hline to AC 15 at 1 A, AC 230 V : & typ. \(3 \times 10^{5}\) switching cyles \\
\hline Short circuit strength & IEC/EN 60 947-5-1 \\
\hline max. fuse rating: & 5 AgL \\
\hline Mechanical life: & \(>30 \times 10^{6}\) switching cyles \\
\hline \multicolumn{2}{|l|}{Measuring circuit} \\
\hline \multirow[t]{2}{*}{Measuring current:} & infinite adjustable \\
\hline & 10 \% .. 110 \% \(\mathrm{I}_{\text {B }}\) \\
\hline Hysteresis: & infinite adjustable \(4 \ldots 20\) \% \\
\hline \multirow[t]{2}{*}{Switching delay \(\mathrm{t}_{\mathrm{v}}\) :} & infinite adjustable \\
\hline & instantaneuos, \(2 \ldots 30 \mathrm{~s}\) \\
\hline Repeat accuracy: & \(\pm 2\) \% \\
\hline \multirow[t]{4}{*}{Temperature influence:} & \(\pm 1 \%\) \\
\hline & Attention: \\
\hline & The combination of adjusted \\
\hline & switching current I and hysteresis \(\triangle I\) must be within the measuring range. \\
\hline
\end{tabular}

General Data

Operating mode:
Temperature range
Operation:
Storage:
Relative air humidity:
Altitude:
Clearance and creepage

\section*{distances}

Rated impuls voltage/
Pollution degree:
EMC
Electrostatic discharge (ESD): HF irradiation
\(80 \mathrm{MHz} . .1 \mathrm{GHz}\) :
\(1 \mathrm{GHz} \ldots 2,7 \mathrm{GHz}\) :
Fast transients:
Surge between wires for power supply: between wire and ground:
HF wire guided:
Interference suppression:
Degree of protection:
Housing:
Terminals:
Enclosure:
Vibration resistance:
Climate resistance:
Terminal designation:
continuous operation
\(-20 \ldots+55^{\circ} \mathrm{C}\)
\(-25 \ldots+60^{\circ} \mathrm{C}\)
\(93 \%\) at \(40^{\circ} \mathrm{C}\) <2,000 m

4 kV / 2
IEC 60 664-1

IEC/EN 61 000-4-2

IEC/EN 61 000-4-3
\begin{tabular}{ll}
\(12 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3
\end{tabular} \(2 \mathrm{kV} \quad\) IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6 EN 55011

IEC/EN 60529
IEC/EN 60529
IP 20
Thermoplastic with V0 behaviour
acc. to UL subject 94
Amplitude 0.35 mm
Class I
IEC/EN 60 255-21 20 / 055 / 04 IEC/EN 60 068-1 EN 50005

\section*{Technical Data}

Wire connection:
Cross section:

Stripping length:
Fixing torque:
Wire fixing:
Mounting:
Weight:
Dimensions
Width x height x depth:
\(35 \times 90 \times 71 \mathrm{~mm}\)

\section*{UL-Data}

ANSI/UL 60947-1, \(5^{\text {th }}\) Edition
ANSI/UL 60947-5-1, \(3^{\text {rd }}\) Edition
CAN/CSA-C22.2 No. 60947-1-13, 2 \({ }^{\text {nd }}\) Edition
CAN/CSA-C22.2 No. 60947-5-1-14, \(1^{\text {st }}\) Edition

\section*{Switching capacity: Pilot duty B300}

5A 240Vac Resistive, G.P.
5A 30Vdc Resistive or G.P.
5A 250Vac G.P.
Wire connection:
\(60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}\) copper conductors only AWG 24-12 Sol/Str Torque 0.6 Nm

Technical data that is not stated in the UL-Data, can be found in the technical data section

\section*{Standard Type}

RL 9853.11 AC/DC 0,1... 10 A AC \(110 \ldots 230\) V \(4 \ldots 20 \% 0 \ldots 30 \mathrm{~s}\)
Article number: 0066431
- Output: 1 Wechsler
- Operating current: AC/DC 0,1 ... 10 A
- Auxiliary voltage U्H: AC \(110 \ldots 230 \mathrm{~V}\)
- Hysteresis: \(4 \ldots 20\) \%
- Switching delay: \(0 \ldots 30\) s
- Width:

35 mm

\section*{Ordering Example}

Connection Example

VARIMETER
Current Relay
BA 9053, MK 9053N
DOLD 発

BA 9053

MK 9053N
Connection Terminals
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage \\
\hline i, k & Current measuring input \\
\hline \(11,12,14\) & 1st changeover contact \\
\hline \(21,22,24\) & 2nd changeover contact \\
\hline \begin{tabular}{l}
at MK 9053/1_ : \\
Z1, Z2, Z3
\end{tabular} & \begin{tabular}{l}
Remote potentiometer for \\
response value
\end{tabular} \\
\hline
\end{tabular}

\section*{Safety Notes}

Please observe when connecting a remote potentiometer to MK 9053N/1__: Measuring circuit and remote potentiometer not galvanically separated. The voltage on on measuring circuit \(i, k / P E\) has connection to the remote potentiometer. The remote potentiometer has to be connected volt- and ground-free.

\section*{Your Advantages}
- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

\section*{Features}
- According to IEC/EN 60 255-1, IEC/EN 60 947-1
- to: monitor DC and AC
- BA 9053 with measuring ranges from 2 mA to 25 A
- BA 9053 optionally with 3 measuring ranges 0.1 up to 25 A
- MK 9053N with measuring ranges from 2 mA up to 10 A
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between auxiliary circuit - measuring ciruit
- Auxiliary supply AC/DC; BA 9053 with AC
- BA 9053 optionally with start-up delay (MK = standard)
- with time delay, up to max. 100 sec
- BA 9053 optionally with safe separation to IEC/EN 61140
- MK 9053N optionally with remote potentiometer
- As option with manual reset
- Option withfixed settings possible
- LED indicators for operation and contact position
- MK 9053N as option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- Width BA 9053: 45 mm

Width MK 9053N: 22.5 mm

\section*{Approvals and Markings}

\section*{Applications}
- Monitoring current in AC or DC systems
- For industrial and railway applications

\section*{Function}

The relays measure the arithmetic mean value of the rectified measuring current. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overcurrent relays but can also be used for undercurrent detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay \(\mathrm{t}_{\mathrm{a}}\) operates only when connecting the auxiliary supply. It disables tripping e.g. caused by an increased starting current of a motor. The response delay \(t_{v}\) is active after exceeding a response value. On overcurrent relays the delay is active when the current goes over the tripping value, on undercurrent relays when the current drops below the hysteresis value.

\section*{Indicators}
green LED:
on, when auxiliary supply connected
yellow LED:

Function Diagram with Start-up Delay

On model BA 9053/6_ _ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Technical Data} \\
\hline \multicolumn{5}{|l|}{Input (i, k)} \\
\hline \multicolumn{5}{|l|}{BA 9053 for AC and DC} \\
\hline \multicolumn{2}{|l|}{Measuring range*)} & \multirow[t]{2}{*}{internal resistance} & max. perm. cont. current & \multirow[t]{2}{*}{max. permiss. current 3 s On, 100 s Off} \\
\hline AC & DC & & Device mounted without distance & \\
\hline \(2-20 \mathrm{~mA}\) & 1.8-18 mA & \(1.5 \Omega\) & 0.7 A & 1 A \\
\hline 20-200 mA & 18-180 mA & \(0.15 \Omega\) & 2 A & 4 A \\
\hline \(30-300 \mathrm{~mA}\) & 27-270 mA & \(0.1 \quad \Omega\) & 2.5 A & 8 A \\
\hline 50-500 mA & 45-450 mA & 0.1 析 & 2.5 A & 8 A \\
\hline 80-800 mA & 72-720 mA & \(40 \mathrm{~m} \Omega\) & 4 A & 12 A \\
\hline 0.1- 1 A & 0.09- 0.9 A & \(30 \mathrm{~m} \Omega\) & 4 A & 12 A \\
\hline 0.5- 5 A & 0.45-4.5 A & \(6 \mathrm{~m} \Omega\) & 10 A & 30 A \\
\hline 1-10 A & 0.9-9 A & \(3 \mathrm{~m} \Omega\) & 20 A & 40 A \\
\hline 1.5- 15 A & 1.35-13.5 A & \(3 \mathrm{~m} \Omega\) & 25 A & 40 A \\
\hline 2-20 A & 1.8 - 18 A & \(3 \mathrm{~m} \Omega\) & 25 A & 40 A \\
\hline 2.5-25 A & 2.25-22.5 A & \(3 \mathrm{~m} \Omega\) & 25 A & 40 A \\
\hline
\end{tabular}
* DC or AC current \(50 \ldots 5000 \mathrm{~Hz}\)
(other frequency ranges of \(10 \ldots 5000 \mathrm{~Hz}\), e.g. \(16 \frac{2}{3} \mathrm{~Hz}\) on request)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{BA 9053/4__ with 3 measuring ranges:} \\
\hline Range: & Terminals i1/k & Terminals i2/k & Terminals i3/k \\
\hline \multirow[t]{2}{*}{AC \(20 \mathrm{~mA} /\) 200 mA / 1A:} & AC 2.0 ... 20 mA & AC \(20 . . .200 \mathrm{~mA}\) & AC 0.1... 1 A \\
\hline & DC 1.8 ... 18 mA & DC \(18 \ldots 180 \mathrm{~mA}\) & DC \(0.09 \ldots 0.9 \mathrm{~A}\) \\
\hline \multirow[b]{2}{*}{AC 1/5 / 10A:} & AC 0.1... 1 A & AC \(0.5 \ldots 5 \mathrm{~A}\) & AC 1.0 ... 10 A \\
\hline & DC \(0.09 \ldots 0.9 \mathrm{~A}\) & DC 0.45 .. 4.5 A & DC 0.9 .. 9 A \\
\hline \multirow[b]{2}{*}{AC 5 / 10 / 25} & AC \(0.5 \ldots 5 \mathrm{~A}\) & AC 1.0 ... 10 A & AC \(2.5 \ldots 25 \mathrm{~A}\) \\
\hline & DC 0.45 ... 4.5 A & DC 0.9 ... 9 A & DC 2.25 ... 22.5 A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline MK 9053N & wh 1 Measurin & range for & AC an & nd DC & \\
\hline Measu & uring rang*) & internal & max. per & rm. cont & max. permiss. \\
\hline AC & DC & resistance & & & \[
\begin{aligned}
& \text { current 3s On, } \\
& 100 \text { s Off }
\end{aligned}
\] \\
\hline 2-20mA & 1.8-18 mA & \(1.5 \Omega\) & Device mount. without distance 0.5 A & & 1 A \\
\hline 20-200 mA & 18-180 mA & \(0.15 \Omega\) & 1.5 A & 2 A & 4 A \\
\hline 30-300 mA & 27-270 mA & \(0.1 \quad \Omega\) & 2 A & 2.5 A & 8 A \\
\hline 50-500 mA & 45-450 mA & 0.1 ת & 2 A & 2.5 A & 8 A \\
\hline 0.1- 1 A & 0.09-0.9 A & \(30 \mathrm{~m} \Omega\) & 3 A & 4 A & 8 A \\
\hline 0.5- 5 A & 0.45-4.5 A & \(6 \mathrm{~m} \Omega\) & 8 A & 11 A & 20 A \\
\hline 1-10 A & 0.9-9 A & \(3 \mathrm{~m} \Omega\) & 12 A & 15 A & 20 A \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
* DC or AC current \(50 \ldots 5000 \mathrm{~Hz}\) \\
(Other frequency ranges of \(10 \ldots 5000 \mathrm{~Hz}\), e.g. \(16 \frac{2}{3} \mathrm{~Hz}\) on request)
\end{tabular}} \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{Setting Ranges}

\section*{Setting}

Response value: infinite variable \(0.1 \mathrm{I}_{\mathrm{N}} \ldots 1 \mathrm{I}_{\mathrm{N}}\)
Hysteresis
at AC:
at \(D C\) :

\section*{Accuracy:}

Response value at
Potentiometer right stop (max): \(0 \ldots .+8 \%\)
Potentiometer left stop (min): \(\quad-10 \ldots .+8 \%\)
Repeat accuracy: \(\leq \pm 0.5 \%\)

\section*{Recovery time}
at devices with manual reset
(Reset by braking
of the auxiliary voltage)
BA 9053/6__; MK 9053N/6__: \(\leq 1 \mathrm{~s}\)
(dependent to function and auxiliary voltage)
relative scale
infinite variable \(0.5 \ldots 0.98\) of setting value infinite variable \(0.5 \ldots 0.96\) of setting value
infinite variable at logarythmic scale from \(0 \ldots 20 \mathrm{~s}, 0 \ldots 30 \mathrm{~s}, 0 \ldots 60 \mathrm{~s}, 0 \ldots 100 \mathrm{~s}\) setting \(0 \mathrm{~s}=\) without time delay
Start-up delay \(\mathrm{t}_{\mathrm{a}}\) :
BA 9053/1 _-

MK 9053N:
Time delay \(\mathrm{t}_{\mathrm{v}}\) :

\section*{Auxiliary Circuit BA 9053 and MK 9053N}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}(\mathrm{A} 1, \mathrm{~A} 2)\)
BA 9053, Nominal voltages: AC 24, 42, 110, 127, 230, 400 V
Voltage range: \(\quad 0.8 \ldots 1.1 \mathrm{U}_{\mathrm{H}}\)

\section*{Nominal frequency:}

Frequency range:
Nominal consumption:
2.5 VA
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{ BA 9053: } \\
\hline Nominal voltage & Voltage range & Frequency range \\
\hline \multirow{2}{*}{\(\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}\)} & AC \(18 \ldots 100 \mathrm{~V}\) & \(45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}\) \\
\cline { 2 - 3 } & DC \(18 \ldots 130 \mathrm{~V}\) & \(\mathrm{~W} \leq 5 \%\) \\
\hline \multirow{2}{*}{\(\mathrm{~A} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}\)} & AC \(40 \ldots 265 \mathrm{~V}\) & \(45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}\) \\
\cline { 2 - 3 } & \(\mathrm{DC} 40 \ldots 300 \mathrm{~V}\) & \(\mathrm{~W} \leq 5 \%\) \\
\hline DC 12 V & DC \(10 \ldots 18 \mathrm{~V}\) & battery voltage \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline MK 9053N: \\
\hline Nominal voltage & Voltage range & Frequency range \\
\hline \multirow{2}{*}{\(\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}\)} & AC \(18 \ldots 100 \mathrm{~V}\) & \(45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}\) \\
\cline { 2 - 3 } & \(\mathrm{DC} 18 \ldots 130 \mathrm{~V}\) & \(\mathrm{~W} \leq 5 \%\) \\
\hline \multirow{2}{*}{A AC/DC \(80 \ldots 230 \mathrm{~V}\)} & \(\mathrm{AC} 60 \ldots 265 \mathrm{~V}\) & \(45 \ldots 40 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}\) \\
\cline { 2 - 3 } & \(\mathrm{DC} 60 \ldots 300 \mathrm{~V}\) & \(\mathrm{~W} \leq 5 \%\) \\
\hline
\end{tabular}

Nominal consumption:
\(4 \mathrm{VA} ; 1.5 \mathrm{~W}\) at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Technical Data} \\
\hline \multicolumn{3}{|l|}{Output} \\
\hline \multicolumn{3}{|l|}{Contacts} \\
\hline BA 9053: & \multicolumn{2}{|l|}{2 changeover contacts} \\
\hline MK 9053N: & \multicolumn{2}{|l|}{2 changeover contacts} \\
\hline \multicolumn{3}{|l|}{Thermal current \(\mathrm{I}_{\text {th }}\) :} \\
\hline BA 9053: & \multicolumn{2}{|l|}{\(2 \times 5 \mathrm{~A}\)} \\
\hline MK 9053N: & \multicolumn{2}{|l|}{\(2 \times 4 \mathrm{~A}\)} \\
\hline \multicolumn{3}{|l|}{Switching capacity} \\
\hline \multicolumn{3}{|l|}{BA 9053} \\
\hline \multicolumn{3}{|l|}{to AC 15:} \\
\hline NO contact: & \(2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline \multicolumn{3}{|l|}{MK 9053N} \\
\hline to AC 15: & 1.5 A / AC 230 V & IEC/EN 60 947-5-1 \\
\hline \multicolumn{3}{|l|}{BA 9053, MK 9053N} \\
\hline to DC 13: & \(1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline \multicolumn{3}{|l|}{Electrical life} \\
\hline \multicolumn{3}{|l|}{BA 9053} \\
\hline to AC 15 at \(3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) : & \(5 \times 10^{5}\) switch. cycl. & IEC/EN 60 947-5-1 \\
\hline \multicolumn{3}{|l|}{MK 9053N} \\
\hline to AC 15 at \(3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) : & \(10^{5}\) switching cycles & IEC/EN 60 947-5-1 \\
\hline \multicolumn{3}{|l|}{Short-circuit strength} \\
\hline max. fuse rating: & 6 AgG (gL) & IEC/EN 60 947-5-1 \\
\hline \multicolumn{3}{|l|}{Mechanical life} \\
\hline BA 9053: & \multicolumn{2}{|l|}{\(50 \times 10^{6}\) switching cycles} \\
\hline MK 9053N: & \multicolumn{2}{|l|}{\(30 \times 10^{6}\) switching cycles} \\
\hline \multicolumn{3}{|l|}{General Data} \\
\hline Operating mode: & \multicolumn{2}{|l|}{Continuous operation} \\
\hline \multicolumn{3}{|l|}{Temperature range:} \\
\hline \multicolumn{3}{|l|}{BA 9053 (operation):} \\
\hline \(\leq 10 \mathrm{~A}\) : & \multicolumn{2}{|l|}{\(-40 \ldots+60^{\circ} \mathrm{C}\)} \\
\hline \(\geq 15\) A: & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\[
-40 \ldots+50^{\circ} \mathrm{C}
\] \\
(higher temperature with limitations on request)
\end{tabular}}} \\
\hline & & \\
\hline MK 9053N (operation): & \multicolumn{2}{|l|}{(higher temperature with limitations on request)} \\
\hline BA 9053, MK 9053N (storage): & \multicolumn{2}{|l|}{\(-40 \ldots+70^{\circ} \mathrm{C}\)} \\
\hline Altitude: & \multicolumn{2}{|l|}{<2,000 m} \\
\hline \multicolumn{3}{|l|}{Clearance and creepage distances} \\
\hline \multicolumn{3}{|l|}{rated impulse voltage /} \\
\hline \multicolumn{3}{|l|}{pollution degree} \\
\hline BA 9053 meas. range \(\leq 10 \mathrm{~A}\) : & \(6 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline BA 9053 meas. range \(\geq 15 \mathrm{~A}\) : & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline MK 9053N: & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline \multicolumn{3}{|l|}{EMC} \\
\hline Electrostatic discharge: & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline \multicolumn{3}{|l|}{HF irradiation} \\
\hline 80 MHz ... 1 GHz : & \(20 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline 1 GHz ... 2.7 GHz : & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 4 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltages} \\
\hline wires for power supply: & 2 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 4 kV & IEC/EN 61 000-4-5 \\
\hline HF wire guided: & 10 V & IEC/EN 61 000-4-6 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & \multicolumn{2}{|l|}{IP 20 IEC/EN 60529} \\
\hline Housing: & \multicolumn{2}{|l|}{Thermoplastic with V0 behaviour according to UL subject 94} \\
\hline Vibration resistance: & \multicolumn{2}{|l|}{Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency \(10 \ldots 55 \mathrm{~Hz}\)} \\
\hline \multicolumn{3}{|l|}{Climate resistance} \\
\hline \multicolumn{3}{|l|}{BA 9053} \\
\hline \(\leq 10 \mathrm{~A}\) : & 40 / 060 / 04 & IEC/EN 60 068-1 \\
\hline \(\geq 15 \mathrm{~A}\) : & 40 / 050 / 04 & IEC/EN 60 068-1 \\
\hline MK 9053N: & 20 / 060 / 04 & IEC/EN 60 068-1 \\
\hline Terminal designation: & \multicolumn{2}{|l|}{EN 50005} \\
\hline
\end{tabular}

\section*{Technical Data}

Wire connection
BA 9053: \(\quad 2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
MK 9053N:
Screw terminals
(integrated): \(\quad 1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)
or \(2 \times 2.5 \mathrm{~mm}^{2}\) solid
Insulation of wires
or sleeve length:
8 mm
Plug in with screw terminals
max. cross section
for connection:
Insulation of wires
or sleeve length: \(\quad 8 \mathrm{~mm}\)
Plug in with cage clamp terminals
max. cross section for connection:
min. cross section for connection:
Insulation of wires
or sleeve length:
Wire fixing:
BA 9053:
MK 9053N:

\section*{Stripping length: \\ Fixing torque:}

Mounting: DIN-rail
Weight
BA 9053: \(\quad\) AC-device: 280 g
MK 9053N:
Dimensions
Width \(\mathbf{x}\) height x depth
\begin{tabular}{ll}
BA 9053: & \(45 \times 75 \times 120 \mathrm{~mm}\) \\
MK 9053N: & \(22.5 \times 90 \times 97 \mathrm{~mm}\)
\end{tabular}

AC-device: \(\quad 280 \mathrm{~g}\)
AC/DC-device: 200 g 150 g
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)
\(0.5 \mathrm{~mm}^{2}\)
\(12 \pm 0.5 \mathrm{~mm}\)
Plus-minus terminal screws M3.5 with self-lifting clamping piece IEC/EN 60 999-1 Plus-minus terminal screws M3.5 box terminals with wire protection or cage clamp terminals 10 mm
0.8 Nm

DIN-rail IEC/EN 60715
\(22.5 \times 90 \times 97 \mathrm{~mm}\)
pollution degree
.
kV
IEC 60 664-1
MK 9053N:
Electrostatic discharge
HF irradiation

Fast
Surge voltages
between
wires for power supply.
HF wire guided:
Interference suppression:

Housing:
Terminals:
Housing:

Vibration resistance:
limate resistance

BA
\(\geq 15\) A:

Terminal designation:

40 / 060 / 04

20 / 060 / 04
EN 50005

IEC/EN 60 068-1
IEC/EN 60 068-1

\title{
Classification to DIN EN 50155 for BA 9053
}

Vibration and
shock resistance:
Ambient temperature:

Category 1, Class B
IEC/EN 61373
T1, T2 compliant
T3 and TX with operational limitations

Protective coating of the PCB: No
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{UL-Data} \\
\hline Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}(\mathbf{A} 1, \mathrm{~A} 2)\) & \\
\hline BA 9053: & AC 24, 42, 48, 110, 115, 120 V \\
\hline \multicolumn{2}{|l|}{Thermal current \(\mathrm{I}_{\text {th }}\) :} \\
\hline BA 9053: & \(2 \times 5 \mathrm{~A}\) \\
\hline MK 9053N: & \(2 \times 4 \mathrm{~A}\) \\
\hline \multicolumn{2}{|l|}{Clearance and creepage distances} \\
\hline BA 9053, MK 9053N: & \(4 \mathrm{kV} / 2 \quad\) IEC 60 664-1 \\
\hline \multicolumn{2}{|l|}{HF irradiation} \\
\hline BA 9053 (80 MHz ... 2.7 GHz) & \(10 \mathrm{~V} / \mathrm{m}\) IEC/EN 61 000-4-3 \\
\hline Switching capacity: & Pilot duty B150 \\
\hline Ambient temperature: & - \(40 \ldots+60^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Technical data that is not stated in the UL-Data, can be found in the technical data section.

\section*{CCC-Data}

Switching capacity
\begin{tabular}{lll}
to AC 15: & \(1.5 \mathrm{~A} / \mathrm{AC} \mathrm{230} \mathrm{V}\) & IEC/EN \(60947-5-1\) \\
to DC 13: & \(1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) & IEC/EN 60 947-5-1
\end{tabular}

\section*{1 nO \\ Technical data that is not stated in the CCC-Data, can be found in the technical data section.}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Standard Type} \\
\hline \multicolumn{2}{|l|}{BA 9053/010 AC 0.5 .. 5 A AC 230 V} \\
\hline Article number: & 0053128 \\
\hline - for Overcurrent monitoring & \\
\hline - Measuring range: & AC 0.5... 5 A \\
\hline - Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : & AC 230 V \\
\hline - Time delay by \(\mathrm{I}_{\mathrm{an}}\) : & \(0 \ldots 20 \mathrm{~s}\) \\
\hline - Width: & 45 mm \\
\hline \multicolumn{2}{|l|}{BA 9053/012 AC 0.5 .. 5 A AC 230 V} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Article number: for Undercurrent monitoring 0053192}} \\
\hline & \\
\hline - Measuring range: & AC 0.5 ... 5 A \\
\hline - Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : & AC 230 V \\
\hline - Time delay by \(\mathrm{I}_{\mathrm{ab}}\) : & \(0 \ldots 20 \mathrm{~s}\) \\
\hline - Width: & 45 mm \\
\hline \multicolumn{2}{|l|}{MK 9053N.12/010 AC \(0.5 \ldots 5 \mathrm{~A}\) AC/DC \(80 \ldots 230 \mathrm{~V}\) t \(0 \ldots . .20 \mathrm{~s}\) t \(0.1 \ldots 20 \mathrm{~s}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Article number:
- for Overcurrent monitoring 0063176}} \\
\hline & \\
\hline - Measuring range:: & AC 0.5 ... 5 A \\
\hline - Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : & AC/DC 80 ... 230 V \\
\hline - Time delay by \(\mathrm{t}_{\mathrm{v}}\) : & \(0 \ldots 20\) s \\
\hline - Start up delay \(\mathrm{t}_{\mathrm{a}}\) : & \(0.1 \ldots 20 \mathrm{~s}\) \\
\hline - Width: & 22.5 mm \\
\hline
\end{tabular}

\section*{Ordering Example for Variants}
BA 9053

\section*{Options with Pluggable Terminal Blocks}

Screw terminal (PS/plugin screw)

Cage clamp (PC/plugin cage clamp)

\section*{Notes}

Removing the terminal blocks with cage clamp terminals
1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

\section*{Accessories}

AD 3:
Remote potentiometer \(470 \mathrm{~K} \Omega\)
Article number: 0050174

\section*{Setting}

Example:
Current relay BA 9053 / MK 9053N AC 0.5 ... 5 A
AC according to type plate:
i.e. the unit is calibrated for AC
\(0.5 \ldots 5 \mathrm{~A}=\) measuring range
Response value AC 3 A
Hysteresis AC 1.5 A
Settings:
upper potentiometer: \(\quad 0.6 \quad(0.6 \times 5 \mathrm{~A}=3 \mathrm{~A})\)
lower potentiometer:
\[
0.5 \quad(0.5 \times 3 \mathrm{~A}=1.5 \mathrm{~A})
\]

The AC - devices can also monitor DC current. The scale offset in this case is: \(\bar{T}=0.90 \times \mathrm{I}_{\text {eff }}\)

AC \(0.5 \ldots 5 \mathrm{~A}\) is equivalent to DC 0.45 ... 4.5 A
Response value DC 3 A
Hysteresis DC 1.5 A
Settings:
\(\begin{array}{lll}\text { upper potentiometer: } & 0.66 & (0.66 \times 4.5 \mathrm{~A}=3 \mathrm{~A}) \\ \text { lower potentiometer: } & 0.5 & (0.5 \times 3 \mathrm{~A}=1.5 \mathrm{~A})\end{array}\)

\section*{Characteristic}
t [ms]

Time delay of measuring circuit
\(X\) on: Measured value rise \(\quad F=\frac{\text { Measured value (after rise of measured value) }}{\text { Setting value }}\)
X off: Measured value drops \(F=\frac{\text { Mesaured value (befor measured value drops) }}{\text { Setting value (hysteresis) }}\)
The diagram shows the typical delay of a standard devices depending on the measured values " X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter.
The total reaction time of the device results from the adjustable delay \(t_{v}\) and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

\section*{Example for "X on" (overcurrent detection with BA9053/010):}

Adjusted setting value X on \(=2 \mathrm{~A}\).
Due to a stalled motor the current rises suddenly to 10 A .
\(F=\frac{\text { Measured value (after rise of measured value) }}{\text { Setting value }}=\frac{10 \mathrm{~A}}{2 \mathrm{~A}}=5\)
Reading from the diagram:
The output relay switches on after 31 ms at a setting \(\mathrm{t}_{\mathrm{v}}=0\).

\section*{Example for "X off" (undercurrent detection with BA9053/012):}

Adjusted hysteresis setting value is 10 A .
The current drops suddenly from 23 A to 0 A .
\[
F=\frac{\text { Mesaured value (befor measured value drops) }}{\text { Setting value (hysteresis) }}=\frac{23 \mathrm{~A}}{10 \mathrm{~A}}=2.3
\]

Reading from the diagram:
The output relay switches off after 70 ms at a setting \(\mathrm{t}_{\mathrm{v}}=0\).

\section*{VARIMETER}

IK 9270

SK 9270

SL 9270CT

IL 9270

SL 9270/5_-

IP 9270

SP 9270CT
- According to IEC/EN 60 255-1
- IP 9270, SP 9270CT: 3-phase

IK 9270, SK 9270, IL 9270, SL 9270CT: single phase
- Measuring ranges from 0.1 ... 100 A
- Settable response value
- Fixed hysteresis
- Settable time delay
- De-energized on trip
- As option energized on trip
- LED indicators
- With auxiliary voltage
- Auxiliary supply and measuring input galvanic separated
- Devices available in 2 enclosure versions:
- I-model, e.g. IK \(\qquad\) , depth 61 mm
with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
- S-model, e.g. SK \(\qquad\) depth 100 mm
with terminals at the top for cabinets with mounting plate and cable duct
- Width IK 9270, SK 9270: 17.5 mm
\[
\begin{aligned}
& \text { IL 9270, SL 9270CT: } 35 \mathrm{~mm} \\
& \text { IP 9270, SP 9270CT: } \\
& 70 \mathrm{~mm}
\end{aligned}
\]

Approvals and Markings

\section*{\(C E\) \\ (C) \\ A025518}

\section*{Applications}

Overcurrent detection in single phase or 3-phase voltage systems

\section*{Indicators}

IK 9270.11, SK 9270.11
IL 9270.11/5
SL 9270.11/5_-
LED green:
aux. supply connected
LED yellow:
output contacts switched

IL 9270, SL 9270,
IP 9270, SP 9270:
LED green:
LED red \(I_{\max }\) :
current within limits overcurrent

Function Diagram IL 9270.12, SL 9270.12

Function Diagram IP 9270, SP 9270

\section*{Circuit Diagrams}

IK 9270.11, SK 9270.11

SL 9270.12CT

IL 9270.12, SL 9270.12

IL 9270.11/5_ _

IP 9270.12, SP 9270.12

SP 9270.12CT

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage AC or DC \\
\hline i, k & Current measuring circuit AC or DC \\
\hline \(\mathrm{i} 1, \mathrm{k} 1 ; ~ \mathrm{i} 2, \mathrm{k} 2 ;\) i3, k3 & Current measuring circuit phase 1; 2; 3 \\
\hline Z1 / Z2, Z3, Z4 & Measuring ranges with bridges via terminals \\
\hline \(11,12,14\) & Contacts Rel. 1 \\
\hline \(21,22,24\) & Contacts Rel. 2 \\
\hline
\end{tabular}

\section*{Technical Data}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type} & & & & & \begin{tabular}{l}
जकण जivis \\
0003000 \\
: \\
65
\end{tabular} & \\
\hline & IK 9270 & SL 9270/5__ & IL 9270 & SL 9270CT & IP 9270 & SP 9270CT \\
\hline \begin{tabular}{l}
Depth 61 mm \\
Depth 100 mm
\end{tabular} & \begin{tabular}{l}
IK 9270.11 \\
SK 9270.11
\end{tabular} & \[
\begin{aligned}
& \text { IL 9270.11/5_-_ } \\
& \text { SL 9270.11/5__ }
\end{aligned}
\] & \begin{tabular}{l}
IL 9270.12 \\
SL 9270.12
\end{tabular} & SL 9270.12CT & \begin{tabular}{l}
IP 9270.12 \\
SP 9270.12
\end{tabular} & SP 9270.12CT \\
\hline Width & 17.5 mm & 35 mm & 35 mm & 35 mm & 70 mm & 70 mm \\
\hline Measuring input & single-phase & single-phase & single-phase & single-phase & 3-phase & 3-phase \\
\hline \multirow[t]{2}{*}{Measuring range (Nominal frequency \(50 \ldots 400 \mathrm{~Hz}\))} & \(0.1 \ldots 15 \mathrm{~A}\)
4 part ranges
settable with
switch:
\(0.1 \ldots 1 \mathrm{~A}\)
\(0.5 \ldots 5 \mathrm{~A}\)
\(1 \ldots 10 \mathrm{~A}\)
\(1.5 \ldots 15 \mathrm{~A}\)
Max. thermal
continuous current:
20 A at \(50^{\circ} \mathrm{C}\)
15 A at \(60^{\circ} \mathrm{C}\) & \begin{tabular}{l}
0.1 ... 50 A \\
5 part ranges \\
settable with switch: \\
0.1... 1 A \\
\(0.5 \ldots 5 \mathrm{~A}\) \\
2.5 ... 25 A \\
3... 30 A \\
5 ... 50 A \\
Max. thermal continuous current: \\
50 A at \(50^{\circ} \mathrm{C}\) \\
60 A at \(40^{\circ} \mathrm{C}\)
\end{tabular} & & \(0.5 \ldots 100 \mathrm{~A}\)
4 part ranges
programmable
with bridges:
\(0.5 \ldots 5 \mathrm{~A}(\mathrm{Z} 1-\mathrm{Z2})\)
\(2.5 \ldots 2 \mathrm{~A}(\mathrm{Z} 1-\mathrm{Z3})\)
\(7.5 \ldots 75 \mathrm{~A}(\mathrm{Z1}-\mathrm{Z4})\)
\(10 \ldots 100 \mathrm{~A}(\mathrm{Z3}-\mathrm{Z1}-\mathrm{Z4})\) & \(0.1 \ldots 15 \mathrm{~A}\)
1 fixed
measuring range
per unit
\(0.1 \ldots 1 \mathrm{~A}\)
\(0.5 \ldots 5 \mathrm{~A}\)
\(1 \ldots 10 \mathrm{~A}\)
\(1.5 \ldots 15 \mathrm{~A}\)
\begin{tabular}{l}
Max. thermal \\
continuous current: \\
\(3 \times 15 \mathrm{At} 50^{\circ} \mathrm{C}\) \\
\(3 \times 20 \mathrm{~A}\) at \(45^{\circ} \mathrm{C}\)
\end{tabular} & \(0.5 \ldots 100 \mathrm{~A}\)
1 fixed
measuring range
per unit
\(0.5 \ldots 5 \mathrm{~A}\)
\(2.5 \ldots 25 \mathrm{~A}\)
\(5 \ldots 50 \mathrm{~A}\)
\(7.5 \ldots 75 \mathrm{~A}\)
\(10 \ldots 100 \mathrm{~A}\)
Max. thermal
continuous current:
limited only by
diameter of cable
\(25 \mathrm{~mm}^{2}\) \\
\hline & \begin{tabular}{l}
5 ... \(750 \mathrm{~mA}^{*}\) \\
4 part ranges \\
settable with \\
switch: \\
5 ... 50 mA \\
25 ... 250 mA \\
50 ... 500 mA \\
75 ... 750 mA \\
Max. thermal continuous current: 5 A at \(50^{\circ} \mathrm{C}\)
\end{tabular} & & \(0.01 \ldots 1.5 \mathrm{~A}\)
4 part ranges
programmable
with bridges:
\(0.01 \ldots . .1 \mathrm{~A}(Z 1-\mathrm{Z3})\)
\(0.5 \ldots 0.5 \mathrm{~A}(\mathrm{Z} 1-\mathrm{Z2})\)
\(0.1 \ldots 1 \mathrm{~A}(\mathrm{Z1}-\mathrm{Z4})\)
\(0.15 \ldots . .5 \mathrm{~A}(\mathrm{Z2}-\mathrm{Z} 1-\mathrm{Z} 4)\)
Max. thermal
continuous current:
20 A at \(50^{\circ} \mathrm{C}\)
15 A at \(60^{\circ} \mathrm{C}\) & & & \\
\hline Max. current at \(50^{\circ} \mathrm{C}\) & & all ranges 80 A / 3 s & & & & \\
\hline \begin{tabular}{l}
Wire current path Solid \\
Stranded ferruled
\end{tabular} & \[
\begin{aligned}
& 2 \times 2.5 \mathrm{~mm}^{2} \\
& 2 \times 1.5 \mathrm{~mm}^{2} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
1 \times 10 \mathrm{~mm}^{2} \\
1 \times 6 \mathrm{~mm}^{2}
\end{gathered}
\] & \[
\begin{aligned}
& 2 \times 2.5 \mathrm{~mm}^{2} \\
& 2 \times 1.5 \mathrm{~mm}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \text { CT-diameter }=10 \mathrm{~mm} \\
& 25 \mathrm{~mm}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \times 2.5 \mathrm{~mm}^{2} \\
& 2 \times 1.5 \mathrm{~mm}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \text { CT-diameter }=10 \mathrm{~mm} \\
& 25 \mathrm{~mm}^{2}
\end{aligned}
\] \\
\hline Contacts & 1 changeover & 1 changeover & 2 changeover & 2 changeover & 2 changeover & 2 changeover \\
\hline Weight: & \[
\begin{aligned}
& \text { IK 9270: } 70 \mathrm{~g} \\
& \text { SK } 9270: 90 \mathrm{~g} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { IL 9270/5__: } 125 \mathrm{~g} \\
\text { SL 9270/5__: } 150 \mathrm{~g} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { IL 9270: } 125 \mathrm{~g} \\
& \text { SL 9270: } 150 \mathrm{~g} \\
& \hline
\end{aligned}
\] & approx. 230 g & \[
\begin{aligned}
& \text { IP 9270: } 200 \mathrm{~g} \\
& \text { SP 9270:250 } \\
& \hline
\end{aligned}
\] & approx. 470 g \\
\hline
\end{tabular}
*) Rated impulse voltage / pollution degree (auxiliary voltage - measuring circuit): \(4 \mathrm{kV} / 2\)

\section*{Technical Data}

Max. overload:
Temperature influence:
Reaction time:
Internal resistor:
see table
\(\leq 0.05\) \% / K
see characteristic switching delay
\(<5 \mathrm{~m} \Omega\)

Setting Ranges

Response value:
Hysteresis:
Repeat accuracy:
Switching delay:
Auxiliary Circuit
Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :

\section*{Voltage range}
at AC:
at DC:
Nominal consumption
at AC 230 V :
IL/SL 9270, IP/SP 9270:
IK/SK 9270, IL/SL 9270/500:
at DC 24 V :
IL/SL 9270, IP/SP 9270: 0.8 W
IK/SK 9270, IL/SL 9270/500: 0.4 W
Nominal frequency: \(\quad 50 / 60 \mathrm{~Hz}\)
Frequency range: \(\pm 5 \%\)

\section*{Output}

\section*{Contacts}

IK 9270.11, SK 9270.11
IL/SL 9270.11/5 :
IL 9270.12, SL 9270.12
SL 9270.12CT:
IP 9270.12, SP 9270.12
SP 9270.12CT:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NO contact:
IK 9270, IL 9270/5_ _:
NC contact:
IL/SL 9270, IP/SP 9270,
SL 9270CT, SP 9270CT:
NC contact:
Electrical life
to \(A C 15\) bei \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\)
NO contact
IK/SK 9270, IL/SL 9270/5_ _: \(3 \times 10^{5}\) switching cycles IEC/EN 60 947-5-1
to AC 15 at \(2 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\)
IL/SL 9270, IP/SP 9270,
SL 9270CT, SP 9270CT:
Short-circuit strength
max. fuse rating:
IK/SK 9270, IL/SL 9270/5_
IL/SL 9270, IP/SP 9270
SL 9270CT, SP 9270CT:
Mechanical life:
infinite variable within measuring range approx. \(4 \%\) of setting value, fixed \(\leq \pm 1 \%\)
0.1 ... 20 sec settable

AC/DC 24 V , AC 220 ... 240 V other voltages on request
\(0.8 \ldots 1.1 U_{H}\)
\(0.8 \ldots 1.25 \mathrm{U}_{\mathrm{H}}\)
3.2 VA
2.3 VA

\section*{Technical Data}

\section*{General Data}

Operating mode: Continuous operation
Temperature range
Operation: \(\quad-20 \ldots+60^{\circ} \mathrm{C}\)
Storage: \(\quad-25 \ldots+70^{\circ} \mathrm{C}\)
Altitude: \(\quad<2.000 \mathrm{~m}\)
Clearance and creepage distances
rated impulse voltage/
pollution degree:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{ution degree:} & \multicolumn{3}{|r|}{IEC 60 664-1} \\
\hline & IP/SP & \begin{tabular}{l}
IK/SK \\
IL/SL-devices/5
\end{tabular} & IL/SL \\
\hline Auxiliary voltage - Contacts & \(4 \mathrm{kV} / 2\) & \(4 \mathrm{kV} / 2\) & \(4 \mathrm{kV} / 2\) \\
\hline Auxiliary voltage - Measuring circuit & \(6 \mathrm{kV} / 2\) & \(6 \mathrm{kV} / 2^{*)}\) & \(4 \mathrm{kV} / 2\) \\
\hline Measuring circuit - Contacts & \(6 \mathrm{kV} / 2\) & \(6 \mathrm{kV} / 2\) & \(4 \mathrm{kV} / 2\) \\
\hline Measuring circuit-Measuring circuit & \(6 \mathrm{kV} / 2\) & - & - \\
\hline Contacts-Contacts & \(4 \mathrm{kV} / 2\) & - & \(4 \mathrm{kV} / 2\) \\
\hline
\end{tabular}

The contacts are not designed for voltage systems with 400 / 690 V .
*) \(4 \mathrm{kV} / 2\) at IK/SK 9270 with measuring range \(5 \ldots 750 \mathrm{~mA}\)

\section*{EMC}

Electrostatic discharge: \(\quad 8 \mathrm{kV}\) (air) IEC/EN 61 000-4-2
HF irradiation:
IK/SK9270, IP/SP 9270,
SL/SP 9270:
\(80 \mathrm{MHz} \ldots 1 \mathrm{GHz}: \quad 20 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3
\(1 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}: \quad 10 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN \(61000-4-3\)
SL/SP 9270CT, SL9270/5:
80 MHz ... 2.7 GHz:
Fast transients:
\(10 \mathrm{~V} / \mathrm{m}\)
IEC/EN 61 000-4-3 4 kV

IEC/EN 61 000-4-4
Surge voltages between
wires for power supply
IK/SK 9270, IL/SL 9270/5_
2 kV
IEC/EN 61 000-4-5
IL/SL 9270, IP/SP 9270,
SL/SP 9270CT:
1 kV
IEC/EN 61 000-4-5
between wire and ground:
IK/SK 9270, IL/SL 9270/5_ : 4 kV IEC/EN 61 000-4-5
IL/SL 9270, IP/SP 9270,

SLISP 9270CT:
HF wire guided: Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Min. cross section:
Insulation of wires
or sleeve length:
Wire fixing:
Fixing torque:
Mounting:
2 kV IEC/EN 61 000-4-5
10 V
IEC/EN 61 000-4-6
Limit value class B EN 55011
IP \(40 \quad\) IEC/EN 60529

P 20 IECIEN 60529
Thermoplastic with Vo behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20 / 060 / 04
IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
\(0,6 \mathrm{~mm}^{2}\)
10 mm
Flat terminals with self-lifting clamping piece IEC/EN 60 999-1 0.8 Nm

DIN rail

\section*{Dimensions}

\section*{Width x height x depth}

\section*{IK 9270: \(\quad 17.5 \times 90 \times 61 \mathrm{~mm}\)}

SK 9270:
\(17.5 \times 90 \times 100 \mathrm{~mm}\)
IL 9270: \(\quad 35 \times 90 \times 61 \mathrm{~mm}\)
SL 9270, SL 9270CT: \(\quad 35 \times 90 \times 100 \mathrm{~mm}\)
IP 9270:
\(70 \times 90 \times 61 \mathrm{~mm}\)
\(70 \times 90 \times 100 \mathrm{~mm}\)

IEC/EN 60715

\section*{CCC-Data}

\section*{Switching capacity}

\section*{to AC 15:}
\(5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
IEC/EN 60 947-5-1
to DC 13:
\(2 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\)
IEC/EN 60 947-5-1

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

\section*{Standard Types}

IK 9270.11/010 AC 220 ... 240 V 50/60 Hz 0.1 ... 15 A
Article number: 0050330
SK 9270.11/010 AC 220 ... 240V 50/60Hz 0.1... 15 A
Article number: 0050736
- Single phase
- 4 programmable ranges up to 15 A
- Energized on trip
- Auxiliary voltage U्H: AC 220 ... 240 V
- 1 changeover contact
- Width:
17.5 mm

IP 9270.12/010 AC \(220 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \quad 0.5 \ldots 5 \mathrm{~A}\)
Article number: 0049438
SP 9270.12/010 AC \(220 \ldots 240 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz} 0.5 \ldots 5 \mathrm{~A}\)
Article number: 0050736
- 3-phase
- Range: 0.5 ... 5 A
- Energized on trip
- Auxiliary voltage U्H: AC 220 ... 240 V
- 2 changeover contacts
- Width: 70 mm

\section*{Variants}

IK 9270.11, SK 9270.11:

IL 9270.12, SL 9270.12:

IL 9270.12/010, SL 9270.12/010:

IL 9270.11/500, SL 9270.11/500

IL 9270.11/510, SL 9270.11/510:

IP 9270.12, SP 9270.12:

SL 9270.12CT:

SP 9270.12CT:

Ordering Example for variants

Single phase current relay, de-energized on trip, 1 changeover contact Single phase current relay, de-energized on trip, 2 changeover contacts Single phase current relay, energized on trip, 2 changeover contacts Same as IK/SK 9270.11, except with 5 measuring ranges from 0.1 ... 50 A

Same as IK/SK 9270.11/010, except with 5 measuring ranges from 0.1 ... 50 A 3-phase current relay, de-energized on trip, 2 changeover contacts Single phase current relay with built in CT, de-energized on trip, 2 changeover contacts 3-phase current relay with built in CT, energized on trip, 2 changeover contacts

\section*{Characteristics}

Switching delay
The characteristic shows the switching delay depending on the values of \(X_{\text {on }}-X_{\text {off }}\) when switching the current on or off. A slow current change reduces the delay.
\(F=\frac{\text { I applied }}{\text { I setting }}\)

- According to IEC/EN 60 25-1
- IP 9277, SP 9277, SP 9277CT: 3-phase

IL 9277, SL 9277, SL 9277CT: singele phase
- Detects over- and undercurrent
- Measuring ranges from 0.1 ... 15 A
- With built in current transformer for 0.5 ... 100 A
- IL 9277, SL 9277 with 4 programmable ranges
- Settable 0.1 ... 1 d
- Separate setting for over- and undercurrent
- Fixed hysteresis approx. 4 \%
- Settable time delay
- IP 9277, SP 9277 with separate settable time delay for over- and undercurrent
- De-energized on trip
- LED indicators for over-, under- and normal current
- Auxiliary supply and measuring input galvanic separated
- IL 9277, SL 9277 with one output relay for over- and undercurrent
- IP 9277, SP 9277 with separate output relays for over- and undercurrent
- Optionally energized on trip
- Devices available in 2 enclosure versions:
- I-model, e.g. IL \(\qquad\) , depth 61 mm
with terminals at the bottom for installations systems and industrial distribution systems according to DIN 43880
- S-model, e.g. SL \(\qquad\) depth 100 mm
with terminals at the top for cabinets with mounting plate and cable duct
- DIN rail or screw mounting
- Width IL 9277, SL 9277, SL 9277CT: 35 mm

IP 9277, SP 9277, SP 9277CT: 70 mm

\section*{Approvals and Markings}

*) only IL-devices

\section*{Applications}
- Over- and undercurrent detection in single phase or 3-phase voltage systems
- For industrial and railway applications
\begin{tabular}{ll}
\hline Indicators & \\
LED green: & current within limits \\
LED red \(I_{\text {max }}:\) & overcurrent \\
LED red \(I_{\text {min }}:\) & undercurrent
\end{tabular}

\section*{Circuit Diagram}

IL 9277.12, SL 9277.12

IP 9277.39, SP 9277.39

\section*{Connection Terminals}
\begin{tabular}{|c|c|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage AC or DC \\
\hline i, k & Current measuring ciruit AC or DC \\
\hline i1, k1; i2, k2; i3, k3 & Current measuring ciruit phase 1; 2; 3 \\
\hline Z1 / Z2, Z3, Z4 & Measuring ranges with bridges via terminals \\
\hline IL-device: 11, 12, 14 & Contacts Rel. 1 over- / undercurrent signal \\
\hline IL-device: 21, 22, 24 & Contacts Rel. 2 over- / undercurrent signal \\
\hline IP-device: 11, 12, 14 & Contacts Rel. 1 underrcurrent signal \\
\hline IP-device: 21, 22, 24 & Contacts Rel. 2 underrcurrent signal \\
\hline IP-device: 31, 32, 34 & Contacts Rel. 3 overcurrent signal \\
\hline IP-device: 41, 42, 44 & Contacts Rel. 4 overcurrent signal \\
\hline
\end{tabular}

SL 9277.12CT

SP 9277.39CT

Function Diagram IL 9277, SL 9277, SL 9277CT

Function Diagram IP 9277, SP 9277, SP 9277CT

Technical Data
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type} & & & & \\
\hline & IL 9277 & SL 9277CT & IP 9277 & SP 9277CT \\
\hline Depth 61 mm Depth 100 mm & \begin{tabular}{l}
IL 9277.12 \\
SL 9277.12
\end{tabular} & SL 9277.12CT & \begin{tabular}{l}
IP 9277.39 \\
SP 9277.39
\end{tabular} & SP 9277.39CT \\
\hline Width & 35 mm & 35 mm & 70 mm & 70 mm \\
\hline Measuring input & single-phase & single-phase & 3 -phase & 3-phase \\
\hline \begin{tabular}{l}
Measuring range \\
Nominal frequency
\[
50 \ldots 400 \mathrm{~Hz}
\]
\end{tabular} & & \(0.5 \ldots 100 \mathrm{~A}\)
settable with
bridges:
range / bridge
\(0.5 \ldots 5 \mathrm{~A} / \mathrm{Z} 1-/ \mathrm{Z} 2\)
\(2.5 \ldots 25 \mathrm{~A} / \mathrm{Z} 1-\mathrm{Z3}\)
\(7.5 \ldots 75 \mathrm{~A} / \mathrm{Z} 1-\mathrm{Z} 4\)
\(10 \ldots 100 \mathrm{~A} / \mathrm{Z} 3-\mathrm{Z} 1-\mathrm{Z} 4\) & \begin{tabular}{l}
1 Meas. range per unit \\
\(0.1 \ldots 1 \mathrm{~A}\) \\
\(0.5 \ldots 5\) A \\
1... 10 A \\
1.5 ... 15 A
\end{tabular} & 1 Meas. range per unit
\[
\begin{gathered}
0.5 \ldots 5 \mathrm{~A} \\
2.5 \ldots 25 \mathrm{~A} \\
5 \ldots 50 \mathrm{~A} \\
7.5 \ldots 75 \mathrm{~A} \\
10 \ldots 100 \mathrm{~A}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Continouos current/ \\
Max. ambient temperature
\end{tabular} & \[
\begin{aligned}
& 20 \mathrm{~A} / 50^{\circ} \mathrm{C} \\
& 15 \mathrm{~A} / 60^{\circ} \mathrm{C}
\end{aligned}
\] & limited only by diameter of cable \(25 \mathrm{~mm}^{2}\) & \[
\begin{aligned}
& 3 \times 15 \mathrm{~A} / 50^{\circ} \mathrm{C} \\
& 3 \times 20 \mathrm{~A} / 45^{\circ} \mathrm{C}
\end{aligned}
\] & limited only by diameter of cable \(25 \mathrm{~mm}^{2}\) \\
\hline Wire current path Solid Stranded ferrule & \[
\begin{aligned}
& 2 \times 2.5 \mathrm{~mm}^{2} \\
& 2 \times 1.5 \mathrm{~mm}^{2}
\end{aligned}
\] & \[
\begin{gathered}
\text { CT-diameter }=10 \mathrm{~mm} \\
25 \mathrm{~mm}^{2}
\end{gathered}
\] & \[
\begin{aligned}
& 2 \times 2.5 \mathrm{~mm}^{2} \\
& 2 \times 1.5 \mathrm{~mm}^{2}
\end{aligned}
\] & \[
\begin{gathered}
\text { CT-diameter }=10 \mathrm{~mm} \\
25 \mathrm{~mm}^{2}
\end{gathered}
\] \\
\hline Contacts & \(2 \mathrm{C} / \mathrm{O}\) contacts & \(2 \mathrm{C} / \mathrm{O}\) contacts & \(2 \times 2 \mathrm{C} / \mathrm{O}\) contacts *) & \(2 \times 2\) C/O contacts *) \\
\hline Weight: & \[
\begin{aligned}
& \text { IL 9277: } 125 \mathrm{~g} \\
& \text { SL 9277: } 150 \mathrm{~g}
\end{aligned}
\] & approx. 230 g & \[
\begin{aligned}
& \text { IP 9277: } 200 \mathrm{~g} \\
& \text { SP 9277: } 250 \mathrm{~g}
\end{aligned}
\] & a<pprox. 470 g \\
\hline
\end{tabular}
\({ }^{*} 2\) changeover contacts for overcurrent, 2 changeover contacts for undercurrent
\begin{tabular}{|c|c|}
\hline Technical Data & \\
\hline \begin{tabular}{l}
Max. overload: \\
Temperature influence: \\
Reaction time:
\end{tabular} & \[
\begin{aligned}
& \text { see table } \\
& \leq 0.05 \% / \mathrm{K} \\
& \text { see characteristic switching delay }
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Setting Ranges} \\
\hline Response value: Hysteresis: Repeat accuracy: Switching delay: & \begin{tabular}{l}
infinite variable within measuring range approx. \(4 \%\) of setting value, fixed
\[
\leq \pm 1 \%
\] \\
0.1 ... 20 sec settable
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Auxiliary Circuit} \\
\hline \begin{tabular}{l}
Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) \\
IL 9277, SL 9277, SL 9277CT:
\end{tabular} & \begin{tabular}{l}
AC/DC 24 V \\
AC 115 ... 127 V , AC 220 ... 240 V , \\
AC \(400 \ldots 440 \mathrm{~V}\)
\end{tabular} \\
\hline IP 9277, SP 9277, SP 9277CT: & \begin{tabular}{l}
AC/DC 24 V \\
AC \(115,127 \mathrm{~V}\) \\
AC 220 ... 240 V , AC 400 ... 440 V
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Voltage range} \\
\hline at AC: at \(D C\) : & \[
\begin{aligned}
& 0.8 \ldots 1.1 U_{H} \\
& 0.8 \ldots 1.25 U_{H}
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Nominal consumption IL 9277, SL 9277, SL 9277CT} \\
\hline at AC 230 V : & 3.2 VA \\
\hline at DC 24 V : & 0.8 W \\
\hline IP 9277, SP 9277, SP 9277CT & \\
\hline at AC 230 V : & 7.2 VA \\
\hline at DC 24 V : & 1 W \\
\hline Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
\hline Frequency range: & \(\pm 5 \%\) \\
\hline \multicolumn{2}{|l|}{Output} \\
\hline \multicolumn{2}{|l|}{Contacts} \\
\hline \multicolumn{2}{|l|}{IL 9277.12, SL 9277.12,} \\
\hline IP 9277.39, SP 9277.39, & \\
\hline SP 9277.39CT: & \(2 \times 2\) changeover contact \\
\hline Thermal current \(\mathrm{t}_{\text {th }}\) : & 5 A \\
\hline \multicolumn{2}{|l|}{Switching capacity to AC 15} \\
\hline NO contact: & \(5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline \multicolumn{2}{|l|}{Electrical life} \\
\hline NO contact: & \(2 \times 10^{5}\) switch. cycles IEC/EN 60 947-5-1 \\
\hline Short-circuit strength max. fuse rating: & 6 A gL IEC/EN 60 947-5-1 \\
\hline Mechanical life: & > \(50 \times 10^{6}\) switching cycles \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{General Data}

Operating mode: Temperature range
Operation:
Storage:

\section*{Altitude:}
<2.000 m
Clearance and creepage distances
rated rated impulse voltage voltage/
pollution degree:
IEC 60 664-1
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & IP/SP-devices & IL/SL-devices \\
\hline Supply - Contacts & \(4 \mathrm{kV} / 2\) & \(4 \mathrm{kV} / 2\) \\
Supply - Measuring Circuit & \(6 \mathrm{kV} / 2\) & \(4 \mathrm{kV} / 2\) \\
Measuring circuit-Measuring circuit & \(6 \mathrm{kV} / 2\) & - \\
Measuring Circuit - contacts & \(6 \mathrm{kV} / 2\) & \(4 \mathrm{kV} / 2\) \\
Contact-Contact & \(4 \mathrm{kV} / 2\) & \(4 \mathrm{kV} / 2\) \\
\hline Measuring Circuit, max. voltage: & \(3 \mathrm{AC} 400 / 690 \mathrm{~V}\) & AC \(230 \mathrm{~V} / 400\) \\
\hline The contacts are not designed for voltage systems with \(400 / 690 \mathrm{~V}\) \\
\hline \multicolumn{3}{l|}{ contacts, max. voltage: } \\
\hline
\end{tabular}

\section*{EMC}

Vibration and
shock resistance:
Ambient temperature:

Category 1, Class B
IEC/EN 61373
T1 compilant
T2, T3 und TX with operational limitations
Protective coating of the PCB: No

\section*{CCC-Data}

Switching capacity
\begin{tabular}{lll}
to AC 15: & \(5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
to DC 13: & \(2 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) & IEC/EN 60 947-5-1
\end{tabular}
\(\square\)
Technical data that is not stated in the CCC-Data, can be found in the technical data section.

\section*{Standard Types}

IL 9277.12 AC 220 ... 240 V
Article number: 0049306
SL 9277.12 AC 220 ... 240 V
Article number:
0054111
- Single phase
- 4 programmable ranges up to 15 A
- De-energized on trip
- Auxiliary voltage UH: AC 220 ... 240 V
- 2 changeover contacts
- Width: 35 mm

IP 9277.39 0,5 .. 5 A AC \(220 \ldots 240 \mathrm{~V}\)
Article number: 0049308
SP 9277.39 0,5 ... 5 A AC \(220 \ldots 240 \mathrm{~V}\)
Article number: 0056075
- 3-phase
- Range 0.5 ... 5 A
- De-energized on trip
- Auxiliary voltage U. \(:\) AC 220 ... 240 V
- 2 changeover contacts each for over- and undercurrent
- Width: 70 mm

\section*{Variants}

IL 9277.12/010, SL 9277.12/010: single phase current relay energized on trip
IP 9277.39/010, SP 9277.39/010: 3-phase current relay energized on trip
IP 9277.39/002, SP 9277.39/002: 3-phase current relay undercurrend de-energized on trip overcurrent energized on trip
SL 9277.12CT single phase current relay with built in CT
SP 9277.39CT
3-phase current relay with built in CT

\section*{Ordering example for variants}

\section*{Accessories}

ET 4086-0-2:
Additional clip for screw mounting Article number: 0046578

Characteristics

\section*{Switching delay}

The characteristic shows the switching delay depending on the values of \(X_{a n}-X_{a b}\) when switching the current on or off. A slow current change reduces the delay.
\(F=\frac{I \text { applied }}{\mid \text { setting }}\)

\section*{Circuit Diagram}

- According to IEC/EN 60255
- Single phase
- Measuring ranges from \(0.05 \ldots 10 \mathrm{~A}\)
- Fixed hysteresis approx. 4 \%
- Adjustable switching delay
- Closed circuit operation
- Optionally open circuit operation
- Automatic reset
- Optionally manual reset, reset button on the front
- LED indication for auxiliary voltage
- 1 changeover contact
- Devices available in 2 enclosure versions:

IK 9272: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SK 9272: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 17.5 mm

\section*{Approvals and Markings}

\section*{Application}

Overcurrent detection in AC power supplies

\section*{Indication}
green LED: on when auxiliary supply connected yellow LED:
on when output contacts switched

\section*{Function Diagram}

\section*{Notes}

Auxiliary voltage and measuring circuit are not galvanically seperated. Thus they need the same reference potential " N ", if there is no external seperation, e.g. through a current transformer see Application Examples.

\section*{Technical Data}

Input
Measuring range:
of measuring current:
Maximum continuous
measuring current:
at AC \(50 \ldots 500 \mathrm{~mA}\) :
at \(A C 0.1 \ldots 1\) A:
at AC 0.5 ... 5 A:
at AC \(1 \ldots 10 \mathrm{~A}\) :
Maximum overload:
at AC \(50 \ldots 500 \mathrm{~mA}\) :
at \(A C 0.1 \ldots 1\) A:
at AC 0.5 ... 5 A :
at AC \(1 \ldots 10\) A:
Temperature influence:
Reaction time:
AC 50 ... 500 mA
AC \(0.1 \ldots 1 \mathrm{~A}\)
AC \(0.5 \ldots 5 \mathrm{~A}\)
AC \(1 \ldots 10 \mathrm{~A}\)
higher currents via external current transformer (2.5 VA)
\(50 / 60 \mathrm{~Hz}\)
2.5 A , at \(50^{\circ} \mathrm{C}\) ambient temperature

5 A , at \(50^{\circ} \mathrm{C}\) ambient temperature
11 A , at \(50^{\circ} \mathrm{C}\) ambient temperature
15 A , at \(50^{\circ} \mathrm{C}\) ambient temperature
8 A, max. 3 s
10 A, max. 3 s
20 A, max. 3 s
\(20 \mathrm{~A}, \max .3 \mathrm{~s}\)
\(\leq 0.2 \% / K\)
see characteristic switching delay
Setting Ranges
\begin{tabular}{ll}
\hline Response value: & \begin{tabular}{l}
infinite variable within measuring range \\
Hysteresis:
\end{tabular} \\
approx. 0.96 of setting value, fixed \\
approx. \(4 \%\) hysteresis \\
Setting accuracy: & \(\leq \pm 10 \%\) of setting value \\
Repeat accuracy: & \(\leq \pm 1 \%\) \\
Time delay tv: & \(0.1 \ldots 20\) s adjustable
\end{tabular}

Auxiliary Circuit

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :
Voltage range:
Nominal consumption at AC 230 V :
Nominal frequency:
Frequency range:

Output

\section*{Contacts}

IK 9272.11, SK 9272.11:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\)
NO contact:
Short circuit strength
max. fuse rating:
Mechanical life:
AC 115 ... 127 V , AC 220 ... 240 V
\(0.8 \ldots 1.1 U_{H}\)
5.5 VA
\(50 / 60 \mathrm{~Hz}\)
\(\pm 5 \%\)

\section*{General Data}

\section*{Operating mode:}

Temperature range:
Clearance and creepage distances
rated impulse voltage /
pollution degree:

1 changeover contact
5 A
\(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
\(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
\(3 \times 10^{5}\) switching cycles
4 A gL IEC/EN 60 947-5-1
\(>10^{8}\) switching cycles

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
\(4 \mathrm{kV} / 2\)
IEC 60 664-1

\section*{Technical Data}

\section*{EMC}

Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
\begin{tabular}{llr}
& & \\
wires for power supply: & 1 kV & IEC/EN 61 000-4-5 \\
between wire and ground: & 2 kV & IEC/EN 61 000-4-5 \\
HF wire guided: & 10 V & IEC/EN 61 000-4-6 \\
Interference suppression: & Limit value class B & EN 55 011 \\
Degree of protection: & Housing: IP 40 & IEC/EN 60 529 \\
& Terminals:IP 20 & IEC/EN 60 529
\end{tabular}

Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Fixing torque:
Mounting:
Weight:
IK 9272:
8 kV (air) IEC/EN 61 000-4-2
\(10 \mathrm{~V} / \mathrm{m}\)
IEC/EN 61 000-4-3
4 kV
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
\(2 \mathrm{kV} \quad\) IEC/EN 61 000-4-5
10 V
EN 55011
Terminals:IP 20
IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20 / 060 / \(04 \quad\) IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1
\(0.8 \mathrm{Nm} \quad\) IEC/EN 60 999-1
DIN rail IEC/EN 60715

SK 9272:

\section*{65 g}

80 g

\section*{Dimensions}

Width x height x depth:
IK 9272:
SK 9272:
\(17.5 \times 90 \times 59 \mathrm{~mm}\)
\(17.5 \times 90 \times 98 \mathrm{~mm}\)

\section*{Classification to DIN EN 50155 for IK 9272}

Vibration and
shock resistance: Category 1, Class B IEC/EN 61373
Protective coating of the PCB: No

\section*{Standard Types}

IK 9272.11/010 AC 220 ... \(240 \mathrm{~V} 50 / 60 \mathrm{~Hz} 10 \mathrm{~A}\)
Article number: 0050068
- Open circuit operation
- Output:

1 changeover contact
- Nominal voltage U.

AC 220 ... 240 V
- Measuring range:

1 ... 10 A
- Width:
17.5 mm

SK 9272.11/010 AC 220 ... 240 V 50/60Hz 10 A
Article number: 0050613
- Open circuit operation
- Output:
- Nominal voltage \(U_{\mathrm{N}}\) :

1 changeover contact
- Measuring range:

AC 220 ... 240 V
- Width:
. 10 A

\section*{Variants}

\section*{IK 9272:}

IK 9272.11/100:
IK 9272.11/110
Manual reset, closed circuit operation
Manual reset, open circuit operation

\section*{Ordering example for variants}

\section*{Characteristics}

\section*{Switching delay}

The characteristic shows the switching delay depending on the values of \(X_{a n}-X_{a b}\) when switching the current on or off. A slow current change reduces the delay
\(F=\frac{1 \text { applied }}{1 \text { setting }}\)

\section*{Connection Examples}

\section*{L/i - N auxiliary voltage \\ L/i - L/k current input}

Connection Example for IK 9272/100
Load in series to the contact. When overcurrent the load is turned off. The fault is stored. New start by pressing reset button or auxiliary voltage off, on.
Maximum continuous measuring current for this application is 5 A :

Connection Example with external galvanical seperation, e.g. via current transformer.
Attention: On the secondary side of the current transformer is the potential L.
\(\mathrm{L} / \mathrm{i}\) is allowed to be changed, so that the secondary side of the current ransformer has the potential N .

\section*{Circuit Diagram}

Function Diagram

- According to IEC/EN 60 255, DIN VDE 0435-303
- 2 independent relays in once enclosure
- 2 measuring ranges from 0.5 to 5 A
- Adjustable response values
- Fixed hysteresis
- Adjustable switching delay
- Closed circuit operation
- LED indicators
- with auyiliary voltage
- galvanic separation between Auxiliary Circuit and Measuring Circuit
- 2 models available:

IL 5201: 63 mm deep with terminals near to the bottom to be mounted in consumer units or industrial distribution systems according to DIN 43880
SL 5201: 100 mm deep with terminals near to the top to be mounted in cabinets with mounting plate and cable ducts
- Width: 35 mm

\section*{Approvals and Markings}

\section*{Application}

Overcurrent detection in single phase or 3-phase voltage systems
\begin{tabular}{|c|c|}
\hline Indicators & \\
\hline LEDs green: LEDs yellow: & on, when supply voltage connected on, when output relay active \\
\hline \multicolumn{2}{|l|}{Technical Data} \\
\hline \multicolumn{2}{|l|}{Measuring Circuit} \\
\hline \multicolumn{2}{|l|}{Measuring ranges} \\
\hline IL 5201/20007: & 2 separate Measuring Circuits 0.5 ... 5 A adjustable \\
\hline SL 5201/20007CT: & 2 separate Measuring Circuits 5 ... 50 A adjustable \\
\hline Nominal frequency: & \(50 . . .400 \mathrm{~Hz}\) \\
\hline \multirow[t]{2}{*}{Thermal continuous current ambient-temperature:} & \(20 \mathrm{~A} / 50^{\circ} \mathrm{C}\) \\
\hline & \(15 \mathrm{~A} / 60^{\circ} \mathrm{C}\) \\
\hline Temperature influence: & \(\leq 0.05 \% / \mathrm{K}\) \\
\hline Reaction time: & see characteristic switching delay \\
\hline Internal resistance: & \(<5 \mathrm{~m} \Omega\) \\
\hline
\end{tabular}

\section*{Setting Ranges}

Setting of
response value: infinetely variable at measuring range
Hysteresis:
Repeat accuracy:
Time delay tv: approx. 4 \% of setting range, factory set fixed value \(\leq \pm 1\) \%
\(0.1 \ldots 20\) s adjustable
Auxiliary Circuit
\begin{tabular}{ll}
Auxiliary voltage \(U_{H}:\) & AC \(220 \ldots 240 \mathrm{~V}\) \\
Voltage range: & \(0.8 \ldots 1 . \mathrm{U}_{\mathrm{H}}\) \\
Nominal consumption: & \(2 \times 2.3 \mathrm{VA}\) \\
Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
Frequency range: & \(\pm 5 \%\)
\end{tabular}

\section*{Technical Data}

\section*{Output}

Contacts:
thermal current \(I_{\text {th }}\) :
Switching capacity
to AC 15
NO contact:
NC contact:

\section*{Electrical life}
to AC 15 at 1 A, AC 230 V
NO contact:
Short circuit strength max. fuse rating: Mechanical life:
\(2 \times 1\) changeover contacts \(2 \times 5\) A

3 A / AC 230 V IEC/EN 60 947-5-1
1 A / AC 230 V
IEC/EN 60 947-5-1
\(3 \times 10^{5}\) switch. cycl. IEC/EN 60 947-5-1
4 AgL
IEC/EN 60 947-5-1
\(>50 \times 10^{6}\) switching cycles

General Data
Nominal operating mode: continuous operation
Temperature range:
\(20 \ldots+60^{\circ} \mathrm{C}\)
Clearance and creepage distance
rated impulse voltage /
pollution degree:
IEC 60 664-1
Auxiliary voltage-contacts:
\(4 \mathrm{kV} / 2\)
Auxiliary voltage-measur. circuit: \(6 \mathrm{kV} / 2\)
Measuring circuit-contacts: \(\quad 6 \mathrm{kV} / 2\)
The contacts are not designed for voltage systems with 400 / 690 V
EMC
\begin{tabular}{|c|c|c|}
\hline Electrostatic discharge (ESD) & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline HF irradiation: & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 4 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltage between} \\
\hline wires for power supply: & 2 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 4 kV & IEC/EN 61 000-4-5 \\
\hline interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection:} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & IP 20 & IEC/EN 60529 \\
\hline Housing: & \multicolumn{2}{|l|}{thermoplastic with VO behaviour accroding to UL subject 94} \\
\hline Vibration resistance: & frequency 10 ... 55 Hz , IEC/EN 60 068-2-6 & , IEC/EN 60 068-2-6 \\
\hline Climate resistance: & 20 / 060 / 04 & IEC/EN 60 068-1 \\
\hline Terminal designation: & \multicolumn{2}{|l|}{EN 50005} \\
\hline Wire connection: & \multicolumn{2}{|l|}{\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or} \\
\hline & \multicolumn{2}{|l|}{\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4} \\
\hline Wire fixing: & \multicolumn{2}{|l|}{Flat terminals with self-lifting} \\
\hline & clamping piece & IEC/EN 60 999-1 \\
\hline Mounting: & DIN rail & IEC/EN 60715 \\
\hline \multicolumn{3}{|l|}{Weight} \\
\hline IL 5201/20007: & \multicolumn{2}{|l|}{approx. 124 g} \\
\hline SL 5201/20007CT: & \multicolumn{2}{|l|}{approx. 245 g} \\
\hline
\end{tabular}

\section*{Dimensions}

IL 5201/20007:
\(35 \times 90 \times 63 \mathrm{~mm}\)
SL 5201/20007CT:
\(35 \times 90 \times 100 \mathrm{~mm}\)

\section*{Standard Types}

IL 5201/20007 AC \(220 \ldots 240\) V 50/60 Hz 0,5 ... 5 A
Article number: 0059589
- single phase
- 2 adjustable measuring ranges up to 5 A
- Closed circuit operation
- Auxiliary voltage \(U_{H} \quad\) AC \(220 \ldots 240 \mathrm{~V}\)
- \(2 \times 1\) changeover contacts
- Width: 35 mm

SL 5201/20007CT AC 220 ... 240 V \(50 / 60 \mathrm{~Hz} 5 \ldots 50 \mathrm{~A}\)
Article number: 0059807
- single phase
- 2 adjustable measuring ranges up to 50 A
- Closed circuit operation
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}} \quad \mathrm{AC} 220 \ldots 240 \mathrm{~V}\)
- \(2 \times 1\) changeover contacts
- Width: 35 mm

\section*{Switching delay}

The characteristic shows the switching delay depending on the values of \(X_{\text {on }}-X_{\text {off }}\) when switching the current on or off. A slow current change reduces the delay.
\(F=\frac{1 \text { applied }}{1 \text { setting }}\)

Installation / Monitoring Technique
VARIMETER
Undercurrent Relay
IK 9271, IL 9271, IP 9271, SK 9271, SL 9271, SP 9271

- According to IEC/EN 60 255-1
- IP 9271, SP 9271, SP 9271CT: 3-phase IK 9271, IL 9271, SK 9271, SL 9271, SL 9271CT: single phase
- Measuring ranges from 0.1 ... 100 A
- IK 9271, SK 9271:
with 4 ranges settable by rotational switch, 1 changeover contact
- IL 9271, SL 9271:
with 5 ranges settable by rotational switch, 1 changeover contact
with 4 ranges programmable by bridges, 2 changeover contacts
- IP 9271, SP 9271: with 1 range, 2 changeover contacts
- Settable response value
- Fixed hysteresis
- Settable time delay
- De-energized on trip
- Optionally energized on trip
- LED indicators
- With auxiliary voltage
- Auxiliary supply and measuring input galvanic separated
- Devices available in 2 enclosure versions:
- I-model, e.g. IK \(\qquad\) , depth 61 mm
with terminals at the bottom for installations systems
and industrial distribution systems according to DIN 43880
- S-model, e.g. SK \(\qquad\) , depth 100 mm
with terminals at the top for cabinets with mounting plate and cable duct
- Width IK 9271, SK 9271: 17.5 mm IL 9271, SL 9271, SL 9271CT: 35 mm IP 9271, SP 9271, SP 9271CT: 70 mm

\section*{Approvals and Markings}

*) only IL-devices

\section*{Applications}

Undercurrent detection in single phase or 3-phase voltage systems

\section*{Indicators}

IK 9271.11, SK 9271.11
IL 9271.11/5
SL 9271.11/5_-
green LED:
on when aux. supply connected
yellow LED: on when output contacts switched

IL 9271, SL 9271,
IP 9271, SP 9271:
green LED:
red LED \(I_{\text {max }}\) :
on when current within limits on when undercurrent

Function Diagram IL 9271.12, SL 9271.12

M7089_a

Function Diagram IP 9271, SP 9271

IK 9271.11, SK 9271.11

SL 9271.12CT

IL 9271.12, SL 9271.12

SP 9271.12CT

IL 9271.11/5__

IP 9271.12, SP 9271.12
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Technical Data} \\
\hline \multirow[t]{2}{*}{Type} & & & & & & \\
\hline & IK 9271 & SL 9271/5_- & IL 9271 & SL 9271CT & IP 9271 & SP 9271CT \\
\hline \begin{tabular}{l}
Depth 61 mm \\
Depth 100 mm
\end{tabular} & \[
\begin{aligned}
& \text { IK } 9271.11 \\
& \text { SK } 9271.11
\end{aligned}
\] & \[
\begin{aligned}
& \text { IL 9271.11/5_- } \\
& \text { SL 9271.11/5__ }
\end{aligned}
\] & \[
\begin{aligned}
& \text { IL } 9271.12 \\
& \text { SL } 9271.12
\end{aligned}
\] & SL 9271.12CT & \[
\begin{aligned}
& \text { IP } 9271.12 \\
& \text { SP } 9271.12
\end{aligned}
\] & SP 9271.12CT \\
\hline Width & 17.5 mm & 35 mm & 35 mm & 35 mm & 70 mm & 70 mm \\
\hline Measuring input & single-phase & single-phase & single-phase & single-phase & 3-phase & 3-phase \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Measuring range \\
(Nominal frequency
\[
50 \text {... } 400 \mathrm{~Hz})
\]
\end{tabular}} & \begin{tabular}{l}
0.1 ... 15 A \\
4 part ranges \\
settable with switch: \\
\(0.1 \ldots 1\) A \\
0.5 ... 5 A \\
1... 10 A \\
1.5 ... 15 A \\
Max. thermal continuous current: \\
20 A at \(50^{\circ} \mathrm{C}\) \\
15 A at \(60^{\circ} \mathrm{C}\)
\end{tabular} & \(0.1 \ldots 50 \mathrm{~A}\)
5 part ranges
settable with
switch:
\(0.1 \ldots 1 \mathrm{~A}\)
\(0.5 \ldots 5 \mathrm{~A}\)
\(2.5 \ldots 25 \mathrm{~A}\)
\(3 \ldots 30 \mathrm{~A}\)
\(5 \ldots 50 \mathrm{~A}\)
Max. thermal
continuous current:
50 A at \(50^{\circ} \mathrm{C}\)
60 A at \(40^{\circ} \mathrm{C}\) & & \[
\begin{array}{|c|}
\hline 0.5 \ldots 100 \mathrm{~A} \\
\\
4 \text { part ranges } \\
\text { programmable } \\
\text { with bridges: } \\
0.5 \ldots 5 \mathrm{~A}(\mathrm{Z} 1-\mathrm{Z} 2) \\
2.5 \ldots 25 \mathrm{~A}(\mathrm{Z} 1-\mathrm{Z}) \\
7.5 \ldots 75 \mathrm{~A}(\mathrm{Z1}-\mathrm{Z}) \\
10 \ldots 100 \mathrm{~A}(\mathrm{Z}-\mathrm{Z1}-\mathrm{Z4}) \\
\\
\begin{array}{c}
\text { Max. thermal } \\
\text { continuous current: } \\
\text { limited only by } \\
\text { diameter of cable } \\
25 \mathrm{~mm}^{2}
\end{array} \\
\hline
\end{array}
\] & \[
\begin{gathered}
0.1 \ldots 15 \mathrm{~A} \\
\\
1 \text { fixed } \\
\text { measuring range } \\
\text { per unit } \\
0.1 \ldots 1 \mathrm{~A} \\
0.5 \ldots 5 \mathrm{~A} \\
1 \ldots 10 \mathrm{~A} \\
1.5 \ldots 15 \mathrm{~A} \\
\\
\text { Max. thermal } \\
\text { continuous current: } \\
3 \times 15 \mathrm{At} 50^{\circ} \mathrm{C} \\
3 \times 20 \mathrm{~A} \text { at } 45^{\circ} \mathrm{C}
\end{gathered}
\] & \(0.5 \ldots 100 \mathrm{~A}\)
1 fixed
measuring range
per unit
\(0.5 \ldots 5 \mathrm{~A}\)
\(2.5 \ldots 25 \mathrm{~A}\)
\(5 \ldots 50 \mathrm{~A}\)
\(7.5 \ldots 75 \mathrm{~A}\)
\(10 \ldots 100 \mathrm{~A}\)
Max. thermal
continuous current:
limited only by
diameter of cable
\(25 \mathrm{~mm}^{2}\) \\
\hline & \begin{tabular}{l}
5 ... \(750 \mathrm{~mA}^{*)}\) \\
4 part ranges \\
settable with switch: \\
5 ... 50 mA \\
25 ... 250 mA \\
50 ... 500 mA \\
75 ... 750 mA \\
Max. thermal continuous current: 5 A at \(50^{\circ} \mathrm{C}\)
\end{tabular} & & \begin{tabular}{l}
0.01 ... 1.5 A \\
4 part ranges programmable with bridges:
\[
\left|\begin{array}{c}
0.01 \ldots . .0 .1 \mathrm{~A}(\mathrm{Z} 1-\mathrm{Z}) \\
0.5 \ldots . .0 .5 \mathrm{~A}(\mathrm{Z} 1-\mathrm{Z}) \\
0.1 \ldots .1 \mathrm{~A}(\mathrm{Z1}-\mathrm{Z}) \\
0.15 \ldots . .1 .5 \mathrm{~A}(\mathrm{Z2}-\mathrm{Z} 1-\mathrm{Z} 4)
\end{array}\right|
\] \\
Max. thermal continuous current: 20 A at \(50^{\circ} \mathrm{C}\) \\
15 A at \(60^{\circ} \mathrm{C}\)
\end{tabular} & & & \\
\hline Max. current at \(50^{\circ} \mathrm{C}\) & & all ranges 80 A / 3 s & & & & \\
\hline \begin{tabular}{l}
Wire current path Solid \\
Stranded ferruled
\end{tabular} & \[
\begin{aligned}
& 2 \times 2.5 \mathrm{~mm}^{2} \\
& 2 \times 1.5 \mathrm{~mm}^{2}
\end{aligned}
\] & \[
\begin{gathered}
1 \times 10 \mathrm{~mm}^{2} \\
1 \times 6 \mathrm{~mm}^{2}
\end{gathered}
\] & \[
\begin{aligned}
& 2 \times 2.5 \mathrm{~mm}^{2} \\
& 2 \times 1.5 \mathrm{~mm}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \text { CT-diameter }=10 \mathrm{~mm} \\
& 25 \mathrm{~mm}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& 2 \times 2.5 \mathrm{~mm}^{2} \\
& 2 \times 1.5 \mathrm{~mm}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \text { CT-diameter }=10 \mathrm{~mm} \\
& 25 \mathrm{~mm}^{2}
\end{aligned}
\] \\
\hline Contacts & 1 changeover & 1 changeover & 2 changeover & 2 changeover & 2 changeover & 2 changeover \\
\hline Weight: & \[
\begin{aligned}
& \text { IK } 9271: 70 \mathrm{~g} \\
& \text { SK } 9271: 90 \mathrm{~g}
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { IL } 9271 / 5 _: 125 \mathrm{~g} \\
\text { SL } 9271 / 5 _=: 150 \mathrm{~g}
\end{array}
\] & \[
\begin{aligned}
& \text { IL 9271: } 125 \mathrm{~g} \\
& \text { SL } 9271: 150 \mathrm{~g}
\end{aligned}
\] & approx. 230 g & \[
\begin{aligned}
& \text { IP } 9271: 200 \mathrm{~g} \\
& \text { SP } 9271: 250 \mathrm{~g}
\end{aligned}
\] & approx. 470 g \\
\hline
\end{tabular}
*) Rated impulse voltage / pollution degree (auxiliary voltage - measuring circuit): \(4 \mathrm{kV} / 2\)
\begin{tabular}{|c|c|}
\hline Technical Data & \\
\hline \begin{tabular}{l}
Max. overload: \\
Temperature influence: \\
Reaction time:
\end{tabular} & \[
\begin{aligned}
& \text { see table } \\
& \leq 0.05 \% / \mathrm{K} \\
& \text { see characteristic switching delay }
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Setting Ranges} \\
\hline \begin{tabular}{l}
Response value: Hysteresis: \\
Repeat accuracy: \\
Switching delay:
\end{tabular} & \begin{tabular}{l}
infinite variable within measuring range approx. \(4 \%\) of setting value, fixed \(\leq \pm 1 \%\) \\
0.1 ... 20 sec settable
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Auxiliary Circuit} \\
\hline Auxiliary voltage \(\mathrm{U}_{\mathbf{H}}\) : & AC/DC \(24 \mathrm{~V}, \mathrm{AC} 220\)... 240 V other voltages on request \\
\hline \begin{tabular}{l}
Voltage range \\
at AC: \\
at \(D C\) : \\
Nominal consumption \\
at AC 230 V :
\end{tabular} & \[
\begin{aligned}
& 0.8 \ldots 1.1 U_{H} \\
& 0.8 \ldots 1.25 U_{H}
\end{aligned}
\] \\
\hline IL/SL 9271, IP/SP 9271: & 3.2 VA \\
\hline IK/SK 9271, IL/SL 9271/500: at DC 24 V : & 2.3 VA \\
\hline IL/SL 9271, IP/SP 9271: & 0.8 W \\
\hline IK/SK 9271, IL/SL 9271/500: & 0.4 W \\
\hline Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
\hline Frequency range: & \(\pm 5 \%\) \\
\hline \multicolumn{2}{|l|}{Output} \\
\hline \multicolumn{2}{|l|}{Contacts} \\
\hline IK 9271.11, SK 9271.11 & \\
\hline IL/SL 9271.11/5 & 1 changeover contact \\
\hline IL 9271.12, SL 9271.12 & \\
\hline SL 9271.12CT: & 2 changeover contacts \\
\hline IP 9271.12, SP 9271.12 & \\
\hline SP 9271.12CT: & 2 changeover contacts \\
\hline Thermal current \(\mathrm{I}_{\text {th }}\) : & 5 A \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Switching capacity to AC 15 NO contact:}} \\
\hline & \\
\hline IK 9271, IL 9271/5__: & 3 A AC 230 V IEC/EN 60 947-5-1 \\
\hline NC contact: & IEC/EN 60 947-5-1 \\
\hline IL/SL 9271, IP/SP 9271, & \\
\hline SL 9271CT, SP 9271CT: & \(5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline NC contact: & \(2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline Electrical life & IEC/EN 60 947-5-1 \\
\hline to AC 15 bei \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) NO contact & \\
\hline IK/SK 9271, IL/SL 9271/5 947-5-1 & \(3 \times 10^{5}\) switching cycles IEC/EN 60 \\
\hline \begin{tabular}{l}
to AC 15 at \(2 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) \\
IL/SL 9271, IP/SP 9271,
\end{tabular} & \\
\hline SL 9271CT, SP 9271CT: 947-5-1 & \(2 \times 10^{5}\) switching cycles IEC/EN 60 \\
\hline \multicolumn{2}{|l|}{Short-circuit strength max. fuse rating:} \\
\hline IK/SK 9271, IL/SL 9271/5__: & \multirow[t]{2}{*}{4 AgL} \\
\hline IL/SL 9271, IP/SP 9271 & \\
\hline SL 9271CT, SP 9271CT: & \multirow[t]{2}{*}{\(10 \mathrm{AgL} \quad\) IEC/EN 60 947-5-1
\(>50 \times 10^{6}\) switching cycles} \\
\hline Mechanical life: & \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Technical Data & \\
General Data & \\
Operating mode: & Continuous operation \\
Temperature range & \(-20 \ldots+60^{\circ} \mathrm{C}\) \\
Operation: & \(-25 \ldots+70^{\circ} \mathrm{C}\) \\
Storage: & \(<2.000 \mathrm{~m}\) \\
Altitude: &
\end{tabular}

\section*{Clearance and creepage distances}
rated impulse voltage/
pollution degree:
IEC 60 664-1
\begin{tabular}{|l|c|c|c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & IP/SP & \begin{tabular}{c}
IK/SK \\
\multicolumn{1}{c|}{} \\
\multicolumn{1}{c|}{} \\
IL/SL-devices/5_-
\end{tabular} & IL/SL \\
\hline Auxiliary voltage - Contacts & \(4 \mathrm{kV} / 2\) & \(4 \mathrm{kV} / 2\) & \(4 \mathrm{kV} / 2\) \\
Auxiliary voltage - Measuring circuit & \(6 \mathrm{kV} / 2\) & \(\left.6 \mathrm{kV} / 2^{*}\right)\) & \(4 \mathrm{kV} / 2\) \\
Measuring circuit - Contacts & \(6 \mathrm{kV} / 2\) & \(6 \mathrm{kV} / 2\) & \(4 \mathrm{kV} / 2\) \\
Measuring circuit-Measuring circuit & \(6 \mathrm{kV} / 2\) & - & - \\
Contacts-Contacts & \(4 \mathrm{kV} / 2\) & - & \(4 \mathrm{kV} / 2\) \\
\hline
\end{tabular}

The contacts are not designed for voltage systems with \(400 / 690 \mathrm{~V}\).
*) \(4 \mathrm{kV} / 2\) at IK/SK 9271 with measuring range \(5 \ldots .750 \mathrm{~mA}\) and IK 9271.11/800

\section*{EMC}

Electrostatic discharge: \(\quad 8 \mathrm{kV}\) (air) IEC/EN 61 000-4-2
HF irradiation:
IK/SK9271, IP/SP 9271,
SL/SP 9271:
\begin{tabular}{|c|c|c|}
\hline 80 MHz ... 1 GHz : & \(20 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline 1 GHz ... 2.7 GHz : & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline \multicolumn{3}{|l|}{SL/SP 9271CT, SL9271/5:} \\
\hline 80 MHz ... 2.7 GHz : & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 4 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltages between wires for power supply} \\
\hline IK/SK 9271, IL/SL 9271/5__: & 2 kV & IEC/EN 61 000-4-5 \\
\hline IL/SL 9271, IP/SP 9271, & & \\
\hline SL/SP 9271CT: & 1 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & & \\
\hline IK/SK 9271, IL/SL 9271/5__: & 4 kV & IEC/EN 61 000-4-5 \\
\hline \multicolumn{3}{|l|}{IL/SL 9271, IP/SP 9271 ,} \\
\hline SL/SP 9271CT: & 2 kV & IEC/EN 61 000-4-5 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection:} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline
\end{tabular}

Housing
P
IEC/EN 60529
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Min. cross section:
Insulation of wires
or sleeve length:
Wire fixing:
Thermoplastic with Vo behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20/060/04 IEC/EN 60 068-
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
\(0,6 \mathrm{~mm}^{2}\)
10 mm
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1
Fixing torque:
0.8 Nm

Mounting:
DIN rail
IEC/EN 60715
Dimensions

\section*{Width x height x depth}

IK 9271:
\(17.5 \times 90 \times 61 \mathrm{~mm}\)
SK 9271: \(\quad 17.5 \times 90 \times 100 \mathrm{~mm}\)
IL 9271: \(\quad 35 \times 90 \times 61 \mathrm{~mm}\)
SL 9271, SL 9271CT: \(35 \times 90 \times 100 \mathrm{~mm}\)
IP 9271: \(\quad 70 \times 90 \times 61 \mathrm{~mm}\)
SP 9271, SP 9271CT: \(\quad 70 \times 90 \times 100 \mathrm{~mm}\)

\section*{CCC-Data}

\section*{Switching capacity}
to AC 15:
5 A / AC 230 V
IEC/EN 60 947-5-1

\section*{to DC 13:}
2 A / DC 24 V
IEC/EN 60 947-5-1

\section*{Standard Types}

IK 9271.11 AC 220 ... 240 V \(50 / 60 \mathrm{~Hz} \quad 0.1\)... 15 A
Article number: 0050331
SK 9271.11 AC 220 ... 240 V 50/60 Hz 0.1 .. 15 A
Article number: 0050647
- Single phase
- 4 programmable ranges up to 15 A
- energized on trip
- Auxiliary voltage \(U_{H}\) :
- 1 changeover contact
- Width:

AC 220 ... 240 V
17.5 mm

IP 9271.12 AC \(220 \ldots 240 \mathrm{~V}\) 50/60 Hz 0.5 ... 5 A
Article number:
0049961
SP 9271.12 AC \(220 \ldots 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} 0.5 \ldots 5 \mathrm{~A}\)
Article number:
- 3-phase
- Range:

0050648
- de-energized on trip
- Auxiliary voltage \(U_{H}\) :
- 2 changeover contacts
- Width:
\(0.5 \ldots 5 \mathrm{~A}\)
AC 220 ... 240 V
70 mm

\section*{Variants}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{IK 9271.11/010, SK 9271.11/010:} & single phase current relay energized on trip, \\
\hline & 1 changeover contact \\
\hline IK 9271.11/800: & single phase current relay energized on trip, exept with \\
\hline & 1 measuring ranges from \\
\hline & 1 changeover contact \\
\hline \multirow[t]{2}{*}{IL 9271.12/010, SL 9271.12/010:} & single phase current relay energized on trip, \\
\hline & 2 changeover contacts \\
\hline IL 9271.11/500, SL 9271.11/500: & same as IK/SK 9271.11, except with 5 measuring ranges from \(0.1 \ldots 50\) A \\
\hline IL 9271.11/510, SL 9271.11/510: & same as IK/SK 9271.11/010, except with 5 measuring ranges from 0.1 ... 50 A \\
\hline \multirow[t]{2}{*}{IP 9271.12/010, SP 9271.12/010:} & 3 -phase current relay energized on trip \\
\hline & 2 changeover contacts \\
\hline \multirow[t]{3}{*}{SL 9271.12CT:} & single phase current relay with built in CT, \\
\hline & de-energized on trip, \\
\hline & 2 changeover contacts \\
\hline \multirow[t]{3}{*}{SP 9271.12CT:} & 3 -phase current relay \\
\hline & de-energized on trip, \\
\hline & 2 changeover contacts \\
\hline
\end{tabular}

\section*{Ordering example for variants}

\section*{Characteristics}

Switching delay
The characteristic shows the switching delay depending on the values of \(X_{\text {on }}-X_{\text {off }}\) when switching the current on or off. A slow current change reduces the delay.
\(F=\frac{1 \text { applied }}{1 \text { setting }}\)

- According to IEC/EN 60255
- Single phase
- Measuring ranges from \(0.05 \ldots 10 \mathrm{~A}\)
- Setting value adjustable from \(0.1 \ldots 1\) N
- Fixed hysteresis approx. 4 \%
- Settable switching delay
- Closed circuit operation
- Optionally open circuit operation
- Automatic reset
- Optionally manual reset, reset button on the front
- LED indication for auxiliary voltage and contact position
- 1 changeover contact
- Devices available in 2 enclosure versions:

IK 9273: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SK 9273: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 17.5 mm

Approvals and Markings

\section*{C}

\section*{Application}

Undercurrent monitoring in AC voltage power supplies

\section*{Indication}
green LED:
yellow LED:
on when auxiliary supply connected on when output contacts switched

\section*{Function Diagram}

\section*{Notes}

Auxiliary voltage and measuring circuit are not galvanically seperated. Thus they need, the same reference potential " N " if there is no external galvanic seperation, e.g. through a current transformer see Application Examples.

\section*{Technical Data}

Input
Measuring ranges:

Nominal frequency of measuring current: Maximum continuous measuring current: at AC \(50 \ldots 500 \mathrm{~mA}\) : at AC \(0.1 \ldots 1 \mathrm{~A}\) : at AC \(0.5 \ldots 5 \mathrm{~A}\) : at AC 1 ... 10 A:
Max. overload:
at AC \(50 \ldots 500 \mathrm{~mA}\) :
at AC \(0.1 \ldots 1\) A:
at AC \(0.5 \ldots 5 \mathrm{~A}\) :
at AC 1 ... 10 A:
Temperature influence:
Reaction time:

\section*{Setting Ranges}

Response value:
Hysteresis:
Setting accuracy:
Repeat accuracy:
Switching delay tv:

\section*{Auxiliary Circuit}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :
Voltage range:
Nominal consumption
at AC 230 V :
Nominal frequency:
Frequency range:

\section*{Output \\ Contacts}
\begin{tabular}{|c|c|c|}
\hline IK 9273.11, SK 9273.11: & \multicolumn{2}{|l|}{} \\
\hline Thermal current \(\mathrm{I}_{\text {th }}\) : & \multicolumn{2}{|l|}{1 changeover contact
5 A} \\
\hline \multicolumn{3}{|l|}{Switching capacity} \\
\hline NO contact: & \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline Electrical life & & IEC/EN 60 947-5-1 \\
\hline to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) & & \\
\hline NO contact: & \multicolumn{2}{|l|}{\(3 \times 10^{5}\) switching cycles} \\
\hline Short circuit strength & & \\
\hline max. fuse rating: & 4 AgL & IEC/EN 60 947-5-1 \\
\hline Mechanical life: & \(>10^{8}\) Schalts & \\
\hline
\end{tabular}

General Data

Operating mode:
Temperature range:
Clearance and creepage distances
rated impulse voltage / pollution degree:

AC \(50 \ldots 500 \mathrm{~mA}\)
AC 0.1 ... 1 A
AC 0.5 ... 5 A
AC \(1 \ldots 10\) A
higher currents via external current transformer (2.5 VA)
\(50 / 60 \mathrm{~Hz}\)
2.5 A , at \(50^{\circ} \mathrm{C}\) ambient temperature 5 A , at \(50^{\circ} \mathrm{C}\) mabient temperature 11 A , at \(50^{\circ} \mathrm{C}\) ambient temperature 15 A , at \(50^{\circ} \mathrm{C}\) ambient temperature

8 A, max. 3 s
10 A, max. 3 s
\(20 \mathrm{~A}, \max .3 \mathrm{~s}\)
20 A, max. 3 s
\(\leq 0.2 \%\) / K
see characteristics, switching delay
infinite variable within measuring range approx. 0.96 of setting value, fixed approx. 4 \% hysteresis
\(\leq \pm 10 \%\) of setting value
\(\leq \pm 1 \%\)
0.1 ... 20 s adjustable

AC 115 ... 127 V , AC 220 ... 240 V
0.8 ... 1.1 U
5.5 VA
\(50 / 60 \mathrm{~Hz}\) \(\pm 5\) \%

Thermal current \(\mathrm{t}_{\text {th }}\) :
to AC 15
NO contact:
\(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
IEC/EN 60 947-5-1 IEC/EN 60 947-5-1
o AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\)
NO contact:
ort circuit strength
Mechanical life:

\section*{Technical Data}

\section*{EMC}

Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground: HF wire guided: Interference suppression:
Degree of protection:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation: Wire connection:

Wire fixing:
Fixing torque:
Mounting:
Weight
K 9273:
SK 9273:
Dimensions
\begin{tabular}{ll}
Width \(x\) heigth \(x\) depth & \\
IK 9273: & \(17.5 \times 90 \times 59 \mathrm{~mm}\) \\
SK 9273: & \(17.5 \times 90 \times 98 \mathrm{~mm}\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Standard Types} \\
\hline IK 9273.11 AC 220 ... 240 V & \(50 / 60 \mathrm{~Hz} 10 \mathrm{~A}\) \\
\hline Article number: & 0050544 \\
\hline - Closed circuit operation & \\
\hline Output: & 1 changeover contact \\
\hline Nominal voltage UV: & AC 220 ... 240 V \\
\hline - Measuring range: & 1 ... 10 A \\
\hline Width: & 17.5 mm \\
\hline SK 9273.11 AC 220 ... 240V & \(50 / 60 \mathrm{~Hz} 10 \mathrm{~A}\) \\
\hline Article number: & 0054747 \\
\hline Closed circuit operation & \\
\hline - Output: & 1 changeover contact \\
\hline - Nominal voltage U & AC \(220 \ldots 240 \mathrm{~V}\) \\
\hline - Measuring range: & \(1 . . .10 \mathrm{~A}\) \\
\hline - Width: & 17.5 mm \\
\hline
\end{tabular}

\section*{Variants}

K 9273.11/010:
IK 9273.11/100:
IK 9273.11/110:
Open circuit operation
Manual reset, closed circuit operation
Manual reset, open circuit operation

\section*{Ordering example for variants}

\section*{Characteristics}

\section*{Switching delay}

The characteristic shows the switching delay depending on the values of \(X_{a n}-X_{a b}\) when switching the current on or off. A slow current change reduces the delay.
\(F=\frac{1 \text { applied }}{1 \text { setting }}\)

\section*{Application Examples}

\[
\begin{array}{ll}
\text { L/i }-\mathrm{N} & \text { auxiliary voltage } \\
\mathrm{L} / \mathrm{i}-\mathrm{L} / \mathrm{k} & \text { current input }
\end{array}
\]

Connection Example for IK 9273/100 + IK 9273
Load in series to the contact. When undercurrent the load is turned on. The fault is stored. New start by pressing reset button or auxiliary voltage off, on.Maximum continuous measuring current for this application is 5 A .

Connection Example with external galvanic seperation, e.g. by current transformer
Attention: On the secondary side of the current transformer is the potential L.
\(\mathrm{L} / \mathrm{i}\) is allowed to be exchanged, so that the secondary side of the current transformer has the potential N .

VARIMETER

\section*{Current Monitor}
- According to IEC/EN 60 255, DIN VDE 0435-303
- Measuring range 0.175 ... 1 A
- Fixed switching point setting
- High maximum load
- As option with semiconductor output
- Width

IK 8839: 17.5 mm
IL 8839: 35 mm

\section*{Approvals and Markings}

\section*{Application}

For monitoring the operation of consumers that are primarily electrothermal in nature, e.g. heating spirals, supplementary tubular heaters. The current monitor checks whether the operating current is flowing when the consumer is switched on.

\section*{Technical Data}

Input

\section*{Switching point, fixed:}

AC 0.175 A:
AC 0.75 A :
AC 1.0 A:
Switching tolerance: Frequency influence: Auxiliary voltage \(\mathbf{U}_{H}\) :

Voltage range:
Nominal consumption

\section*{at AC 230 V :}
apparent power:
active power:
Nominal frequency:
Nominal consumption:

\section*{Output}

\section*{Contacts}

IK 8839.11:
Operate time:
Thermal current \(I_{\text {th }}\) : Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life
to AC 15 at \(5 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\)
to AC 15 at \(8 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Permissible switching
frequency:
Short circuit strength
max. fuse rating:
Mechanical life:

Permanent maximum load
2 s
AC 5 A
AC 16 A
AC 20 A AC 150 A
AC 20 A AC 150 A
\(\pm 15 \%\)
48 ... 52 Hz / - 8 \% ... +3 \%
AC/DC \(24 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 48 \mathrm{~V}\)
AC 110 ... \(127 \mathrm{~V}, \mathrm{AC} 220\)... 230 V
\(0.8 \ldots 1.1 U_{N}\)
\(50 / 60 \mathrm{~Hz}\)
2.2 VA
0.5 W

50 Hz
\(\pm 5\) \%

z
z
n

1 changeover contact
approx. 60 ms
5 A

3 A / AC 230 V
IEC/EN 60 947-5-1 IEC/EN 60 947-5-1 IEC/EN 60 947-5-1
approx. \(10^{5}\) switching cycles
approx. \(5 \times 10^{4}\) switching cycles
3000 / h
4 AgL
IEC/EN 60 947-5-1
\(20 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}

Operating mode: Temperature range: Clearance and creepage distances
rated impulse voltage /
pollution degree:

\section*{Semiconductor Output}

\section*{Output}

IL 8839.95:
Output voltage:
Min. output voltage \(\mathrm{U}_{\mathrm{ON}}\) :
Clearance and creepage distances
\(I_{\text {max. }}\)
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground: Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

4 kV / 2
IEC 60 664-1

Transistor
DC \(24 \mathrm{~V}(0 \ldots 30 \mathrm{~V})\)
\(<0.3 \mathrm{~V}\)
4 kV / 2
5 A
8 kV (air) IEC/EN 61 000-4-2
\(10 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3
2 kV

1 kV
2 kV
Limit value class B
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IP 40 IEC/EN 60529

IP 20 IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6
Frequency 10 ... 55 Hz
20/060/04 IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
Terminals with self-lifting
clamping piece IEC/EN 60 999-1

Mounting:
Weight:
DIN rail IEC/EN 60715
70 g
Dimensions
Width \(\mathbf{x}\) height \(\mathbf{x}\) depth: \(\quad 17.5 \times 89 \times 58 \mathrm{~mm}\)

\section*{Standard Type}

IK 8839.11 AC 230 V 50 Hz 1 A
Article number: 0054134 stock item
- Output: 1 changeover contact
- Auxiliary voltage \(U_{H}\) : \(\quad\) AC 230 V
- Switching point: 1 A
- Width: 17.5 mm
Variants

IK 8839.11/100: with an inverted output
IK 8839.11/001: with a fixed operate delay
\(180 \ldots 300 \mathrm{~ms}\)
IK 8839.01/150, IK 8839.05/150
IK 8839.01/250, IK 8839.05/250:with High current terminals max. \(16 \mathrm{~mm}^{2}\) solid max. \(6 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4
IK 8839.01/150: with a fixed switching point AC 1.0 A, permanent maximum load: 40 A ,
1 NO contact
same as IK 8839.01/150, but with 1 NC contact
same as IK 8839.01/150, but with an inverted output
same as IK \(8839.05 / 150\), but with an inverted output

Ordering example for variants

\section*{Specification for Tender for IK 8839}

Current monitor according to IEC/EN 60 255, DIN VDE 0435-303 to be built in consumer units. Switching point AC 0.175 A ... 5 A permanent, can be overloaded for a short time for \(2 \mathrm{~s} . . .16\) A. 1 changeover contact.
Width 17.5 mm
Type IK 8839
Manufactured by E. DOLD \& SÖHNE KG
Current monitor according to IEC/EN 60 255, DIN VDE 0435-303 to be built in consumer units. Switching point AC 0.175 A ... 20 A permanent, can be overloaded for a short time for 2 s ... 150 A. 1 changeover contact. Width 17.5 mm
Type IK 8839
Manufactured by E. DOLD \& SÖHNE KG
Current monitor according to IEC/EN 60 255, DIN VDE 0435-303 to be built in consumer units. Switching point AC 1.0 A ... 20 A permanent, can be overloaded for a short time for 2 s ... 150 A. 1 changeover contact.
Width 17.5 mm
Type IK 8839
Manufactured by E. DOLD \& SÖHNE KG

Function Diagram

\section*{Circuit Diagrams}

P 9278.12

SP 9278.12CT
- According to IEC/EN 60 255, DIN VDE 0435-303
- IP 9278, SP 9278: 3-phase
- Measuring range IP 9278, SP 9278: up to 15 A

SP 9278CT: up to 100 A
- 2 changeover contacts
- Adjustable asymmetry
- Settable time delay
- Open circuit operation
- LED indicators
- With auxiliary voltage
- Auxiliary supply and measuring input galvanic separated
- As option with external remote reset
- Width 70 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Applications}

Monitoring of current asymmetry in 3-phase systems e.g. monitoring of heating elements, heating and load circuits

\section*{Indicators}

LED green:
LED yellow:
LED red:
on when aux. supply connected on when output contacts switched, flashes during timing
Failure code:
1 short pulse, followed by longer space = failure in current path \(\mathrm{i} 1 / \mathrm{k} 1\)
2 short pulses, followed by longer space \(=\) failure in current path i2/k2 3 short pulses, followed by longer space = failure in current path i3/k3
4 short pulses, followed by longer space = current is out of operating range

\section*{Function}

The IP 9278 monitors 3 currents (phases) on asymmetry.
Within the operating range the device searches continuously for the 2 currents with the smallest current difference in \%.
The currents in these 2 paths are the reference for the asymmetry calculation of the third current path. The asymmetry is adjustable within \(10 \ldots 40 \%\).

If asymmetry is detected, the fault is indicated after an adjustable time delay \(t_{v}\) by 2 changeover contacts. Without bridge the fault is stored, with bridge it auto resets.
The flashing code on the red LED indicates in which current path the failure occurred.
The reset is made by disconnecting the auxiliary voltage.
On request the unit is also available with remote reset.

\section*{Notes}

For small currents at the bottom end of the operating range it is recommended to adjust the asymmetry value slightly higher to reduce the response sensitivity.

Asymmetry \(\pm 40 \%\) :

\section*{Technical Data}

\section*{General Data}

Operating mode: Continuous operation
Temperature range: \(-20 \ldots+60^{\circ} \mathrm{C}\)
Clearance and creepage distances
rated rated impulse voltage voltage/ pollution degree:

IEC 60 664-1
Supply - contacts: \(4 \mathrm{kV} / 2\)
Supply - Measuring circuit: \(\quad 6 \mathrm{kV} / 2\)
Measuring circuit - contacts: \(6 \mathrm{kV} / 2\)
Measuring circuit -
Measuring circuit - \(\quad 6 \mathrm{KV} / 2\)
The contacts are not designed for voltage systems with 400 / 690 V EMC
adjustable within the operating range
10 ... \(40 \%\) compared to the mean
value of the 2 current paths with the lowest difference.
Repeat accuracy:
Time delay \(\mathrm{t}_{\mathrm{v}}\) :
\(\leq \pm 1 \%\)
0.1 ... 20 s settable (logarithmic scale)

Auxiliary Circuit
\begin{tabular}{ll}
Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}:\) & \begin{tabular}{l}
\(\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}, \mathrm{AC} 220 \ldots 240 \mathrm{~V}\) \\
others on request
\end{tabular} \\
Voltage range & \\
at AC: & \(0.8 \ldots 1.1 \mathrm{U}_{H}\) \\
at DC: & \(0.8 \ldots 1.25 \mathrm{U}_{H}\) \\
Nominal consumption & 3.2 VA \\
at AC 230 V: & 1 W \\
at DC 2 V \\
Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
Frequency range: & \(\pm 5 \%\)
\end{tabular}

Output

\section*{Contacts}

IP 9278.12, SP 9278.12CT:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\)
NO contact:
Short-circuit strength
max. fuse rating:
Mechanical life:

2 changeover contacts
5 A
\(5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
IEC/EN 60 947-5-1
\(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
IEC/EN 60 947-5-1
\(2 \times 10^{5}\) switch. cycl. IEC/EN 60 947-5-1
10 A gL IEC/EN 60 947-5-1
\(>50 \times 10^{6}\) switching cycles
\begin{tabular}{lll}
Electrostatic discharge: & 8 kV (air) & IEC/EN 61 000-4-2 \\
HF irradiation: & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3
\end{tabular}

Surge voltages between
wires for power supply:
between wire and ground:
Interference suppression:
Degree of protection
Housing:
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
Limit value class B
EN 55011

Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Current path i/k
on SP 9278CT:
\(10 \mathrm{~V} / \mathrm{m}\)
4 kV
1 kV

IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Thermoplastic with Vo behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20/060/04
IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
\(3 \times 25 \mathrm{~mm}^{2}\) with insulation
\(\max .10 \mathrm{~mm} \varnothing\)
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting clamping piece IEC/EN 60 999-1
DIN rail
IEC/EN 60715
Weight
IP 9278: \(\quad 200 \mathrm{~g}\)
SP 9278CT:
300 g
Dimensions
\begin{tabular}{ll}
Width \(\times\) height x depth & \\
IP 9278: & \(70 \times 90 \times 61 \mathrm{~mm}\) \\
SP 9278CT: & \(70 \times 90 \times 100 \mathrm{~mm}\)
\end{tabular}

\section*{Standard Type}

IP 9278.12 AC/DC 24 V 1 ... \(15 \mathrm{~A} \quad 0.1\)... 20 s
Article number: 0057915
- Measuring range:
- 2 changsover contacts
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : \(\quad \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}\)
- Time delay:
0.1 ... 20 s

\section*{Variants}

IP 9278.12/100: Variant with external remote reset control voltage on terminals X1-X2 AC/DC \(10 \ldots 265 \mathrm{~V}\) for reset

\section*{Ordering example for variants}

MK 9397N

MH 9397

\section*{Product description}

The Load monitor MK9397 and MH9397 of the varimeter family monitor reliably the load of motors as well as the function of 3 phase electrical users.

If the measured value falls under or goes over the adjusted settings the corresponding output relay is energised. To avoid unnecessary tripping a response delay \(\mathrm{t}_{\mathrm{v}}\) can be adjusted between 0 and 10 s . LEDs show the status of the output relays.

\section*{Function Diagram}

\section*{Your Advantage}
- Preventive maintenance
- For a evaluate time
- Quicker fault locating
- Precise and reliable
- Overload detection, as option also with prewarning
- Can also be used for underload monitoring
- Simple adjustment and fault diagnostics
- Space and cost saving

\section*{Features}
- According to EN 60255-1
- Active power measuring
- Relay output

MK 9397N: 1 changeover contact
MH 9397: 1 changeover contact each for overload and prewarning
- On delay
- Closed circuit operation
- As option open circuit operation
- As option with plugable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- MK 9397N: Width 22,5 mm

MH 9397: Width 45 mm

\section*{Approvals and Markings}

\section*{Application}

The load monitor is suitable to monitor industrial motors with variable load as well as to monitor the correct function of electrical users. The units can detect in time wearing or failures on machines and tools. So maintenance can be carried out before a plant stops.

\section*{Function}

The load monitor monitors the effective power of electrical consumers. As the current is only measured in one phase a symmetric load in a 3 phases is assumed. as it is usual with motors. The setting value is adjusted with potentiometers, the range selection by rotational switches. The MH 9397 has 2 response values (e.g. for prewarning).

MK 9397N
MH 9397

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1 / A2 & Auxiliary voltage \\
\hline K / L1/i & Current path (current at phase L1) \\
\hline L1 / L2 / L3 & Supply \\
\hline \(11 / 12\) / 14 & Contacts relay 1 \\
\hline \(21 / 22\) / 24 & \begin{tabular}{l}
Contacts relay 2 \\
(only at MH 9397)
\end{tabular} \\
\hline
\end{tabular}

\section*{Connection notes}

The unit can also be used on single phase loads. the terminals L2 and L3 have to be bridged in this case. The device also switches at the set points in the case of reverse power. Overload in the current path is indicated by fast flashing of the LEDs.

\section*{Geräteanschluss}

The connection has to be done according to the connection diagrams. To connect the motor current of L1 the terminals \(i\) and \(k\) are used.. For current exceeding the limits of the device an additional current transformer has to be used.

\section*{Setting}

2 rotational switches for \(\mathrm{P}_{1}\)
rotary switch 1: fine adjustment
rotary switch \(2: \quad 8\) ranges adjustable:
0 ... 1 kW
1 ... 2 kW
2 ... 3 kW

7 ... 8 kW
2 rotational switches for \(\mathrm{P}_{2}\)
rotary switch 3 :
rotary switch 4:
rotary switch t \(\mathrm{t}_{\mathrm{v}}\) :
Example Response value: 5.2 kW
fine adjustment
(upper rotary switch):
0,2 kW

\section*{Bereichswahl}
(lower rotary switch):
\(5 \ldots 6 \mathrm{~kW}\)
fine adjustment
8 ranges adjustable:
0 ... 1 kW
1 ... 2 kW
2 ... 3 kW

7 ... 8 kW
-

kW

\section*{Indication}

The LED indicate the state.
green LED, UN: on, when auxiliary voltage present
\begin{tabular}{lll}
green LED, P1: & \begin{tabular}{l}
flashes: \\
permanently on:
\end{tabular} & \begin{tabular}{l}
during time delay \\
Relay 1 active
\end{tabular} \\
(only at MH 9397) & & \\
green LED, P2: & \begin{tabular}{l}
flashes: \\
permanently on:
\end{tabular} & \begin{tabular}{l}
during time delay \\
Relais 2 active
\end{tabular}
\end{tabular}

Overload within the current range is indicated by fast flashing of the LED.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Technical Data} & \multicolumn{3}{|l|}{Technical Data} \\
\hline \multicolumn{2}{|l|}{Auxiliary Voltage A1/ A2} & \multicolumn{3}{|l|}{General Data} \\
\hline \multicolumn{2}{|l|}{Nominal auxiliary voltage \(\mathrm{U}_{H}\) :} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Nominal operating mode: continuous operation Temperature range: \(-20 \ldots+60^{\circ} \mathrm{C}\)}} \\
\hline \multicolumn{2}{|l|}{MK 9397N: \(\quad\) DC \(24 \mathrm{~V}\left(0.9 \ldots 1.1 \times \mathrm{U}_{\text {U }}\right)\)} & & & \\
\hline M 9397 : & AC \(230 \mathrm{~V}\left(0.8 \ldots 1.1 \times \mathrm{U}_{\mathrm{H}}\right)\) & \multicolumn{3}{|l|}{Clearance and creepage distance} \\
\hline \multicolumn{2}{|l|}{Nominal frequency: \(\quad 50 / 60 \mathrm{~Hz}\)} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\begin{aligned} & \text { rated impulse voltage / } \\ & \text { pollution degree: }\end{aligned} \quad 4 \mathrm{kV} / 2\)}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Frequency range: \(\quad 45 \ldots 400 \mathrm{~Hz}\) Input current:}} & & & \\
\hline & & \multicolumn{3}{|l|}{high voltage test: IEC/EN 60 664-1} \\
\hline at DC 24V: & 50 mA & \multicolumn{3}{|l|}{EMC} \\
\hline \multirow[t]{2}{*}{at AC 230V:} & 15 mA & Electrostatic discharge (ESD): & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline & & HF irradiation: & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline \multicolumn{2}{|l|}{Voltage Measuring Input L1 / L2 / L3} & \multicolumn{3}{|l|}{Fast transients: 2 kV IEC/EN 61 000-4-4} \\
\hline \multirow[t]{2}{*}{Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : Measuring range:} & 3 AC 400 V & \multicolumn{3}{|l|}{between} \\
\hline & \(3 \mathrm{AC} 12 . . .400 \mathrm{~V}\) & wires for power sypply: & 1 kV & IEC/EN 61 000-4-5 \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Variants without auxiliary supply get their power from the measuring input. The Voltage range of the Measuring voltage is then identical with the range of the auxiliary supply.}} & between wire and ground: & 2 kV & IEC/EN 61 000-4-5 \\
\hline & & HF-wire guided: & 10 V & IEC/EN 61 000-4-6 \\
\hline & & Interference suppression: & Limit value class A & EN 55011 \\
\hline & & Housing: & IP 40 & IEC/EN 60529 \\
\hline \multicolumn{2}{|l|}{Current Measuring Input i/k} & \multirow[t]{2}{*}{Terminals: Housing:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
IP 20 \\
IEC/EN 60529 \\
thermoplastic with VO behaviour
\end{tabular}}} \\
\hline \multicolumn{2}{|l|}{Nominal current \(\mathrm{I}_{\mathrm{N}}\) : AC 12 A} & & & \\
\hline Measuring range: & AC \(100 \mathrm{~mA} . . .12 \mathrm{~A}\) & \multirow[t]{2}{*}{Vibration resistance:} & \multicolumn{2}{|l|}{Amplitude \(0,35 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{Max. overload} & & \multirow[t]{2}{*}{frequency \(10 \ldots 55 \mathrm{~Hz}\),} & IEC/EN 60 068-2-6 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
continuously: \\
short time < 10 s :
\end{tabular}} & 16 A & \multirow[t]{2}{*}{Climate resistance:
Wire connection} & & IEC/EN 60 068-1 \\
\hline & max. 25 A & & & N 46 228-1/-2/-3/-4 \\
\hline \multicolumn{2}{|l|}{Overload within the current range is indicated by fast flashing of the LED.} & \multirow[t]{5}{*}{Screw terminal (fixed):} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(1 \times 4 \mathrm{~mm}^{2}\) solid or}} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Nominal frequency:}} & & & \\
\hline & & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) \(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated) \(2 \times 2.5 \mathrm{~mm}^{2}\) solid}} \\
\hline Frequency range: & \(45 \ldots 400 \mathrm{~Hz}\) & & & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Setting range (at absolute scale)}} & & & \\
\hline & & Insulation of wires or sleeve length: & \multicolumn{2}{|l|}{8 mm} \\
\hline \multicolumn{2}{|l|}{Rel 1: fine adjustment} & \multicolumn{3}{|l|}{Terminal block} \\
\hline \multicolumn{2}{|l|}{Range: \(\quad 8\) ranges \(0 \ldots 8 \mathrm{~kW}\)} & \multicolumn{3}{|l|}{with screw terminals} \\
\hline Rel 2: & fine adjustment & Max. cross section: & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\(1 \times 2.5 \mathrm{~mm}^{2}\) solid or \\
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)
\end{tabular}}} \\
\hline \multicolumn{2}{|l|}{Range:
Measuring accuracy \(\quad 8\) ranges \(0 \ldots 8 \mathrm{~kW}\)} & & & \\
\hline \multicolumn{2}{|l|}{Measuring accuracy at nominal frequency} & \multicolumn{3}{|l|}{Insulation of wires or sleeve length:} \\
\hline (in \% of setting value): & \(\pm 4 \%\) & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Terminal block with cage clamp terminals}} \\
\hline \multicolumn{2}{|l|}{Hysteresis} & & & \\
\hline (in \% of setting value): & < 5 \% & Max. cross section: & \(1 \times 4 \mathrm{~mm}^{2}\) solid or & \\
\hline Reaction time: & < 150 ms & & \(1 \times 2.5 \mathrm{~mm}^{2}\) stranded & ferruled (isolated) \\
\hline Time delay \(\mathrm{t}_{\mathrm{v}}\) : & 0 ... 10 s adjustable & Min. cross section: & \(0.5 \mathrm{~mm}^{2}\) & \\
\hline Start up delay: & 500 ms fixed & Insulation of wires or sleeve length: & \(12 \pm 0.5 \mathrm{~mm}\) & \\
\hline \multicolumn{2}{|l|}{Output Circuit (Rel1: 11/12/14; Rel2: 21/22/24)} & \multirow[t]{2}{*}{Wire fixing:} & \multicolumn{2}{|l|}{Plus-minus terminal screws M3,5 box terminals with wire protection} \\
\hline \multicolumn{2}{|l|}{Contacts} & & \multicolumn{2}{|l|}{or cage clamp terminals} \\
\hline MK 9397N: & 1 changeover contact for P1 & Fixing torque: & 0.8 Nm & \\
\hline \multirow[t]{2}{*}{MH 9397:} & 1 changeover contact for P1 and & Mounting: & DIN rail & IEC/EN 60715 \\
\hline & 1 changeover contact for P2 & Weight: & 360 g & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Thermal current \(\mathrm{I}_{\mathrm{th}}\) : \(2 \times 4\) A Switching capacity to AC 15:}} & & & \\
\hline & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Dimensions}} \\
\hline & & & & \\
\hline \multicolumn{2}{|l|}{NO contacts: 3 A / AC 230 V IEC/EN 60 947-5-1} & \multicolumn{3}{|l|}{Width x height x depth:} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{ll}\text { NC contacts: } \\ \text { Electrical life } & 1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \\ \end{array}\)}} & MK 9397N: & \(22.5 \times 90 \times 99 \mathrm{~mm}\) & \\
\hline & & \multirow[t]{2}{*}{MH 9397:} & \multicolumn{2}{|l|}{\(45 \times 90 \times 99 \mathrm{~mm}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{to AC 15 at 3 A, AC 230 V : \(2 \times 10^{5}\) switch. cycl. IEC/EN \(60947-5-1\) Permissible switching}} & & & \\
\hline & & & & \\
\hline \multicolumn{2}{|l|}{Short circuit strength} & & & \\
\hline Mechanical life: & \(30 \times 10^{6}\) switching cycles & & & \\
\hline
\end{tabular}

\section*{Standard Types}

MK 9397N. \(11 / 0103\) AC \(24 \ldots 400 \mathrm{~V}\) AC 12 A DC 24 V 10 s
Article number: 0062043
- Measuring voltage: 3 AC \(24 \ldots 400 \mathrm{~V}\)
- Measuring current:

AC 12 A
- Auxiliary voltage \(U_{H}\) :

DC 24 V
- On delay:
- Output:
up to 10 s
- Width:

22,5 mm

MH 9397.12/010 3 AC \(24 \ldots 400\) V AC 12 A AC 230 V 10 s
Article number: 0062046
- Measuring voltage:

3 AC 24 ... 400 V
- Measuring current:

AC 12 A
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :

AC 230 V
up to 10 s
- On delay:
- Output:
- Width

1 changeover contact (Rel1) and 1 changeover contact (Rel2) 45 mm

\section*{Ordering Example}

Measuring current \({ }_{H}\) Measuring current U Measuring voltage Type of terminals without indication: terminal blocks fixed with screw terminals PC (plug in cage clamp): pluggableterminalblocks withcageclampterminals PS (plug in screw): pluggableterminalblocks with screw terminals Contacts Type

\section*{Options with Pluggable Terminal Blocks}

Screw terminal (PS/plugin screw)

Cage clamp terminal
(PC/plugin cage clamp)

\section*{Notes}

Removing the terminal blocks with cage clamp terminals
1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

\section*{Connection Example}

Remark:
When using external current transformers the setting values have to be multiplied with the transmission ratio ü of the current transformer.

Example: response value \(=\) setting value \((\mathrm{P} 1 / \mathrm{P} 2) \times\) ü

Function Diagram for Setting De-energized on Fault \({ }^{\star}\)

P1max/P2max: Overload monitoring with prewarning
P1min/P2max: Under- and overload monitoring
S1/S2 ON:
S1/S2 OFF:
automatic reset
*) when set to energized on fault the function of LEDs and output relays are inverted.
- According to IEC/EN 60255-1, IEC/EN 60255-26, DIN/VDE 0435-303
- Identification of
- Underload \(P_{1}\) and Overload \(P_{2}\)
- Overload \(P_{1}\) (prewarning) and Overload \(P_{2}\)
programmable
- Adjustment of \(P_{1}\) and \(P_{2}\) on absolute scale
- For motors up to \(22 \mathrm{~kW} / 400 \mathrm{~V} ; 37 \mathrm{~kW} / 600 \mathrm{~V}\)
- Measurement: effective power
- Large current range because of automatic range selection
- 1 changeover contact for \(P_{1}\) and 1 changeover contact for \(P_{2}\)
- Adjustable start-up delay \(\mathrm{t}_{\mathrm{a}}\)
- Adjustable switching delay \(\mathrm{t}_{\mathrm{v}}\)
- With automatic or manual reset, programmable
- Test / Reset button for easy setup
- Up to 40 A without external current transformer
- De-energized or energized on fault, programmable
- Also for single-phase operation
- LED indicators
- Width 45 mm

\section*{Approvals and Markings}
* see variants

\section*{Applications}

The BH 9097 is used to monitor variable loads on industrial motors.

\section*{Function}

The motor load monitor BH 9097 checks the active power consumption of electrical consumers. As the measuring principle is only single phase correct measurement of 3 -phase load is only possible when all three phases have the same load which is normal with motors. Using DIP-switches the unit can be set up to act as under- and overload relay \(\mathrm{P}_{1 \text { min }} / \mathrm{P}_{2 \text { max }}\) or as overload relay with pre-warning \(\mathrm{P}_{1 \text { max. }} / \mathrm{P}_{2 \text { max }}\). The settings of \(P_{1}\) and \(P_{2}\) are absolute values and calibrated in Watts adjustable via rotational switches. 2 LEDs show the state of the corresponding output relays. The unit can be configured to energise or to de-energise on fault. Every output relay is fitted with it's own time delay \(t_{v}\). A start-up delay \(t_{d}\) acts on both outputs.
\begin{tabular}{lll}
\hline Indication & & \\
green LED, \(\mathrm{U}_{\mathrm{N}}:\) & \begin{tabular}{l}
flashing: \\
continuous: \\
flashing:
\end{tabular} & \begin{tabular}{l}
during Start-up delay \(\mathrm{t}_{\mathrm{a}}\) \\
supply connected \\
during time delay \(\mathrm{t}_{\mathrm{v} 1}\) and for set up \\
assistance
\end{tabular} \\
yellow LED, \(\mathrm{P}_{1}:\) & \begin{tabular}{l}
continuous:
\end{tabular} \\
yhen relay \(\mathrm{P}_{1}\) active (contact 11-14) \\
yellow LED, \(\mathrm{P}_{2}:\) & \begin{tabular}{l}
flashing: \\
during time delay \(\mathrm{t}_{\mathrm{v} 2}\) and for set up \\
assistance
\end{tabular} \\
& continuous: & when relay \(\mathrm{P}_{2}\) active (contact 21-24)
\end{tabular}

\section*{Fault indication}

2 different faults are displayed with the LEDs.

\section*{1.) No measurement:}

Without measuring voltage measurement is not possible
- All 3 LEDs flash in sequence one after the other.

The output contacts are in failure state.
2.) The BH 9097 measures negative load:

Possible reason: The unit measures reverse power or the current connections are connected wrong.
- All 3 LEDs flash simultaneously.

\section*{Connection Diagrams}

BH 9097.38/001

BH 9097.38/011

BH 9097.38

BH 9097.38/010

\section*{Technical Data}

Input
Measuring voltage
Voltage range:
Input resistance:
Measuring current
Measuring range:
without auxiliary voltage \(0.8 \ldots 1.1 \times U_{N}\) with auxiliary voltage, see setting ranges \(300 \mathrm{k} \Omega\)... \(500 \mathrm{k} \Omega\)
see setting ranges
\begin{tabular}{lc|c|c|c|c|c}
Nominal current [A] & 40 & 24 & 8 & 2.4 & 0.8 & 0.24 \\
\hline Permissible current range & & & & & & \\
(overload) [A] & \(0 \ldots 40\) & \(0 \ldots 40\) & \(0 \ldots 16\) & \(0 \ldots 8\) & \(\ldots\) & \(\ldots 2,4\) \\
continuously: & 150 & 150 & 20 & 16 & 3 & 1,5 \\
1 min. (10 min. break): & 200 & 200 & 25 & 20 & 4 & 2 \\
\(20 \mathrm{~s}(10\) min. break): & \(\leq 1\) & \(\leq 1\) & 7 & 14 & 830 & 830
\end{tabular}

Frequency range:
10 ... 400 Hz
(please see characteristics M7953)
Setting Ranges
\(P_{1}\) und \(P_{2}\) on absolute scale
Switch
load range
for P1 and P2:
Measuring accuracy
(in \% of setting value):
Hysteresis
(in \% of setting value):
Harmonic distortion
Reaction time:
Switching delay \(\mathrm{t}_{\mathrm{v} 1} / \mathrm{t}_{\mathrm{v} 2}\) :
Start-up delay \(t_{a}\) :

\(\pm 4 \% \quad(2 \%\) on request)
< 5 \%
< 40 \%
\(<50 \mathrm{~ms}\)
\(0 \ldots 10 \mathrm{~s}\) (infinite variable)
\(0 \ldots 30 \mathrm{~s}\) (infinite variable)

Setting Ranges

\section*{Available variants \\ Measuring voltage \(\mathrm{U}_{\mathrm{N}}\) \\ Measuring selection of current \(I_{N}[A]\) load range}

1-phase
without auxiliary voltage
BH 9097.38/000
\begin{tabular}{cccr}
AC 230 V & \(0.0024 \ldots 0.24\) & \(0.1 \ldots 60 \mathrm{~W}\) \\
AC 230 V & \(0.024 \ldots 24\) & \(1 \ldots 600 \mathrm{~W}\) \\
AC 230 V & \(0.24 \ldots 24\) & \(10 \ldots 6000 \mathrm{~W}\) \\
& & \\
AC \(35 \ldots 250 \mathrm{~V}\) & \(0.0024 \ldots 0,24\) & \(0.1 \ldots 60 \mathrm{~W}\) \\
AC \(35 \ldots 250 \mathrm{~V}\) & \(0.024 \ldots 2,4\) & \(1 \ldots 600 \mathrm{~W}\) \\
AC \(35 \ldots 250 \mathrm{~V}\) & \(0.24 \ldots 24\) & \(10 \ldots 6000 \mathrm{~W}\)
\end{tabular}

3-phase
without auxiliary voltage
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{BH 9097.38/001} & 3 AC 400 V & 0.008 ... 0,8 & 0.1 ... 60 W \\
\hline & 3 AC 400 V & 0.08 ... 8 & \(10 . . .6000 \mathrm{~W}\) \\
\hline & 3 AC 400 V & 0.4 ... 40 & 0.1 ... 30 kW \\
\hline \multicolumn{4}{|l|}{with auxiliary voltage} \\
\hline \multirow[t]{3}{*}{BH 9097.38/011} & 3 AC 60 ... 440 V & 0.008 ... 0,8 & 1 ... 600 W \\
\hline & 3 AC 60 ... 440 V & 0.08 ... 8 & \(10 . . .6000 \mathrm{~W}\) \\
\hline & 3 AC 100 ... 760 V & 0.4 ... 40 & 0.1 ... 52 kW \\
\hline
\end{tabular}

\section*{Auxiliary Circuit}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) only for BH 9097.38/010, BH 9097.38/011:

Voltage range:
Frequency range of \(\mathrm{U}_{\mathrm{H}}\) :
Input current
AC 110 V :
AC 230 V :
DC 24 V :

AC 110 V (Klemmen A 1-A 2), AC 230 V (Klemmen A 1-A 3),
DC 24 V
\(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{H}}\) \(45 \ldots 400 \mathrm{~Hz}\)
approx. 30 mA
approx. 15 mA
approx.. 50 mA

\section*{Technical Data}

\section*{Output}

Contacts:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
to DC 13:
Electrical life
to AC 15 at 3 A, AC 230 V :
947-5-1
Permissible switching frequency:
Short circuit strength
max. fuse rating:
Mechanical life:

1 changeover contact for P1 1 changeover contact for P2 \(2 \times 5\) A

3 A / AC 230 V IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
1 A / DC 24 V IEC/EN 60 947-5-1
\(2 \times 10^{5}\) switching cycles IEC/EN 60

1800 switching cycles / h
4 Ag
IEC/EN 60 947-5-1
\(30 \times 10^{6}\) switching cycles
General Data
\begin{tabular}{|c|c|c|}
\hline Operating mode: & \multicolumn{2}{|l|}{continuous} \\
\hline Temperature range: & \multicolumn{2}{|l|}{- \(20 . . .+55^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{3}{|l|}{Clearance and creepage distances} \\
\hline pollution degree: & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline \multicolumn{3}{|l|}{EMC} \\
\hline Electrostatic discharge: & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline HF-irradiation: & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 2 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltages} \\
\hline between & & \\
\hline wires for power supply: & 1 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 2 kV & IEC/EN 61 000-4-5 \\
\hline HF-wire guided: & 10 V & IEC/EN 61 000-4-6 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & \multicolumn{2}{|l|}{IP 20 IEC/EN 60529} \\
\hline Housing: & \multicolumn{2}{|l|}{Thermoplastic with Vo behaviour according to UL subject 94} \\
\hline Vibration resistance: & \multicolumn{2}{|l|}{Amplitude 0,35 mm} \\
\hline Climate resistance: & \(20 / 055 / 04\) & IEC/EN 60 068-1 \\
\hline \multicolumn{3}{|l|}{Terminal designation: EN 50005} \\
\hline \multicolumn{3}{|l|}{Wire connection} \\
\hline \multirow[t]{2}{*}{Load terminals:} & \multicolumn{2}{|l|}{\(1 \times 10 \mathrm{~mm}^{2}\) solid or} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(1 \times 6 \mathrm{~mm}^{2}\) stranded wire with sleeve}} \\
\hline \multirow[t]{4}{*}{Control terminals:} & & \\
\hline & \(2 \times 1.5 \mathrm{~mm}^{2}\) strand & d wire with sleeve \\
\hline & or \({ }^{\text {or }}\) & \\
\hline & \(1 \times 2,5 \mathrm{~mm}^{2}\) strand DIN 46 228-1/-2/-3 & \(d\) wire with sleeve \\
\hline \multirow[t]{2}{*}{Wire fixing:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Box terminals with self-lifting wire protection and Plus-minus terminal screws M3.5}} \\
\hline & & \\
\hline Mounting: & DIN rail & IEC/EN 60715 \\
\hline Weight: & 430 g & \\
\hline Dimensions & & \\
\hline
\end{tabular}

Width x height x depth: \(\quad 45 \times 84 \times 121 \mathrm{~mm}\)

\section*{CCC-Data}

Thermal current \(\mathrm{I}_{\mathrm{tn}}\) :
Switching capacity
to AC 15:
\(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
IEC/EN 60 947-5-1
to DC 13:
1 A / DC 24 V
IEC/EN 60 947-5-1

\section*{Standard Type}

BH 9097.38/001 \(3 \mathrm{AC} 400 \mathrm{~V} 50 / 60 \mathrm{~Hz} \quad \mathrm{t}_{\mathrm{a}} 30 \mathrm{~s} \mathrm{t}_{\mathrm{v}} 10 \mathrm{~s}\)
Article number: 0053944
- 3-phase, without auxiliary supply
- Output: 1 changeover contact for P1 and 1 changeover contact for P2
- Nominal voltage \(U_{N}: \quad 3\) AC 400 V
- Width: 45 mm

\section*{Variants}

BH 9097:
BH 9097.38/001:
BH 9097.38/011:
with CCC-approval on request 3-phase without auxiliary supply 3 -phase with auxiliary supply BH 9097.38/000: \(\quad 1\)-phase without auxiliary supply BH 9097.38/010: \(\quad 1\)-phase with auxiliary supply BH 9097.38/1__: With galvanically separated current path. For applications with current transformers grounded on the secondary side, current range limited to 25 A same as \(\mathrm{BH} 9097.38 / 001\), but with start up delay \(\mathrm{t}_{\mathrm{a}}=0 \ldots 10 \mathrm{~s}\)

\section*{Ordering example for variants}

\section*{Characteristics}

Max. input current curve in relation to input frequency

continuous current limit curve
(current over 2 contacts)

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

\section*{Settings}

2 rotational switches for \(P_{1}\) : 2 rotational switches for \(\mathrm{P}_{2}\) :
Potentiometer \(t_{v 1}\) :
Potentiometer \(\mathrm{t}_{\mathrm{v} 2}\) :
Potentiometer \(\mathrm{t}_{\mathrm{a}}\) :
Test/Reset-Taste:

Dip-switches:

> x10 | x1

A | R
\(\mathrm{P}_{2 \text { max. }} \mid \mathrm{P}_{2 \text { max }}\)
\(\mathrm{P}_{1 \text { max. }} \mid\) \(\mathrm{P}_{1 \text { min. }}\)

S1 ON | OFF:
S2 ON | OFF:

Value \(P_{1}\) (2 decades)
Value \(P_{2}\) (2 decades) time delay for value \(P_{1}\) time delay for value \(P_{2}\) start-up delay after connection voltage Test function as setting assistance Reset function when manual reset is selected
selection of upper / lower load range selection of closed or open circuit operation for output relays

2 MAX switching values (Overload with Pre-warning) or MAX and MIN switching value (Overload / Underload monitoring) manual / automatic reset for \(\mathrm{P}_{1}\) manual / automatic reset for \(\mathrm{P}_{2}\)

\section*{Connection}

The device has to be connected according to the connection diagrams. The motor is connected to terminals \(\mathrm{L} / \mathrm{i}\) and \(\mathrm{T} / \mathrm{k}\) or L1/i and \(\mathrm{T} 1 / \mathrm{k}\). The flow direction of the current has to be observed. On reverse power the unit gives a fault signal. The max continuous motor current is 40 A limited by the terminals. With higher currents a current transformer with 2,5 VA has to be used.

Set-up Procedure and Setting Instructions

Adjustemt example: response value: \(2,5 \mathrm{~kW}\)
m9950

Response value \(=25 \times 0,1=2,5 \mathrm{~kW}\)
The adjustment of the unit can be made without additional measuring equipment and calculations. Please make sure that the load values are in the permitted operating range of the unit. Based on the max permitted values the BH 9097 can be used for 48 kW 3 -phase motors at 3 AC 690 V and 5.8 kW single phase motors at AC 230 V .

There are three methods to set up the unit:

\section*{Method 1:}

If the absolute values of the actual required tripping points \(P_{1}\) and \(P_{2}\) are known, they can be set directly on the unit (2-digit setting of \(P_{1}\) and \(P_{2}\)).

\section*{Method 2:}

This method is recommended when it is possible to simulate the different load situations during set-up. In this case nothing has to be calculated. Turn the delay time for \(P_{1}\) and \(P_{2}\) to min. The motor runs in underload while the Pot 1 is turned until the output relay switches. The same has to be done for overload. Now the unit is set accurately. Now adjust the operate delay and the start-up delay to the required values.
Pressing the test / reset button during setup disables the switching of the output relays. The LEDs of \(P_{1}\) and \(P_{2}\) flash.

\section*{Method 3:}

This method is the most simple one but not the most accurate. The operate delay is set to min. The motor is switched on and runs on nominal load. With both potentiometers the set points are searched by slowly turning the max. Pot from high to low value and the min. Pot from low to high value until the corresponding output relays switch. After that turn the Pot \(P_{2}\) to the right (e.g. \(+10 \%\)) side and the Pot \(P_{1}\) to the left (e.g. - \(10 \%\)) until the output relays reset. The unit is now set and responds if the load differs from the nominal value. Finally set the operate delay and start-up delay to the required values. The DIP switch should be set to \(P_{1 \text { min }} / P_{2 \text { max }}\).
single phase

BH 9097.38/001

3-phase

\section*{Connection Examples with External Current Transformer}

BH 9097.38

3-phase

BH 9097.38/001

Note: When using external CTs the adjusted value has to be multiplied with the transmission ratio (ü) of the CT.
Example: Switching value \(=\) Setting value \((\mathrm{P} 1 / \mathrm{P} 2) \times\) ü

\section*{Load Characteristics}

4 different types of load characteristics can be selected via \(P_{1}, P_{2}\) and a DIP switch.

- According to IEC/EN 60 255, DIN VDE 0435-303
- As load depending output signals are available
- 0 ... 20 mA and \(0 \ldots 10 \mathrm{~V}\) or
- 4 ... 20 mA and 2 ... 10 V
- Measures effective load
- Adjustment of \(P_{1}\) and \(P_{2}\) on absolute scale
- For motors up to 22 kW / 400 V bzw. 37 kW / 690 V
- Adjustable start up delay \(t_{a}\)
- Up to 40 A without external current transformer
- As option for single phase loads
- LED indicators
- Width 45 mm

\section*{Approvals and Markings}

\section*{Application}

The motor load transmitter is suitable to monitor motors with variable load.

\section*{Function}

The motor load transmitter BH9098 monitors the effective load of motors and balanced three phase and single phase systems. Due to the single phase current measuring system, the unit assumes the load is balanced on all phases, as is the norm for motors. The power consumption of the load is continuously monitored and converted into a standard dc current or voltage signal. Two pairs of rotary switches, P1 and P2 set the lower and upper end of the measured range in Watts. When the monitored load is between these set values a proportional output signal is produced. If the monitored load is out side the set range the output signal will remain at minimum or maximum.
\begin{tabular}{|lll}
\hline Indicators & \\
green LED, \(U_{N}:\) & \begin{tabular}{l}
flashing: \\
Continuous light:
\end{tabular} & \begin{tabular}{l}
start up delay \(t_{a}\) \\
voltage connected
\end{tabular} \\
\hline
\end{tabular}

\section*{Failure Indication}

Two different failure states are displayed by LEDs.

\section*{1.) No measuring voltage:}

If the measuring voltage is missing, measurement is not possible.
- The LED flashes fast in intervals.
- The output signals are on min. value.
2.) Reverse power:

The calculated power value is negative.
- The LED flashes fast.
- The output signals are on min. value.

Possible reason:
The unit detects reverse power or the current connections are inverted.

\section*{Circuit Diagrams}

BH 9098.90

BH 9098.90/001

BH 9098.90/010

BH 9098.90/011

\section*{Characteristics}

Max. input current curve in relation to input frequency

\section*{Technical Data}

Input
Measuring voltage
Voltage range: \(\quad\) without auxiliary voltage \(0.8 \ldots 1.1 \times U_{N}\)
Input resistance:
Mesured current
Measuring range: with auxiliary voltage, see setting ranges \(300 \mathrm{k} \Omega . . .500 \mathrm{k} \Omega\)
see setting ranges
\begin{tabular}{l|c|c|c|c|c|c}
Rated current [A] & 40 & 24 & 8 & 2.4 & 0.8 & 0.24 \\
\hline Permissible current range & & & & & & \\
(overload) [A] & & & & & & \\
continuously: & \(0 \ldots 40\) & \(0 \ldots 40\) & \(0 \ldots 16\) & \(0 \ldots 8\) & \(0 \ldots 4\) & \(0 \ldots 1\) \\
1 min. (10 min. break): & 150 & 150 & 20 & 16 & 3 & 1,5 \\
\(20 \mathrm{~s}(10\) min. break): & 200 & 200 & 25 & 20 & 4 & 2 \\
Input resistance of current i-k [m \(\Omega\)]: & \(\leq 1\) & \(\leq 1\) & 7 & 14 & 150 & 500
\end{tabular}

Frequency range:
\(10 \ldots 400 \mathrm{~Hz}\) (see characteristics M7953)

\section*{Setting Ranges}
\(P_{1}\) und \(P_{2}\) on absolute scale:
Upper Switch
load range
for P1 and P2: lower range upper range
Measuring accuracy
(in \% at nominal load):
Harmonic distortion:
Start-up delay \(\mathrm{t}_{\mathrm{a}}\) :
\(\pm 5 \%\)
< 40 \%
\(0 \ldots 30\) s (infinetely variable)

Analogue Output for Current 0 / +l

\section*{Galvanically isolated}
to measuring input and
auxiliary voltage: \(\quad 4 \mathrm{kV}\) eff.
Output current:

Output impendance (Load):
DC 0 ... 20 mA
DC \(4 \ldots 20 \mathrm{~mA}\) (selectable via DIP switch)
max. \(500 \Omega\)

Analogue Output for Voltage 0 / +U

\section*{Galvanically isolated}
to measuring input and
auxiliary voltage: 4 kV eff.
Output voltage:
DC \(0 \ldots 10 \mathrm{~V}\)
DC 2 ... 10 V
(selectable via DIP switch)
Output impendance (Load): \(\quad \min .5000 \Omega\)
Setting Ranges
\begin{tabular}{lccr}
Available variants & \begin{tabular}{c}
Measuring \\
voltage \(U_{N}\)
\end{tabular} & \begin{tabular}{c}
Measuring \\
current \(I_{\mathrm{N}}[\mathrm{A}]\)
\end{tabular} & \begin{tabular}{c}
selection of \\
load range \\
resistive
\end{tabular} \\
\begin{tabular}{l}
1-phase \\
without auxiliary voltage
\end{tabular} \\
BH \(9098.90 / 000\) & AC 230 V & \(0.0024 \ldots 0.24\) & \(0.1 \ldots 60 \mathrm{~W}\) \\
& AC 230 V & \(0.024 \ldots 2.4\) & \(1 \ldots 600 \mathrm{~W}\) \\
& AC 230 V & \(0.24 \ldots 24\) & \(10 \ldots 6000 \mathrm{~W}\) \\
with auxiliary voltage & & & \\
BH \(9098.90 / 010\) & AC \(35 \ldots 250 \mathrm{~V}\) & \(0.0024 \ldots 0.24\) & \(0.1 \ldots 60 \mathrm{~W}\) \\
& AC \(35 \ldots 250 \mathrm{~V}\) & \(0.024 \ldots 2.4\) & \(1 \ldots 600 \mathrm{~W}\) \\
& AC \(35 \ldots 250 \mathrm{~V}\) & \(0.24 \ldots 24\) & \(10 \ldots 6000 \mathrm{~W}\)
\end{tabular}

3-phase
without auxiliary voltage
\begin{tabular}{lrcr}
BH 9098.90/001 & 3 AC 400 V & \(0.008 \ldots 0,8\) & \(0.1 \ldots 60 \mathrm{~W}\) \\
& 3 AC 400 V & \(0.08 \ldots 8\) & \(10 \ldots 6000 \mathrm{~W}\) \\
& 3 AC 400 V & \(0.4 \ldots 40\) & \(0.1 \ldots 30 \mathrm{~kW}\) \\
with auxiliary voltage & & & \\
BH \(9098.90 / 011\) & 3 AC \(60 \ldots 440 \mathrm{~V}\) & \(0.008 \ldots 0.8\) & \(1 \ldots 600 \mathrm{~W}\) \\
& 3 AC \(60 \ldots 440 \mathrm{~V}\) & \(0.08 \ldots 8\) & \(10 \ldots 6000 \mathrm{~W}\) \\
& 3 AC \(100 \ldots 760 \mathrm{~V}\) & \(0.4 \ldots 40\) & \(0.1 \ldots 52 \mathrm{~kW}\)
\end{tabular}

\section*{Technical Data \\ Auxiliary Circuit}

Auxiliary voltage \(U_{H}\)
only for BH 9098.90/010 and
BH 9098.90/011:

Voltage range:
Frequency range of \(\mathrm{U}_{\mathrm{H}}\) : Input current
AC 110 V :
AC 230 V :
DC 24 V :

AC 110 V (terminals A 1-A 2),
AC 230 V (terminals A 1 - A 3), DC 24 V
0.8 ... 1.1 U \(45 \ldots 400 \mathrm{~Hz}\)
approx. 30 mA
approx. 15 mA
approx. 50 mA

\section*{General Data}

\section*{Operating mode:}

Temperature range:

\section*{Clearance and creepage}

\section*{distances}
rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge:
HF-irradiation:
Fast transients:
Surge voltages
between
\begin{tabular}{|c|c|c|}
\hline wires for power supply: & 1 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 2 kV & IEC/EN 61 000-4-5 \\
\hline HF-wire guided: & 10 V & IEC/EN 61 000-4-6 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & IP 20 & IEC/EN 60529 \\
\hline
\end{tabular}

Housing:
\begin{tabular}{|c|c|}
\hline Vibration resistance: & \begin{tabular}{l}
amplitude 0.35 mm \\
frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
\end{tabular} \\
\hline Climate resistance: & 20/055/04 IEC/EN 60 068-1 \\
\hline Terminal designation: & EN 50005 \\
\hline Wire connection & \\
\hline Load terminals: & \(1 \times 10 \mathrm{~mm}^{2}\) solid or \(1 \times 6 \mathrm{~mm}^{2}\) stranded ferruled \\
\hline Control terminals: & \begin{tabular}{l}
\(1 \times 4 \mathrm{~mm}^{2}\) solid or \\
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled or \(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled or DIN 46 228-1/-2/-3/-4
\end{tabular} \\
\hline Wire connection: & Box terminals with self-lifting wire protection and plus-minus terminal screws M3.5 \\
\hline Mounting: & DIN rail IEC/EN 60715 \\
\hline Weight: & 430 g \\
\hline Dimensions & \\
\hline
\end{tabular}
Width x height x depth: \(\quad 45 \times 84 \times 121 \mathrm{~mm}\)

\section*{Standard Type}

BH 9098.90/001 3 AC 400 V AC 40 A
Article number:
- 3-phase, without auxiliary voltage
- Output: analogue
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : 3 AC 400 V
- Width:

45 mm

\section*{Variants}

BH 9098.90/1 \(\qquad\)

BH 9098.90/011:
BH 9098.90/000:
BH 9098.90/010:

3 -phase without auxiliary voltage with galvanically separated current path. For applications with current transformers grounded on the secondary side, current range limited to 25 A 3 -phase with auxiliary voltage 1-phase without auxiliary voltage 1 -phase with auxiliary voltage

\section*{Ordering example for variants}

\section*{Settings}

Rotational switches \(P_{1}\) and \(P_{2}\) (2 digits) (calculation for resistive load)

\section*{48 kW}

The switches are used to set the minimum and maximum load values \(\mathrm{P}_{1}\) and \(P_{2}\) of the load characteristics. The scale shows the absolute value. On the 3-phase variant the max. possible power setting value is 52 kW (\(760 \mathrm{~V} \times 40 \mathrm{~A} \times 1.732\)). The setting resolution is 1 kW and the load range can be selected by DIP-switchs. If the load range is reduced by factor 10 the setting resolution is 100 W .

\section*{Potentiometer \(t_{a}\)}

A start-up delay can be adjusted between \(0 . . .30 \mathrm{~s}\).
After mains voltage is connected the start-up delay begins. During this time the measurement is disabled and the LED flashes (see indicators). Independent of the settings the analogue output is on min. value.

\section*{DIP-switches:}

\[
\begin{aligned}
& \begin{array}{l}
\text { reduction of load range } P_{1} \text { and } P_{2} \text { by } \\
\text { factor } 10
\end{array} \\
& \begin{array}{ll}
\text { Selection of output signal: } \\
4 \ldots 20 \mathrm{~mA} & \text { to } \\
2 \ldots 10 \mathrm{~V} & 0 \ldots 20 \mathrm{~mA} \\
2 & \text { to }
\end{array}
\end{aligned}
\]

\section*{Connection}

The connection has to be made according to the application drawings. The measuring current has to be connected to terminals L/i and T/k or L1/i and T1/k. The flow direction of the current must be correct. On reverse power the unit gives a failure indication. The maximum nominal motor current flowing directly through the load transmitter is 40 A . On higher current a current transformer with 2,5 VA burden capacity has to be used.

Set-up Procedure and Setting Instructions

\section*{Adjustemt example: response value: \(2,5 \mathrm{~kW}\)}

M9950

Response value \(=25 \times 0,1=2,5 \mathrm{~kW}\)

The load charasteristic shows 3 sections:

\section*{Example 1}

The smaller value is adjusted on \(\mathrm{P}_{1}\)
The higher value is adjusted on \(\mathrm{P}_{2}\)
Standard setting: positive characteristic
- If the effective power consumption of the load is in section 1 between 0 \(W\) and \(P_{1}\) setting the analogue output signal is on minimum value.
- If the effective power consumption of the load is in section 2 between \(P_{1}\) and \(P_{2}\) setting the analogue output signal is proportional to the effective load following a positive characteristic.
- If the effective power consumption of the load is in section 3 between \(P_{2}\) setting and Pmax the analogue output signal is on maximum value.

\section*{Example 2}
\(P_{1}=0\) and \(P_{2}=P \max\)
- Selection of the maximum possible load range span.

The whole load range of the unit is converted into a proportional output signal. Section 1 and 3 are missing.

\section*{Example 3}
\(P_{1}=P_{2}\)
- If the same value is adjusted for \(P_{1}\) and \(P_{2}\) section 2 is missing, i.e. the output signal is either on minimum or maximum value. The unit works as limit switch.

\section*{Example 4}

On \(P_{1}\) the higher value is adjusted.
On \(\mathrm{P}_{2}\) the lower value is adjusted.
- Inverted output, negative characteristic

1-phase

BH 9098.90

BH 9098.90/010

3-phase

BH 9098.90/011

BH 9098.90/100

BH 9098.90/110

BH 9098.90/101

BH 9098.90/111

Connection Examples with external current transformer

BH 9098.90

3-phase

BH 9098.90/001
\[
\begin{array}{ll}
\text { Note: } & \text { When using external CTs the adjusted value has to be multiplied with the } \\
\text { transmission ratio (ü) of the CT. }
\end{array}
\]

Example:Switching value \(=\) Setting value \((P 1 / P 2) x\) ü e.g. for 100/5A C/T u=20 (100 divided by 5)

\section*{VARIMETER}

Underload Monitor \((\cos \varphi)\)
BA 9065

Function Diagram

\section*{Circuit Diagram}

BA 9065.20

BA 9065.11/001
- According to IEC/EN 60 255, VDE 0435
- Detection of underload \((\cos \varphi)\)
- Current ranges up to 10 A , for higher values a CT must be used
- Adjustable response value
- Programmable functions:
- alarm when I = 0
- automatic or manual reset
- closed or open circuit operation
- Manual remote reset
- Adjustable operate delay
- Independent of phase sequence
- Also for 400 Hz systems
- Optionally for motors with frequency converters (\(10 \ldots 100 \mathrm{~Hz}\)) (see notes)
- Width 45 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Applications}

Monitors underload and no load on squirrel cage motors e.g.
- fan monitoring (broken belt)
- filter monitoring (blocked filter)
- pump monitoring (blocked valve, dry running)

\section*{Function}

The underload monitor BA 9065 measures the phase shift between voltage and current. The phase angle changes with changing load. This measuring method is suitable to monitor asynchronous motors on underload and no load independent of motor size. The change of \(\cos \varphi\) has to be bigger then the hysteresis of the monitor (see diagram). In some cases the \(\cos \varphi\) does not change much with load change on the motor, e.g.:
- small load change on oversized motor
- single phase chaded-pole and collector motors

In these cases we recommend the use of our motor load monitors BA 9067 or BH 9067.
The BA 9065 can also be used on systems with variable frequency because of it's frequency independent measuring principle.
The BA 9065.20 does not need a separate auxiliary supply as it takes the required energy from the monitored mains.
A yellow LED indicates operation. If the \(\cos \varphi\) goes under the setting value the device reacts after a settable time delay. A green LED shows the state of the output relay.

Functions programmable with DIP-switches:
- open circuit operation (relay normally off)
- alarm when no current is flowing (Alarm at I = 0 on)
- closed circuit operation (relay normally on)
- no alarm when no current is flowing (Alarm at \(\mathrm{I}=0\) off)

Function programmable with bridge X1-L1/i:

\section*{bridge}

X1-L1/i
- ■ manual reset, reset with built-in reset button or remote reset with button connected to X1-L1/i
■. Automatic reset when system returns to correct load \((\cos \varphi)\)

\section*{Notes}

To terminal X 1 only the potential of \(\mathrm{L} 1 / \mathrm{i}\) must be connected.
When setting the response value on BA 9065 with frequency converters please note that the \(\cos \varphi\) of the motor changes with the frequency.
The measurement of the \(\cos \varphi\) is made by detecting the phase angle between current and voltage by monitoring the shift of the zero passage of current and voltage. Therefore the measurement is independent of frequency and voltage amplitude.
When using the model BA 9065.11/001 with separate auxiliary supply, the measuring circuit (L1/i-L1/k; L2-L3) can also monitor variable frequencies and voltages on the output of a frequency converter. As the \(\cos \varphi\) of squirrel cage motors varies with the frequency and with the load, it must be checked for each application if the BA 9065 is suitable. When a current transformer is used with variable frequency, this must also be a special one, that can transmit also low frequencies.

Please note when using a current transformer:
- the phase position must be correct (see Connection Examples), if not there will be no or permanent alarm
- there must be a connection from L1 to the secondary side of the CT (see Connection Examples)
\begin{tabular}{|c|c|}
\hline Technical Data & \\
\hline \multicolumn{2}{|l|}{Input Circuit} \\
\hline Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & \[
\begin{aligned}
& \text { AC / } 3 \text { AC } 220 \ldots 254 \mathrm{~V}, 380 \ldots 440 \mathrm{~V} \text {, } \\
& 480 \ldots 550 \mathrm{~V}, 600 \ldots 690 \mathrm{~V}
\end{aligned}
\] \\
\hline Voltage range: & \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
\hline Nominal frequency of \(\mathrm{U}_{\mathrm{N}}\) : & 45 ... 400 Hz \\
\hline Nominal consumption: & \begin{tabular}{l}
2.5 VA \\
(terminals L1/i-L2, A1-A2)
\end{tabular} \\
\hline Current range (L1/i-L1/k): & 0.1..2 A 0.5 ... 10 A \\
\hline Internal resistance L1/i-L1/k: & approx. \(30 \mathrm{~m} \Omega \quad\) approx. \(10 \mathrm{~m} \Omega\) \\
\hline Consumption L1/i-L1/k: & max.0.12 VA max. 1.1 VA \\
\hline & * (higher currents using external current transformers, see connection examples) \\
\hline Short time overload: & see diagram short time overload \\
\hline \multicolumn{2}{|l|}{Usable current} \\
\hline transformers: & Class 3 or better with necessary power \\
\hline Setting range \(\cos \varphi\) : & 0 ... 0.9 ; infinite variable \\
\hline Operate delay \(\mathrm{t}_{\mathrm{v}}\) : & 1 ... 40 s ; infinite variable \\
\hline
\end{tabular}

\section*{Output}

\section*{Contacts}

BA 9065.20:
BA 9065.11/001:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NC contact:
NO contact:
Electrical life
to AC 15 at 1 A, AC 230 V:
Short-circuit strength
max. fuse rating:
Mechanical life:

1 changeover contact, 1 NO contact 1 changeover contact
6 A
(up to \(25^{\circ} \mathrm{C}\), see also derating curve)

1 A / AC 230 V IEC/EN 60 947-5-1
3 A / AC 230 V IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
\(1.5 \times 10^{5}\) switching cycles
\(4 \mathrm{AgL} \quad\) IEC/EN60 947-5-1
\(30 \times 10^{6}\) switching cycles

\section*{General Data}

Operating mode:
Temperature range:
Clearance and creepage distances
rated impulse voltage / pollution degree:
EMC
Electrostatic discharge:
HF irradiation:
Fast transients
Surge voltages
between
wires for power supply:
between wire and ground:
Interference suppression:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

4 kV / 2
8 kV (air)
IEC/EN 61 000-4-2
\(10 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3
\(2 \mathrm{kV} \quad\) IEC/EN 61 000-4-4

1 kV
IEC/EN 61 000-4-5
2 kV
IEC/EN 61 000-4-5
Limit value class B EN 55011

\section*{Technical Data}

Degree of protection
\begin{tabular}{lll}
Housing: & IP 40 & IEC/EN 60529 \\
Terminals: & IP 20 & IEC/EN 60529
\end{tabular}

Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Mounting:
Weight:
Dimensions
\begin{tabular}{ll}
\hline Standard Type & \\
BA 9065.20 \(3 \mathrm{AC} 380 \ldots 440 \mathrm{~V} \quad 0.5 \ldots 10 \mathrm{~A}\) \\
Article number: & 0039727 \\
- Output: & 1 changeover contact, 1 NO contact \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & \(3 \mathrm{AC} \mathrm{380} \mathrm{\ldots 440V}\) \\
- Current range: & \(0.5 \ldots 10 \mathrm{~A}\) \\
- Width: & 45 mm
\end{tabular}

\section*{Variants}

BA 9065.11/001:
for motors with frequency converters, separate auxiliary supply is necessary
\begin{tabular}{ll}
Auxiliary voltage \(U_{H}:\) & AC \(220 \ldots 254 \mathrm{~V}\) \\
& AC \(380 \ldots 440 \mathrm{~V}\) \\
Nominal frequency of \(U_{H}:\) & \(45 \ldots 400 \mathrm{~Hz}\) \\
Motorvoltage \(\mathrm{U}_{\mathrm{N}}:\) & \(3 \mathrm{AC} 40 \ldots 660 \mathrm{~V}\) \\
& without neutral \\
Nominal frequnecy of \(\mathrm{U}_{\mathrm{N}}:\) & \(10 \ldots 100 \mathrm{~Hz}\) \\
Contacts: & 1 changeover contact
\end{tabular}

\section*{Ordering example for variants}

\begin{tabular}{cl}
\hline Accessories & \\
ET 4762-5: & Adapter for screw fixing \\
& Article number: 0023119
\end{tabular}

Diagram for hysteresis
Hysteresis depending on adjusted \(\cos \varphi\) setpoint. The hysteresis is the switching difference between alarm on (\(\cos \varphi\) setting) and alarm off (\(\cos \varphi\) reset value).

Diagram for short-time overload of the current input L1/i-L1/k (0.5 ... 10 A)

Continuous current limit curve for contacts

\section*{Operating Instructions}

The example of a frequency controlled fan motor shows how to set up the unit.
1) Setting on BA 9065
- set BA 9065 to automatic restart (bridge X1-L/i; or while doing below mentioned tests press the reset button continuously)
- adjust time delay to minimum (left position)
- adjust \(\cos \varphi\) potentiometer to 0 (left position)
2) Setting on Motor:
- simulate broken belt (motor runs without load)
- run motor on lowest frequency

When the motor runs without load and lowest possible frequency, this is the worst case to detect broken belt.
3) Keep the conditions of 2) and turn the \(\cos \varphi\) potentiometer slowly(because of time delay) to the right (to higher value) until the contac switches. Please note this setting and keep it.
4) - remount the belt (normal working condition)
- at the lowest frequency and automatic reset or pressed reset button the monitor should show "good" condition, because the \(\cos \varphi\) rises.
If the Monitor does not show "good" condition the change of \(\cos \varphi\) is obviously smaller then the hysteresis.
Now set potentiometer back to 0 again and turn is slowly to higher values to check the alarm value.
Finally turn the potentiometer again to 0 and then set it to the value found under 3) as this is the optimum setting.
5) Rise the frequency under normal conditions to maximum. The Alarm state should reset. Lower the frequency to minimum, no alarm should occur. At last set the time delay to a higher value, because the motor runs as generator for a short time when the frequency is lowered and the BA 9065 would react immediately.

\section*{Connection Examples}

Without current transformer (\(\left.\mathrm{I}_{\text {Mot }}=0.5 \ldots 10 \mathrm{~A}\right)\)
Please note:
The nominal voltage is the phase to phase voltage

With current transformer \(\left(I_{\text {Mot }}>10 \mathrm{~A}\right)\)

\section*{Please note:}

The nominal voltage is the phase to phase voltage.
The sens of winding of the CT is of impartance!

\section*{Connection Examples}

Single phase connection
Please note:
The nominal voltage is the phase to neutral voltage

Connection with CT or single phase see BA 9065.20

Function Diagram

\section*{Circuit Diagrams}

MK 9065.11

MK 9065.20
- According to IEC/EN 60 255, DIN VDE 0435-303
- Detection of underload \((\cos \varphi)\)
- Current ranges up to 10 A
- Adjustable response value
- Programmable functions:
- automatic or manual reset
- closed or open circuit operation
- Manual remote reset
- Adjustable operate delay up to 100 s
- For single and 3-phase AC-systems without neutral
- Independent of phase sequence
- Also for 400 Hz systems
- MK 9065.11 can be used for motors with frequency converters

2 ... 200 Hz)
- Optionally with sealable cover
- Green indicator LED for operational mode
- Red indicator LED for underload monitoring
- Width 22.5 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Applications}

Monitors underload and no load on squirrel cage motors e.g.
- fan monitoring (broken belt)
- filter monitoring (blocked filter)
- pump monitoring (blocked valve, dry running)

\section*{Indicators}
green LED:
on, when supply connected
red LED: on, when underload detected

\section*{Function}

The underload monitor MK 9065 measures the phase shift between voltage and current. The phase angle changes with changing load. This measuring method is suitable to monitor asynchronous motors on underload and no load independent of motor size. In some cases the \(\cos \varphi\) does not change much with load change on the motor, e.g.:
- small load change on oversized motor
- single phase chaded-pole and collector motors

In these cases we recommend the use of motor load monitor BA 9067.
Programmable by bridging terminals:
- X1 - X2 bridged: alarm not stored (auto reset)
- X1 - X2 open: stored alarm:
- X2 - X3 bridged: open circuit operation (relay energized on underload) closed circuit operation (relay de-energized on underload)

When setting the MK 9065 in a system with frequency converters please note that the \(\cos \varphi\) varies with the frequency.

\section*{Connection Examples}

X1 - X2 open: stored alarm (reset with internal or external button) X1 - X2 bridged: Alarm not stored (Auto reset)

X2-X3 open: closed circuit operation
X2 -X3 bridged: open circuit operation

Standard circuit with MK 9065.11

Connection Example for MK 9065.11 with current transformer

Connection Example for MK 9065.11 with single phase connection

\section*{Connection Examples}

Standard circuit with MK 9065.20

Connection Example for MK 9065.20 for motors with separate windings

\section*{VARIMETER}

Underload Monitor (\(\cos \varphi\) Monitor)
IK 9065, SK 9065, SL 9065CT
DOLD 発

Function Diagram

\section*{Circuit Diagrams}

IK/SK 9065.11

IK/SK 9065.11/100

SL 9065.11CT/100
- According to EN 60 255-1
- Detection of underload \((\cos \varphi)\)
- Without auxiliary supply
- Current up to 8 A

Motors up to 5 A nominal current can be connected directly
- Higher currents via current transformer
- SL 9065CT with integrated current transformer for currents up to 100 A
- Adjustable response value
- Automatic reset (Alarm auto reset)
- Adjustable operate delay up to 100 s
- De-energized on trip
- For single and 3 -phase loads e.g. motors
- Independent of phase sequence
- 1 changeover contact
- LED indicator voltage supply and alarm
- DIN rail or screw mounting
- Devices available in 2 enclosure versions:
|K9065:depth 58 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880 SK 9065, SL 9065CT: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- IK 9065 , SK 9065 width 17.5 mm

SL 9065CT width 35 mm
IK/SK 9065/100: as IK/SK 9065 but:
- programmable for
- automatic reset or manual reset (latched alarm)
- energized or de-energized on trip
- With reset button
- Remote reset

\section*{Approvals and Markings}

\section*{Applications}

Monitors underload and no load on squirrel cage motors e.g.
- fan monitoring (broken belt)
- filter monitoring (blocked filter)
- pump monitoring (blocked valve, dry running)
- general cos phi monitoring
- for industrial and railway applications

\section*{Function}

The underload monitor IK/SK/SL 9065 measures the phase shift between voltage and current. The phase angle changes with changing load. This measuring method is suitable to monitor asynchronous motors on underload and no load independent of motor size. In some cases the \(\cos \varphi\) does not change much with load change on the motor, e.g.:
- small load change on oversized motor
- single phase chaded-pole and collector motors

For these cases we recommend the use of our motor load monitor BH 9097.
If a cos phi value lower then the adjusted value is detected the output relay changes into alarm state after the adjusted time delay \(\mathrm{t}_{\mathrm{v}}\) and the red LED "Alarm" lights up. If the underload monitor is in auto reset mode it changes back to normal state without delay when the cos phi rises above the adjusted cos phi value.

\section*{Indicators}
on, when supply connected to L1-L2
red LED:

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L1, L2, L3 & Connection for 3-phase systems \\
\hline L1 \(^{\prime}, \mathrm{L1}^{1)}\) & \begin{tabular}{l}
Current measuring circuit, connection for \\
external current transformer possible 1)
\end{tabular} \\
\hline X1, L1 \({ }^{\text {2) }}\) & \begin{tabular}{l}
Control input \\
(manual reset / auto-Reset) \\
(2)
\end{tabular} \\
X1/L1 not bridged: manual reset \\
X1/L1 bridged: auto-reset
\end{tabular}\(|\)
\({ }^{1)}\) Only at IK/SK 9065
\({ }^{2}\)) Only at IK/SK/SL 9065.11/100

\section*{Notes}

Monitoring of single phase load is also possible. The terminal L3 is not connected in this case (see connection diagram). The underload monitor must be ordered for the right voltage e.g. a unit for 3 AC 230 V for a single phase 230 V application.
When the underload monitor IK/SK 9065 is connected to the supply voltage L1-L2-L3 and no current is flowing in the current path L1-L1' the unit changes also in alarm state.
The current path L1-L1' allows to connect currents up to 8 A directly at IK/ SK 9065. When connecting asynchronous motors not only the nominal current is important, but also the much higher starting current. The overload characteristic of the current input allows to connect motors with nominal current up to 4..5 A depending on the starting conditions. This is at 3 AC 400 V a motor load of \(1.5 \ldots 2.2 \mathrm{~kW}\).
It is important that the motor is connected to L1' and not to L1. On wrong connection the phase angle will be measured in a wrong way and the underload monitor IK/SK 9065 will not work.

For higher currents over 8 A (nominal motor current over 5 A) external current transformers can be used (see Connection Examples). Also here the current transformers have to be connected with the right polarity. All standard current transformers of class 3 or better can be used (1 A or 5 A types).
The integrated current transformer at SL 9065CT allows to connect currents up to 100 A directly.

The variant IK/SK/SL 9065.11/100 allows the following settings:
Bridge
X1-L1
- \(\quad\) Automatic restart (Alarm auto reset)
- - Manual restart (Latched Alarm), reset with built in push button, external push button on X1-L1 or by disconnecting the supply voltage.

Switch "REL" on front side
- Position "A": energized on trip (relay energizes on underload-alarm)
- Position "R": de-energized on trip (relay de-energizes on under load-alarm)

\section*{Technical Data}

\section*{Input}
\begin{tabular}{|c|c|}
\hline Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & \[
\begin{aligned}
& \text { (= Motor voltage) } \\
& 3 \text { AC (or AC) 110, } 230,400 \mathrm{~V}
\end{aligned}
\] \\
\hline Voltage range: & \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
\hline Nominal frequency of \(\mathrm{U}_{\mathrm{N}}\) : & \(45 \ldots 65 \mathrm{~Hz}\) \\
\hline Nominal consumption (L1-L2): & max. approx. 11 VA \\
\hline Current Path & \\
\hline Current range & \\
\hline IK 9065, SK 9065: & 0.1 ... \(2 \mathrm{~A} \quad 0.5 \ldots 8 \mathrm{~A}^{*}\) \\
\hline Internal resistance: & approx. \(30 \mathrm{~m} \Omega\) approx. \(10 \mathrm{~m} \Omega\) \\
\hline Consumption: & max. 0.14 VA max. 0.7 VA \\
\hline & * (for higher currents use external \\
\hline & current transformer see connection diagram) \\
\hline Short time overload: & \(2.5 \times \mathrm{I}_{\text {max }}\) for \(2 \mathrm{~s}, 5 \times \mathrm{I}_{\text {max }}\) for 0.5 s \\
\hline Suitable current transformers: & 1 A or 5 A types, class 3, \\
\hline & with necessary load capacity \\
\hline Current range SL 9065CT: & 5... 100 A via integrated current \\
\hline & transformer in the base \\
\hline & (max. wire-diameter: 10 mm) \\
\hline Setting range \(\cos \varphi\) : & 0 ... 0.97 infinite variable \\
\hline Operate delay \(\mathrm{t}_{\mathrm{v}}\) : & 1 ... 100 s infinite variable \\
\hline
\end{tabular}

Operate delay \(\mathrm{t}_{\mathrm{v}}\) :
1 ... 100 s infinite variable

Output

Contacts:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
to DC 13 at 0.1 Hz
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short-circuit strength
max. fuse rating:
Mechanical life:
General Data
Operating mode:
Temperature range
Operation
Storage:
Altitude:
Clearance and creepage distances
rated impulse voltage / pollution degree:
EMC
Electrostatic discharge:
HF-irradiation:
80 MHz ... 1 GHz :
1.4 GHz ... 2 GHz :

2 GHz ... 2.5 GHz :
Fast transients:
Surge voltages
between
wires for power supply:
HF-wire guided:
Interference suppression:

\section*{Degree of protection}

Housing:
Terminals:
Housing:
\begin{tabular}{|c|c|}
\hline Vibration resistance: & Amplitude 0.35 mm frequency 10 ... 55 Hz IEC/EN 60 068-2-6 \\
\hline Climate resistance: & 40/060 / 04 IEC/EN 60 068-1 \\
\hline Terminal designation: & EN 50005 \\
\hline \multicolumn{2}{|l|}{Wire connection:} \\
\hline \multirow[t]{3}{*}{Cross section:} & \(2 \times 2.5 \mathrm{~mm}^{2}\) solid or \\
\hline & \(1 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve \\
\hline & DIN 46 228-1/-2/-3/-4 \\
\hline Stripping length: & 10 mm \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{Wire fixing:}

Fixing torque:
Mounting:

\section*{Weight:}

IK 9065:
SK 9065:
SL 9065CT:

\section*{Dimensions}

\section*{Width x height x depth:}

IK 9065:
SK 9065:
SL 9065CT:

\section*{Classification to DIN EN 50155 for IK 9065 and SK 9065}

Vibration and
shock resistance:
Ambient temperature:
Category 1, Class B
IEC/EN 61373
T1, T2 compliant
T3 and TX with operational limitations
Protective coating of the PCB: No

\section*{Standard Types}

IK 9065.113 AC 400 V \(0.4 \ldots 8\) A \(1 \ldots 100 \mathrm{~s}\)
Article number: 0055534
- Output: 1 changeover contact
- De-energized on trip:
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : 3 AC 400 V
- Current range: \(0.4 \ldots 8 \mathrm{~A}\)
- Operate delay: \(1 \ldots 100 \mathrm{~s}\)
- Width: 17.5 mm

SK 9065.113 AC 400 V \(0.4 \ldots 8\) A \(1 \ldots 100 \mathrm{~s}\)
Article number: 0055816
- Output: 1 changeover contact
- De-energized on trip
- Nominal voltage \(U_{N}\) : 3 AC 400 V
- Current range: 0.4 ... 8 A
- Operate delay: \(\quad 1 \ldots 100 \mathrm{~s}\)
- Width: 17.5 mm

SL 9065.11CT/100 3 AC 400 V \(5 \ldots 100\) A \(1 \ldots 100\) s
Article number: 0059410
- Output: 1 changeover contact
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : 3 AC 400 V
- Current range: 5 ... 100 A
- Operate delay: 1 ... 100 s
- programmable for: manual reset with built in or external push button, energized or de-energized on trip, selection via switch on the front
- Width: 35 mm

\section*{Variants}

IK 9065.11/100,
SK 9065.11/100: programmable for: manual reset with built in or external push button, energized or de-energized on trip, selection via switch on the front

\section*{Ordering example for variants}

\section*{Accessories}

ET 4086-0-2: Article number: 0046578

IK 9065.11 with 3-phase load

IK 9065.11 with single-phase load

IK/SK 9065.11 with 3-phase load and external current transformer

\[
\begin{array}{ll}
\text { X1 - L1 open: } & \begin{array}{l}
\text { manual reset / latched alarm } \\
\text { (reset with internal or external push button) }
\end{array} \\
\text { X1 - L1 connected : automatic reset (auto - reset) }
\end{array}
\]

IK/SK 9065.11/100 with 3-phase load

VARIMETER
Reverse Power Monitoring
BH 9140, RP 9140
DOLD

\section*{Function Diagram}

- According to IEC/EN 60 255, DIN VDE 0435-303
- Effective power measuring
- For single and 3-phases
- Adjustable response value 2 ... 20 \% reverse power
- Hysteresis 12.5 \%
- Rated current BH 9140: 5 A or 40 A

Rated current RP 9140: 5 A
- Adjustable on delay
- Open circuit operation
- LED indication for voltage supply and contact position
- 2 changeover contacts
- As option closed circuit operation
- Width:

BH 9140: 45 mm
RP 9140: 70 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Application}

The reverse power relais BH 9140 and RP 9140 monitor the direction of the energy transport in an electrical system. This could be necessary at connection points between public supply and industrial mains e. g. when operating emergancy power supplies, to avoid taht generators run as motors.

\section*{Function}

The response value can be adjusted on \(\mathrm{P}_{\mathrm{B}}\) from 2 ... 20 \%. The reverse power is calculated for \(3 p 4 w\) and \(3 p 3 w\) units according to the formula:
\(U_{\text {star }} \times I_{u} \times \cos \varphi \times\) response value (\%)
At a setting of \(20 \%\) and \(\cos \varphi=1\) this is for BH 9140 max.:
\(230 \mathrm{~V} \times 5 \mathrm{~A} \times 0.2=230 \mathrm{~W}\)
\(230 \mathrm{~V} \times 40 \mathrm{~A} \times 0.2=1840 \mathrm{~W}\)
and for RP 9140 max.
\(230 \mathrm{~V} \times 5 \mathrm{~A} \times 0.2=230 \mathrm{~W}\)

\section*{Indication}

LED green:
LED green/red:
on, when auxiliary supply connected on, when corresponding output relay is active

\section*{Notes}

If the current is higher than the nominal current of the device an external current transformer can be used with min. 2.5 VA. The direction of the current has to be observed.

\section*{Circuit Diagrams}

BH 9140: Version for single- and 3-phase connection with N

RP 9140: Version for single- and 3 -phase connection with N

BH 9140: Version for 3-phase connection without N

RP 9140: Version for 3-phase connection without N

\section*{Technical Data}

\section*{Measuring Ciruit}

\section*{Voltage}

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\)

L1-N:
L1-L2-L3:
max. overload:

\section*{Current}

Nominal current:
max. overload:

\section*{Power}

Response value:
Hysteresis:
Frequency range:
On delay \(\mathrm{t}_{\mathrm{an}}\) :

AC 110, 230 V
3 AC 110, 230, 400, 440 V
\(1.1 U_{N}\)
5 A / (40 A only for BH 9140)
15 A

2 ... 20 \% reverse power
\(12.5 \%\) of set response value
45 ... 65 Hz
adjustable 0.2 ... 10 s

Auxiliary Circuit

Auxiliary voltage A1, A2:
Voltage range:
Frequency range:
Nominal consumption

AC 110, 230, \(400,440 \mathrm{~V}, \quad\) DC 24 V*)
*) only for BH 9140
\(0.8 \ldots 1.1 U_{H}\)
\(45 \ldots 65 \mathrm{~Hz}\) < 4 VA

Output

Contacts:
Thermal current \(\mathrm{I}_{\text {th }}\) :
Switching capacity
according to AC 15
NO contact:
NC contact:
according to DC 13:
Electrical life
acc. to AC 15 at \(3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}: 2 \times 10^{5}\) switching cycles
Permissible
switching frequency:
Short circuit strength
max. fuse rating:
Mechanical life:

1800 switching cycle/H
4 AgL
IEC/EN 60 947-5-1
\(30 \times 10^{6}\) switching cycles

\section*{General Data}

Nominal operating mode:
continuous operation
Permissible ambient-/
storage temperature: \(-20 \ldots+60^{\circ} \mathrm{C}\)

Clearance and creepage distance
rated impulse voltage / pollution degree:
EMC
Electrostatic discharge (ESD):
Fast transients:
4 kV / 2
IEC 60 664-1

Surge
between
wires for power supply: between wire and ground: interference suppression:
Degree of protection:
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation: Wire connection BH 9140 load terminals:
control terminal:

Wire fixing BH 9140:

8 kV (air) IEC/EN 61 000-4-2 2 kV IEC/EN 61 000-4-4

\section*{1 kV}

2 kV
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5 Limit value class B

EN 55011
IP 40 IEC/EN 60529

IP 20 IEC/EN 60529
Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm
Frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20 / 060 / 04
EN 50005
\(1 \times 10 \mathrm{~mm}^{2}\) solid or
\(1 \times 6 \mathrm{~mm}^{2}\) stranded wire with sleeve \(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4
Box terminals with self-lifting wire protection and Plus-minus terminal screws M3.5

\section*{Technical Data}

Wire connection RP 9140: fixed screw terminal (S):
\(0.2 \ldots 4 \mathrm{~mm}^{2}\) solid or \(0.2 \ldots 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve Flat screws M 2,5
box terminals with wire protection DIN rail

IEC/EN 60715
Mounting:
Weight:
BH 9140: \(\quad 430 \mathrm{~g}\)
RP 9140:
250 g

\section*{Dimensions}

\section*{Width x heigh x depth:}
\begin{tabular}{ll}
BH 9140: & \(45 \times 84 \times 121 \mathrm{~mm}\) \\
RP 9140: & \(70 \times 90 \times 71 \mathrm{~mm}\)
\end{tabular}

\section*{Standard Types}

BH 9140.12/001 3 AC 400 V 5 A AC 230 V 10 s
Article number:
0060919
- open circuit operation
- 3-phase connection without neutral
- Response value: 2 ... \(20 \%\)
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : 3 AC 400 V
- Nominal current:
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : AC 230 V
- On delay: \(\quad 0.2 \ldots 10 \mathrm{~s}\)
- Width: 45 mm

RP 9140.12/201 3 AC 400 V 5 A AC 230 V 10 s
Article number: 0061258
- Open circuit operation
- 3-phase connection without neutral
- Response value: 2 ... 20 \%
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : 3 AC 400 V
- Nominal current:
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : AC 230 V
- On delay: \(0.2 \ldots 10 \mathrm{~s}\)
- Width: 70 mm
Variants

Ordering example for variants

\section*{Setting Facilities}

Response value
\begin{tabular}{ll}
Reverse power: & \(2 \ldots 20 \%\) \\
On delay: & \(0.2 \ldots 10 \mathrm{~s}\)
\end{tabular}

For 3-phase connection without N

For 3-phase connections with current transformer (external).

For single or 3-phase connection with N

For single or 3-phase connections with current transformer (external)

\section*{M9731_a}

\section*{For 3-phase connection without N}

\section*{M9732_a}

For 3-phase connections with current transformer (external).

\section*{M9730_a}

For single or 3-phase connection without N

For single or 3-phase connections with current transformer (external)

\section*{Function Diagram}

Test \({ }^{\text {T }}\) \(\qquad\)

\section*{Circuit Diagram}

- According to IEC/EN 60255
- Detection of
- undervoltage 1 up to 3-phase, \(0.85 \times \mathrm{U}_{\mathrm{N}}\)
- phase failure
- Without auxiliary voltage
- De-energized on trip
- LED indicator for L1, L2, L3 with test key to simulate failure
- 2 changeover contacts
- Width 35 mm

\section*{Approvals and Markings}

\section*{C}

\section*{Application}

Voltage monitoring of 3-phase systems
IL 9176.12/108 for installations according to DIN VDE 0108

\section*{Function}

On a healthy voltage system all 3 LEDs are on. The output contacts 11-14 and 21-24 are closed. By presssing the test button a failure is simulated and the relay contacts de-energise. This allows to test the circuit. When having asymmetric loads in the circuit the unit detects also a broken neutral wire. If the voltage drops below \(0.85 \times \mathrm{U}_{\mathrm{N}}\) in one phase, the corresponding LED and the relay contacts switch off.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Technical Data} \\
\hline Short circuit strength & \\
\hline Max. fuse rating: & 4 AgL IEC/EN 60 947-5-1 \\
\hline Mechanical life: & \(30 \times 10^{8}\) switching cycles \\
\hline \multicolumn{2}{|l|}{General Data} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Temperature range: \(\quad-20 \ldots+60^{\circ} \mathrm{C}\)
Clearance and creepage distance}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{rated rated impulse voltage voltage /} \\
\hline pollution degree: & \(4 \mathrm{kV} / 2 \quad\) IEC 60 664-1 \\
\hline \multicolumn{2}{|l|}{Test voltage} \\
\hline Input / output & AC 2.5 kV IEC/EN 61 810-4-2 \\
\hline \multicolumn{2}{|l|}{EMC} \\
\hline Electrostatic discharge (ESD): & 8 kV (air) IEC/EN 61 000-4-2 \\
\hline Fast transients: & 4 kV IEC/EN 61 000-4-4 \\
\hline \multicolumn{2}{|l|}{Surge voltage} \\
\hline between & \\
\hline wires for power supply: & 1 kV IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 2 kV IEC/EN 61 000-4-5 \\
\hline Interference suppression: & Limit value class B EN 55011 \\
\hline \multicolumn{2}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 IEC/EN 60529 \\
\hline Terminals: & IP 20 IEC/EN 60529 \\
\hline Housing: & thermoplastic with VO behaviour according to UL subject 94 \\
\hline \multirow[t]{2}{*}{Vibration resistance:} & Amplitude 0.35 mm , \\
\hline & Frequency 10 ... 55 Hz , IEC/EN \(60068-2-6\) \\
\hline Climate resistance: & 20 / 060 / 04 IEC/EN 60 068-1 \\
\hline \multirow[t]{2}{*}{Leiteranschluß:} & \(2 \times 2.5 \mathrm{~mm}^{2}\) solid or \\
\hline & \(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4 \\
\hline \multirow[t]{2}{*}{Wire connection:} & Flat terminals with self-lifting \\
\hline & clamping piece IEC/EN 60 999-1 \\
\hline Mounting: & DIN-rail IEC/EN 60715 \\
\hline Weight: & 105 g \\
\hline \multicolumn{2}{|l|}{Dimensions} \\
\hline Width x height x depth: & \(35 \times 90 \times 59 \mathrm{~mm}\) \\
\hline \multicolumn{2}{|l|}{Standard Type} \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
IL 9176.12 3/N AC 400/230V Article number: \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : \\
- Output: \\
- Width:
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& 50 / 60 \mathrm{~Hz} \\
& 0059134 \\
& 3 / \mathrm{N} \mathrm{AC} \mathrm{400/230} \mathrm{~V} \\
& 2 \text { changeover contacts } \\
& 35 \mathrm{~mm}
\end{aligned}
\]} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{Variant} \\
\hline IL 9176.12/108: & with Marking „Für Anlagen nach DIN VDE 0108" (for systems according to DIN VDE 0108) \\
\hline
\end{tabular}

\section*{Installation / Monitoring Technique}

VARIMETER

\section*{Circuit Diagram}

IK 9168, SK 9168
- According to IEC/EN 60 255, DIN VDE 0435-303
- Indication of phase failure in 3 -phase systems
- Single phase connection possible
- Independent of phase sequence
- LED indicator for each phase
- Devices available in 2 enclosure versions:

IK 9168: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SK 9168: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 17.5 mm

\section*{Approvals and Markings}

\section*{Applications}

Indication of phase failure in 3-phase systems
\begin{tabular}{ll}
\hline Indicators & \\
LED L1, L2, L3: & \begin{tabular}{l}
on when corresponding phase \\
is present
\end{tabular} \\
\hline
\end{tabular}

\section*{Technical Data}

Input
Nominal voltage \(\mathrm{U}_{\mathrm{N}}\)
Voltage range:
Input current at \(U_{N}\) :
Nominal consumption:
Nominal frequency:
Frequency range:
Operate value:
\(3 / \mathrm{N}\) AC \(400 / 230 \mathrm{~V}\)
\(0.8 \ldots 1.1 U_{\mathrm{N}}\)
0.2 mA
0.5 VA per input
\(50 / 60 \mathrm{~Hz}\)

General Data

Operating mode:
Continuous operation
Temperature range:
\(-20 \ldots+60^{\circ} \mathrm{C}\)
Clearance and creepage

\section*{distances}
rated impulse voltage /
pollution degree
(between L1-L2-L3-N):
EMC
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
Interference suppression:
Degree of protection
Housing:
minals
Housing:
Vibration resistance:

Climate resistance:
Terminal designation:
\(10 \mathrm{~V} / \mathrm{m}\)
2 kV
000-4-2
EC/EN 61 000-4-3

2 kV
4 kV
Limit value class B
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
P 40 IEC/EN 60529
\(4 \mathrm{kV} / 2\)
IEC 60 664-1
EC/EN 61 000-4-2
IEC/EN 61 000-4-4

IP \(40 \quad\) IEC/EN 60529
IP \(20 \quad\) IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency \(10 \ldots 55 \mathrm{~Hz}\)
20/060/04
EN 50005
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Technical Data} \\
\hline Wire connection: & \(2 \times 2.5 \mathrm{~mm}^{2}\) solid or \(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled DIN 46 228-1/-2/-3/-4 \\
\hline Wire fixing: & Flat terminals with self-lifting clamping piece IEC/EN 60 999-1 \\
\hline Mounting: & DIN rail IEC/EN 60715 \\
\hline Weight & \\
\hline IK 9168: & 50 g \\
\hline SK 9168: & 70 g \\
\hline \multicolumn{2}{|l|}{Dimensions} \\
\hline \begin{tabular}{l}
Width x height x depth IK 9168: \\
SK 9168:
\end{tabular} & \[
\begin{aligned}
& 17.5 \times 90 \times 59 \mathrm{~mm} \\
& 17.5 \times 90 \times 98 \mathrm{~mm}
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Standard Type} \\
\hline \begin{tabular}{l}
IK 9168 3/N AC 400 / 230 V \\
Article number: \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : \\
- Width:
\end{tabular} & \(50 / 60 \mathrm{~Hz}\)
0049174
\(3 / \mathrm{N} \mathrm{AC} 400 / 230 \mathrm{~V}\)
17.5 mm \\
\hline \begin{tabular}{l}
SK 9168 3/N AC 400 / 230 V \\
Article number: \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
\end{tabular} & \[
\begin{aligned}
& 50 / 60 \mathrm{~Hz} \\
& 0054712 \\
& 3 / \mathrm{N} \mathrm{AC} 400 / 230 \mathrm{~V}
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Ordering example} \\
\hline & \\
\hline
\end{tabular}

\section*{Product Description}

The space saving phase monitor RK9872/800 from the Varimeter family monitors under- amd overvoltage as well as phase sequence in 3-phase systems.
The response values are fixed. When connecting the measuring voltage to the inputs L1-L2-L3 and fault free system the relay switches on. When the measuring voltage is connected the unit checks a clockwise phase sequence. If this is not the case the yellow LED flashes. The output relay will not energise. After detection of under- or overvoltage on one or more phases for more the 5 sec . the relay switches off. The relay stays off for at least 2 seconds. The phase monitor measures the arithmetic mean value of the 3 phases against neutral.

\section*{Function Diagramm}

\section*{Your Advantages}
- Reliability monitoring of 3- or 1-phase voltage systems on:
- Undervoltage
- Overvoltage
- Phase sequence (at 3-phase voltage system)
- Fast fault location
- Preventive maintenance
- Space saving

\section*{Features}
- According to IEC/EN 60255-1
- Detection of under-/overvoltage and phase sequence in 3-phase voltage systems
- Without separate auxiliary voltage
- LED-Indication for operation voltage and contact position
- De-energized on trip
- Withfixed response value for undervoltage
- Withfixed response value for overvoltage
- Width: \(17,5 \mathrm{~mm}\)

\section*{Approvals and Markings}

\section*{Application}

Monitoring of voltage systems on undervoltage, overvoltage and phase sequence, e. g. for applications with squirrel cage motors and -machines, cranes, elevator, escalator, pumps, aircondition.

\section*{Indicators}
green LED:
yellow LED:
yellow LED:
on, when nominal voltage connected
on, when corresponding output relay
is active
flashes at failure with code:
1 x at undervoltage
\(2 x\) at overvoltage
\(3 x\) at phase reversal

\section*{Safety Notes}
- Faults must only be removed when the relay is disconnected.
- The user has to make sure that the device and corresponding components are installed and wired according to the local rules and law (TUEV, VDE, Health and safety).
- Settings must only be changed by trained staff taking into account the safety regulations. Installation work must only be done when power is disconnected.
- If the connected system creates a reverse voltage above the undervoltage response value the failure cannot be detected.

\section*{Technical Data}

Input
Measuring voltage \(=\)
supply voltage
\begin{tabular}{ll}
Nominal voltage \(U_{N}:\) & \(3 / \mathrm{N} \mathrm{AC} \mathrm{400/230V}\) \\
Max. overload: & \(1.15 \mathrm{U}_{\mathrm{N}}\) continuously \\
Nominal consumption: & approx. 6 VA \\
Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
Measuring frequency range: & \(45 \ldots 65 \mathrm{~Hz}\)
\end{tabular}
\begin{tabular}{l|c|c|c|}
\cline { 2 - 4 } \multicolumn{1}{l|}{} & Response value*): & 3-phase & \multicolumn{2}{|c|}{ 1-phase } \\
\cline { 2 - 4 } \multicolumn{1}{l|}{\begin{tabular}{c}
3 N AC 400 \\
\(230 ~ / ~\)
\end{tabular}} & AC 400 V & AC 110 V \\
\hline Undervoltage: & 195.5 V & 360 V & 99 V \\
\hline Overvoltage: & 253 V & 440 V & 121 V \\
\hline Hysteresis: & \(2.5 \%\) & \(1.5 \%\) & \(2.0 \%\) \\
\hline Accuracy: & \multicolumn{3}{|c|}{\(\pm 3 \%\)} \\
\hline Repeat accuracy: & \multicolumn{3}{|c|}{\(<2 \%\)} \\
\hline Temperature influence: & \multicolumn{3}{|c|}{\(<1 \%\)} \\
\hline
\end{tabular}
*) the response values are fixed and measured against N
\begin{tabular}{ll}
Reaction time: & \(\leq 50 \mathrm{~ms}\) \\
Overvoltage category: & III (according to IEC 60664-1)
\end{tabular}

\section*{Output}

\section*{Contacts:}

Thermal current \(\mathrm{I}_{\mathrm{th}}\) : Switching capacity
to AC 15:
NO contacts:
NC contacts:
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Mechanical life:

1 changeover contact
4 A
\begin{tabular}{ll}
\(2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN \(60947-5-1\) \\
\(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN \(60947-5-1\) \\
\(1 \times 10^{5}\) switch. cycl. & IEC/EN \(60947-5-1\) \\
\(1 \times 10^{6}\) switching cycles
\end{tabular}

\section*{Technical Data}

\section*{General Data}

Nominal operating mode: continuous operation
Temperature range:
Operation: \(\quad-25 \ldots+60^{\circ} \mathrm{C}\)
Storage: \(\quad-25 \ldots+70^{\circ} \mathrm{C}\)
Clearance and creepage distance
contact / measuring voltage
rated impuls voltage /
pollution degree:
6 kV / 2
EMC
Electrostatic discharge (ESD): 8 kV (air) IEC/EN 61 000-4-2
Fast transients: \(\quad 2 \mathrm{kV}\) IEC/EN 61 000-4-4
Surge voltages
between power sypply:
between wire and ground:
HF-wire guided:
Interference suppression:
Degree of protection
Enclosure:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
Fixed screw terminals
Cross section:

Stripping length:
Fixing torque:
Wire fixing:
Mounting:
Weight:
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
10 V
EN 55011
value class
IEC/EN 60529
IEC/EN 60529
thermoplastic with VO behaviour acc. to UL subject 94
Amplitude 0.35 mm ,
Frequency 10 ... 55 Hz IEC/EN 60 068-2-6 25/060/04 IEC/EN 60 068-1
EN 50005
DIN 46 228-1/-2/-3/-4
\(0.34 \ldots 2.5 \mathrm{~mm}^{2}\) (AWG 22-14) solid or \(0.34 \ldots 2.5 \mathrm{~mm}^{2}\) (AWG 22 - 14) stranded wire with and without ferrules 7 mm
\(0.5 \mathrm{Nm} \quad \mathrm{EN} 60\) 999-1
Captive slotted screw / M2.5
DIN-rail
IEC/EN 60715
approx. 70 g

\section*{Dimensions}

Width x height x depth: \(\quad 17.5 \times 90 \times 66 \mathrm{~mm}\)
\begin{tabular}{ll}
\hline \multicolumn{2}{l}{ Standard Type } \\
RK \(9872.113 / \mathrm{N} \mathrm{AC} 400 / 230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}\) \\
Article number:: & 0065075 \\
- Output: & 1 changeover contact \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & \(3 / \mathrm{N} \mathrm{AC} 400 / 230 \mathrm{~V}\) \\
- Width: & 17.5 mm
\end{tabular}

\section*{Variant}
RK 9872.11/100: Undervoltage / overvoltage monitoring

\section*{Ordering example for variant}

RK 9872 / _ 0
\(\xrightarrow{0}\)\begin{tabular}{l}
0 Standard \\
0 without time delay \\
1 with time delay 0.5 s
\end{tabular}

Connection Examples

3-phase

1-phase

VARIMETER

\section*{Phase Monitor}

IK 9169, RK 9169, SK 9169
DOLD

IK 9169, RK 9169, SK 9169
\begin{tabular}{l}
\hline \multicolumn{2}{|c|}{ Connection Terminals } \\
\hline Terminal designation \\
\hline L1, L2, L3, N \\
\hline \(11,12,14\)
\end{tabular}
- According to IEC/EN 60 255-1
- Detection of phase failure in 3-phase systems
- Single phase connection possible
- Closed circuit operation
- Independent of phase sequence
- LED indicator for each phase
- Output 1 changeover contact
- Devices available in 2 enclosure versions:
- I- and R-versions, e.g. IK 9169 with depth 61 mm or RK 9169 with depth 71 mm with terminls at the bottom for installation systems and industrial distribution systems according to DIN 43880
- S-version, e.g. SK 9169: depth 100 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 17.5 mm

\section*{Approvals and Markings}

\section*{Applications}

Detection of phase failure in 3-phase systems

\section*{Indicators}

LED L1, L2, L3:
on, when phase is present

\section*{Notes}

On broken or disconnected neutral the LEDs are off although the 3 phases are present.
In this case measurement is necessary to prove that no voltage is present.

\section*{Technical Data}

Input
\begin{tabular}{ll}
Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & \(3 / \mathrm{NAC} 380 \ldots 415 / 220 \ldots 240 \mathrm{~V}\) \\
Voltage range: & \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
Frequency range: & \(45 \ldots 65 \mathrm{~Hz}\) \\
Response value: & \(0.7 \mathrm{U}_{\mathrm{N}} \pm 10 \%\)
\end{tabular}

\section*{Output}

\section*{Contact}

IK 9169, RK 9169, SK 9169: 1 changeover contact
Thermal current \(\mathrm{I}_{\mathrm{th}}\) : 4 A
Switching capacity
to AC 15
NO contact: \(\quad 3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1 NC contact: \(\quad 1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1

\section*{Electrical life}
to \(A C 15\) at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short-circuit strength max. fuse rating: Mechanical life:

IEC/EN 60 947-5-1
typ. 300000 switching cycles
4 AgL
IEC/EN 60 947-5-1
\(\geq 30 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}

Operating mode:
Continuous operation
Temperature range:
\begin{tabular}{ll}
Operation: & \(-20 \ldots+60^{\circ} \mathrm{C}\) \\
Storage: & \(-25 \ldots+60^{\circ} \mathrm{C}\) \\
Altitude: & \(<2.000 \mathrm{~m}\)
\end{tabular}

\section*{<2.000 m}

Clearance and creepage

\section*{distances}
rated impulse voltage /
pollution degree
(between L1-L2-L3-N):
4 kV /
IEC 60 664-1
input / output:
\(4 \mathrm{kV} / 2\)
IEC 60 664-1
EMC
Electrostatic discharg
HF irradiation
\(80 \mathrm{MHz} \ldots 2.7 \mathrm{GHz}: \quad 10 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3
Fast transients:
Surge voltages
between
wires for power supply: \(\quad 2 \mathrm{kV} \quad\) IEC/EN 61 000-4-5
between wire and ground: 4 kV IEC/EN 61 000-4-5

HF wire guided:
Interference suppression:
Degree of protection
Housing:
IEC/EN 61 000-4-6
Limit value class B
EN 55011

Terminals:
Housing:
Vibration resistance:

IP 40 IEC/EN 60529
IP 20 IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6

\section*{Standard Types}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{IK 9169.11 3/N AC \(380 \ldots 415\) / \(220 \ldots 240\) V 50/60 Hz} \\
\hline Article number: & 0049177 \\
\hline RK 9169.11 3/N AC 380 & ... 415 / 220 ... \(240 \mathrm{~V} 50 / 60 \mathrm{~Hz}\) \\
\hline Article number: & 0060316 \\
\hline SK 9169.11 3/N AC 380 & .. 415 / 222 ... \(240 \mathrm{~V} 50 / 60 \mathrm{~Hz}\) \\
\hline Article number: & 0054713 \\
\hline - Output: & 1 changeover contact \\
\hline - Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & 3/N AC 380 ... 415 / 220 ... 240 V \\
\hline
\end{tabular}

The 1 MHz slow damped oscillator test according to IEC/EN 60255-1 has not been made.
\begin{tabular}{ll}
Climate resistance: & \(20 / 060 / 04 \quad\) IEC/EN 60 068-1 \\
Terminal designation: & EN 50005 \\
\begin{tabular}{l}
Wire connection: \\
IK 9169, SK 9169
\end{tabular} & DIN \(46228-1 /-2 /-3 /-4\) \\
Cross section: & \\
& \(2 \times 0,6 \ldots 2,5 \mathrm{~mm}^{2}\) solid or \\
& \(2 \times 0,28 \ldots 1,5 \mathrm{~mm}^{2}\) stranded wire with \\
& \begin{tabular}{l}
and without ferrules
\end{tabular} \\
Stripping length: & 10 mm \\
Leiterbefestigung: & Plus-Minus-terminal screws M3,5 with \\
& self-lifting clamping piece \\
RK 9169 & \\
Cross section: & \(0,5 \ldots 10 \mathrm{~mm}^{2}\) solid or \\
& \(0,5 \ldots 6 \mathrm{~mm}^{2} \mathrm{~mm}^{2}\) stranded wire with \\
& and without ferrules \\
Stripping length: & 10 mm \\
Wire fixing: & Captive slotted screw / M3,5 \\
Fixing torque: & 0.8 Nm \\
Mounting: & DIN rail \\
Weight & \\
IK 9169: & 60 g \\
RK 9169: & 75 g \\
SK 9169: & 80 g
\end{tabular}

\section*{Dimensions}
\begin{tabular}{ll}
Width \(x\) height \(x\) depth & \\
IK 9169: & \(17.5 \times 90 \times 59 \mathrm{~mm}\) \\
RK 9169: & \(17.5 \times 90 \times 71 \mathrm{~mm}\) \\
SK 9169: & \(17.5 \times 90 \times 98 \mathrm{~mm}\)
\end{tabular}

\section*{VARIMETER}

Function Diagrams

IL 9059, SL 9059

OA 9059/001

\section*{Your Advantages}
- Protects mobile equipment against damage or destruction coming from wrong phase sequence
- OA 9059: reduced wiring by mounting directly in the motor connection box

\section*{Features}
- According to IEC/EN 60255-1
- Detection of incorrect phase sequence
- No separately auxiliary voltage necessary
- Nominal voltage range 3 AC 380 ... 690 V
- Suitable for operation with inverters \((f=40 \ldots 80 \mathrm{~Hz})\)
- Relay output:
- IL/SL 9059: 1 changeover contact
- OA 9059: 1 NC contact
- Extended temperature range
- Devices available in 3 enclosure versions:

IL 9059: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SL 9059: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- OA 9059: sealed modul with stranded wire connection
suitable for mounting in terminal box
- Width
- IL/SL 9059: 35 mm
- OA 9059: 62 mm

\section*{Approvals and Markings}

*) only IL 9059

\section*{Applications}

In many application with pumps, conveyors and fans efficient monitoring systems should help to detect failures and misfunctions in time, to avoid damage and long times of non-operation.
Besides speed and frequency the monitoring of phase sequence is very important.
The phase sequence relay with it's wide voltage range of 3AC380-690V detects a wrong phase sequence and signals via a galvanically separated relay contact the wrong rotation of a motor.
By integrating the relay output into the enabling circuit of a plant, the unit disables the start of the plant in the case of wrong phase sequence. especially portable equipment can be protected in this way.

\section*{Indicators}

2-colour LED at IL/SL 9059
green:
correct phase sequence contacts 11-14 closed
red: incorrect phase sequence contacts 11-12 closed

IL 9059, SL 9059
OA 9059
\begin{tabular}{l}
\hline \multicolumn{1}{|c|}{ Connection Terminals } \\
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L1, L2, L3 & \begin{tabular}{l}
Input circuit \\
OA 9059:L1 (red), L2 (blue), L3 (grey)
\end{tabular} \\
\hline 7,8 (OA 9059) & NO contact: 7 (yellow), 8 (green) \\
\hline \(11,12,14\) (IL/SL 9059) & Changeover contact \\
\hline
\end{tabular}
\end{tabular}

\section*{Technical Data}

Input circuit
Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
Voltage range:
Nominal frequency:
Frequency range:
3 AC 380 ... 690 V
\(0.85 \ldots 1.1 U_{N}(3\) AC \(320 \ldots 760 \mathrm{~V}\))
ca. 3 VA
\(40 \ldots 80 \mathrm{~Hz}\) (main frequency);
suitable for operation with inverters
with independant pulse frequency

\section*{Output}

\section*{Contact}
\begin{tabular}{ll}
IL/SL 9059: & 1 \\
OA 9059: & 1 \\
Contact material: & A \\
Switching voltage: & A \\
Response time: & A \\
& in \\
& at \\
Thermal current \(\mathrm{I}_{\mathrm{th}}\) : & \\
IL/SL 9059: & 5 \\
OA 9059: & 2
\end{tabular}

Switching capacity IL/SL 9059
\begin{tabular}{|c|c|c|}
\hline to AC 15: & 2 A / AC 230 V & IEC/EN 60 947-5-1 \\
\hline to DC 13: & \(2 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline \multicolumn{3}{|l|}{Switching capacity OA 9059} \\
\hline to AC 15: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline to DC 13: & \(1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline Electrical life: & \multicolumn{2}{|l|}{\(1.5 \times 10^{5}\) switching cycles} \\
\hline \multicolumn{3}{|l|}{Short circuit strength max. fuse rating:} \\
\hline IL/SL 9059: & 4 AgL & IEC/EN 60 947-5-1 \\
\hline OA 9059: & 2 AgL & IEC/EN 60 947-5-1 \\
\hline Mechanical life: & \(\geq 30 \times 10^{6}\) switc & cycles \\
\hline
\end{tabular}

General Data
Operating mode:
Continuous operation
Temperature range
Operation
IL/SL 9059:
\(-30 \ldots+70^{\circ} \mathrm{C}\)
OA 9059:
\(-30 \ldots+75^{\circ} \mathrm{C}\)
Storage
IL/SL 9059:
\(-40 \ldots+70^{\circ} \mathrm{C}\)
OA 9059:
Relative air humidity:

\section*{Altitude:}

\section*{Clearance and creepage}

\section*{distances}
rated rated impulse voltage voltage
pollution degree;
Output to Input:
6 kV / 3
IEC 60 664-1
EMC
Statische Entladung (ESD):
HF irratiation
80 MHz ... 1 GHz
IL/SL 9059:
\(1 \mathrm{GHz} \ldots 2 \mathrm{GHz}\) :
2 GHz ... 2.7 GHz :
OA 9059:
1 GHz ... 2 GHz :
2 GHz ... 2.7 GHz :
Fast transients:
HF-wire guided
IL/SL 9059:
OA 9059:
Surge voltages:
Interference suppression:
changeover contacts
NC contact
AgNi 0.15 gold plated
AC 250 V
After connection of all 3 phase with incorrect phase sequence until NC contact at OA 9059/001 opens: approx. 100 ms

\section*{5 A}

2 A

2 A / AC 230 V
EC/EN 60 947-5-1
Weight:
IL 9059:
SL 9059:
OA 9059:
Dimensions

Width x height x depth:
IL 9059:
SL 9059:
OA 9059:
Wire fixing IL/SL 9059:
Fixing torque:
IL/SL 9059:
Mounting
IL/SL 9059
OA 9059
Mounting screws:
Mounting torque:

Housing: IP 40
EN 60529
Terminals: IP 20
EN 60529
Module is completed sealed-in

Thermoplastic with V0 behaviour according to UL subject 94
Potting compound UL approval
Amplitude 0.35 mm ,
frequency 10 ... 55 Hz ,IEC/EN 60 068-2-6
Climate resistance:
IL/SL 9059:
OA 9059:
Wire connection:
IL/SL 9059:

OA 9059:
L1; L2; L3:
7; 8 :
wire length:
\(\qquad\)
\(35 \times 90 \times 59 \mathrm{~mm}\)
\(35 \times 90 \times 98 \mathrm{~mm}\)
\(62 \times 62 \times 25 \mathrm{~mm}\)
\begin{tabular}{lr}
\(30 / 070 / 04\) & IEC/EN \(60068-1\) \\
\(30 / 075 / 04\) & IEC/EN 60 068-1 \\
\\
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid \\
\begin{tabular}{ll}
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled \\
DIN \(46228-1 /-2 /-3\) &
\end{tabular}\(\quad\).
\end{tabular}

DIN 46 228-1 /-2 /-3
\(0.5 \mathrm{~mm}^{2}\), double insulation
\(0.25 \mathrm{~mm}^{2}\), double insulation
25 cm
Flat terminals with self-lifting clamping piece

EN 60999
0.8 Nm

DIN rail
IEC/EN 60715
\(\mathrm{M} 4 \times 25 \mathrm{~mm}\)
1.2 Nm
approx. 215 g
approx. 245 g
approx. 180 g

\section*{Standard Type}

LL 9059.113 AC 380 ... 690 V \(40 \ldots 80 \mathrm{~Hz}\)
for mounting in consumer units or industrial distribution systems
Article number:
0062239
- Output: 1 changeover contact
- Nominal voltage U : 3 AC 380 ... 690 V
- Frequency range:
- De-energized on trip
- Width: 40 ... 80 Hz

SL 9059.113 AC \(380 \ldots 690 \mathrm{~V} 40 \ldots 80 \mathrm{~Hz}\)
for cabinets with mounting plate
Article number:
- Output:

0065771
- Frequency range:
- De-energized on trip
- Width:

1 changeover contact
\(40 \ldots 80 \mathrm{~Hz}\)

OA 9059.05/001 3 AC \(380 \ldots 690 \mathrm{~V} 40 \ldots 80 \mathrm{~Hz}\)
for mounting in terminal box
Article number:
- Output:

0065777
1 NC contact
- Nominal voltage U:
- Frequency range:

3 AC 380 ... 690 V
40 ... 80 Hz
- Energized on trip
- Width:

62 mm

\section*{Dimension OA 9059}

Monitoring Technique
VARIMETER
Phase Sequence Relay
BA 9041, Al 941 N

Function Diagram

\section*{Circuit Diagram}

BA 9041, Al 941 N. 002
- According to IEC 255, EN 60 255, VDE 0435 part 303
- Detection of wrong phase sequence
- 1 or 2 changeover contacts
- Width 45 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Application}

Monitoring three-phase mains for incorret phase sequence

\section*{Function}

The phase sequence relays BA 9041 and AI 941 N monitor the right order of the phases in a 3-phase system. When all 3 phases are connected to the device and the phase sequence is correct the output contacts are activated, 11-14 and 21-24 close and a green LED comes on.

When the voltage in one phase drops below 60 \% of the nominal voltage the relay is de-energized. If a load feeds back a voltage that is higher then \(60 \% U_{N}\) the fault is not detected. To avoid this problem an asymmetry relay BA 9040 should be used.

In systems with commutation peaks (thyristor controlled drives) the device can falsely detect a phase failure.

In this case it is helpful to know as much as possible about the actual conditions in the system.

\section*{Technical Data}

Input

Nominal voltage \(U_{N}\) :
Voltage range:
Nominal frequency of \(\mathrm{U}_{\mathrm{N}}\) :
Frequency range:
Nominal consumption:

\section*{Output}

\section*{Contacts}

Al 941 N. 001 :
AI 941 N.002, BA 9041:
Operate-/release delay:
Thermal current \(I_{t h}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life
to \(A C 15\) at 3 A, AC 230 V :
Short-circuit strength
max. fuse rating:
Mechanical life:

1 changeover contact
2 changeover contacts
< 100 / < 50 ms
5 A

3 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
\(2.5 \times 10^{5}\) switching cycles
4 AgL
IEC/EN 60 947-5-1
\(50 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}
\begin{tabular}{|c|c|c|}
\hline Operating mode: & \multicolumn{2}{|l|}{Continuous operation} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Temperature range: \\
Clearance and creepage \\
distances
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{EMC} \\
\hline Electrostatic discharge: & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline HF irradiation: & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 2 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltages} \\
\hline wires for power supply: & 1 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 2 kV & IEC/EN 61 000-4-5 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multirow[t]{2}{*}{Degree of protection:} & Housing: IP 40 & IEC/EN 60529 \\
\hline & Terminals:IP 20 & IEC/EN 60529 \\
\hline Housing: & \multicolumn{2}{|l|}{Thermoplastic with Vo behaviour according to UL subject 94} \\
\hline Vibration resistance: & \multicolumn{2}{|l|}{Amplitude 0.35 mm , IEC/EN 60 068-2-6 frequency \(10 \ldots 55 \mathrm{~Hz}\)} \\
\hline Climate resistance: & 20/060 / 04 & IEC/EN 60 068-1 \\
\hline Terminal designation: & \multicolumn{2}{|l|}{EN 50005} \\
\hline \multirow[t]{2}{*}{Wire connection:} & \multicolumn{2}{|l|}{\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or} \\
\hline & \multicolumn{2}{|l|}{\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4} \\
\hline \multirow[t]{2}{*}{Wire fixing:} & \multicolumn{2}{|l|}{Flat terminals with self-lifting} \\
\hline & clamping piece & IEC/EN 60 999-1 \\
\hline \multicolumn{3}{|l|}{Screw mounting:} \\
\hline Al 941 N: & \multicolumn{2}{|l|}{\(35 \times 50 \mathrm{~mm}\) and \(35 \times 60 \mathrm{~mm}\)} \\
\hline Mounting: & DIN rail & IEC/EN 60715 \\
\hline \multicolumn{3}{|l|}{Weight:} \\
\hline BA 9041: & \multicolumn{2}{|l|}{310 g} \\
\hline Al 941 N: & \multicolumn{2}{|l|}{300 g} \\
\hline
\end{tabular}

Dimensions
Width x height x depth
\begin{tabular}{ll}
BA 9041: & \(45 \times 74 \times 124 \mathrm{~mm}\) \\
Al 941 N: & \(45 \times 77 \times 127 \mathrm{~mm}\)
\end{tabular}
\begin{tabular}{lll}
\hline \multicolumn{2}{l}{ Standard Types } & \\
BA 9041 AC \(400 \mathrm{~V} \quad 50 \mathrm{~Hz}\) & & \\
Article number: & 0041732 & \\
- Output: & 2 changeover contacts & \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & AC 400 V & \\
- Width: & 45 mm & \\
& & \\
Al 941 N .001 AC & 400 V & 50 Hz \\
Article number: & 0040771 & \\
- Output: & 1 changeover contact & stock item \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & AC 400 V & \\
- Width: & 45 mm &
\end{tabular}
\begin{tabular}{ll}
\hline Variant & \\
Al 941 N.__- \(103:\) & \begin{tabular}{l}
Nominal frequency \(50 \ldots 60 \mathrm{~Hz}\), \\
phase failure cannot be detected with \\
this unit
\end{tabular} \\
\hline
\end{tabular}

\section*{Ordering example for variants}

\section*{Product Description}

The MK 9056N detect wrong phase sequence in 3-phase systems. To monitor phase failure it is more suitable to use an Asymmetry relay e.g. MK 9040N.

\section*{Function Diagram}

\section*{Circuit Diagram}

Connection Terminals
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L1, L2, L3 & \begin{tabular}{l}
Connection of the monitoring \\
3-phase system
\end{tabular} \\
\hline \(11,12,14,21,22,24\) & \begin{tabular}{l}
"incorrect phase sequence-signa- \\
ling relais (2 changeover contacts)"
\end{tabular} \\
\hline
\end{tabular}

\section*{Your Advantage}
- Correct sense of rotation of motors
- Simple wiring

\section*{Features}
- According to IEC/EN 60 255-1
- Detection of wrong phase sequence
- LED indication of rotation
- 2 changeover contacts
- Wire connection: also \(2 \times 1.5 \mathrm{mn}\) h stranded ferruled, or \(2 \times 2.5 \mathrm{~mm}^{2}\) solid DIN 46 228-1/-2/-3/-4
- As option with pluggable terminal blocks for easy exchange of devices - with screw terminals
- or with cage clamp terminals
- Width 22.5 mm

\section*{Approvals and Markings}

\section*{Indicators}
green LED:
on, when corresponding output relay is active

\section*{Technical Data}

Input
\begin{tabular}{ll}
Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & \(3 \mathrm{AC} 42 \ldots 60 \mathrm{~V}, 100 \ldots 127 \mathrm{~V}\) \\
& \(3 \mathrm{AC} \mathrm{220} \mathrm{\ldots 240,380} \mathrm{\ldots 500V}\) \\
Voltage range: & \(0.9 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
Nominal frequency of \(\mathrm{U}_{\mathrm{N}}:\) & \(50 / 60 \mathrm{~Hz}\) \\
Nominal consumption: & approx. 2 W
\end{tabular}

\section*{Output}

Contact:
Operate / release delay:
Thermal current \(\mathrm{I}_{\text {th }}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
to DC 13
NO contact:
NC contact:
Electrical life
to AC 15 at 3 A, AC 230 V :
Short circuit strength
max. fuse rating:
Mechanical life:

\section*{General Data}

Operating mode:
Temperature range:
Operation:
torage
Altitude:
Clearance and creepage
distances
rated impulse voltage /
pollution degree:
\(4 \mathrm{kV} / 2\)

IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
\(5 \times 10^{5}\) switch. cycles IEC/EN 60 947-5-1

4 A gL
IEC/EN 60 947-5-1
\(>20 \times 10^{6}\) switching cycles
3 A / AC 230
1 A / AC 230 V
1 A / DC 24 V

2 changeover contacts
\(<100 / 50 \mathrm{~ms}\)
5 A

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
\(-20 \ldots+60^{\circ} \mathrm{C}\)
< 2.000 m

IEC 60 664-1

\section*{Technical Data}

EMC
HF irradiation
80 MHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
\begin{tabular}{llr}
wires for power supply: & 2 kV & IEC/EN 61 000-4-5 \\
between wire and ground: & 4 kV & IEC/EN 61 000-4-5 \\
HF wire guided: & 10 V & IEC/EN 61 000-4-6 \\
Interference suppression: & Limit value class B & EN 55 011 \\
\begin{tabular}{l}
Degree of protection \\
Housing:
\end{tabular} & IP 40 & IEC/EN 60 529
\end{tabular}

Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection Screw terminals (integrated):
\begin{tabular}{lr}
8 kV (air) & IEC/EN 61 000-4-2 \\
\(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
2 kV & IEC/EN 61 000-4-4 \\
& \\
2 kV & IEC/EN 61 000-4-5 \\
4 kV & IEC/EN 61 000-4-5 \\
10 V & IEC/EN 61 000-4-6 \\
Limit value class B & EN 55 011 \\
IP 40 & IEC/EN 60529 \\
IP 20 & IEC/EN 60529
\end{tabular}

Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
20 / 060 / 04 IEC/EN 60 068-1
EN 50005
DIN 46 228-1/-2/-3/-4
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
nsulation of wires or sleeve length:
Plug in with screw terminals
max. cross section for connection:

Insulation of wires or sleeve length:
Plug in with cage clamp terminals max. cross section for connection:
min. cross section for connection: Insulation of wires or sleeve length:
Wire fixing:

Fixing torque:
Mounting:
Weight:
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled or
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid
8 mm
\(1 \times 2.5 \mathrm{~mm}^{2}\) solid or \(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled

8 mm
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled
\(0.5 \mathrm{~mm}^{2}\)
\(12 \pm 0.5 \mathrm{~mm}\)
Plus-minus terminal screws M 3.5 box terminals with wire protection or cage clamp terminals
0.8 Nm

DIN rail
approx. 140 g
IEC/EN 60715

Dimensions
Width x height x depth:
\begin{tabular}{ll}
MK 9056N: & \(22.5 \times 90 \times 97 \mathrm{~mm}\) \\
MK 9056N PC: & \(22.5 \times 111 \times 97 \mathrm{~mm}\) \\
MK 9056N PS: & \(22.5 \times 104 \times 97 \mathrm{~mm}\)
\end{tabular}

NO contact:
\(1,5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
EC/EN 60 947-5-1

\section*{Standard Types}

MK 9056N. 12 AC 380 ... \(500 \mathrm{~V} 50 / 60 \mathrm{~Hz}\)
Article number: 0054183
- Output: 2 changeover contacts
- Nominal voltage \(U_{N}\) : AC \(380 \ldots 500 \mathrm{~V}\)
- Width: \(\quad 22.5 \mathrm{~mm}\)

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp
(PC/plugin cage clamp)

\section*{Notes}

Removing the terminal blocks with cage clamp terminals
1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

\section*{Installation / Monitoring Technique}

VARIMETER
Phase Sequence Indicator
IK 9178, SK 9178

Circuit Diagram

IK 9178, SK 9178
- According to IEC/EN 60 255, DIN VDE 0435-303
- Indication of phase sequence in 3-phase systems
- Without auxiliary supply
- LED indicator for phase sequence
- Devices available in 2 enclosure versions:

IK 9178: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SK 9178: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 17.5 mm

\section*{Approvals and Markings}

\section*{C}

\section*{Applications}

Indication of phase sequence in 3-phase systems
\begin{tabular}{ll}
\hline Indicators & \\
LED: & on when phase sequence is right \\
\hline Technical Data
\end{tabular}

Input
\begin{tabular}{ll}
Nominal voltage \(U_{N}:\) & 3 AC 400 V \\
Voltage range: & \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
Frequency range: & \(45 \ldots 65 \mathrm{~Hz}\)
\end{tabular}

General Data

\section*{Operating mode:}

Temperature range:
Clearance and creepage

\section*{distances}
rated impulse voltage /
pollution degree
(between L1-L2-L3):
EMC
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation: Wire connection:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

4 kV / 2
8 kV (air)
\(10 \mathrm{~V} / \mathrm{m}\)
2 kV

1 kV
2 kV
Limit value class B
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5

IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency 10 ... 55 Hz
20/060/04
IEC/EN 60 068-1 EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
Wire fixing:
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1

Technical Data
\begin{tabular}{lr}
Weight & \\
IK 9178: & 50 g \\
SK 9178: & 69 g
\end{tabular}

\section*{Dimensions}

Width x height x depth
IK 9178:
\(17.5 \times 90 \times 59 \mathrm{~mm}\)
SK 9178: \(17.5 \times 90 \times 98 \mathrm{~mm}\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Standard Types} \\
\hline IK 91783 AC 400 V & & \\
\hline Article number: & 0049102 & stock item \\
\hline - Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & 3 AC 400 V & \\
\hline - Width: & 17.5 mm & \\
\hline \multicolumn{3}{|l|}{SK 91783 AC \(400 \mathrm{~V} 50 / 60 \mathrm{~Hz}\)} \\
\hline Article number: & 0054760 & \\
\hline - Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & 3 AC 400 V & \\
\hline - Width: & 17.5 mm & \\
\hline
\end{tabular}

\section*{Ordering example}

VARIMETER
Phase Sequence Monitor (Phase Sequence Relay)
IK 9179, RK 9179, SK 9179

\section*{Function Diagram}

\section*{Circuit Diagram}

M11289

IK 9179, SK 9179
RK 9179
Connection Terminals
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L1, L2, L3 & Measuring input or. supply voltage \\
\hline \(11,12,14\) & Changeover contact \\
\hline
\end{tabular}
- According to IEC/EN 60255-1
- Detection of phase sequence in 3-phase systems
- Without auxiliary voltage
- Closed circuit operation
- LED indicator for phase sequence
- Output 1 changeover contact
- Devices available in 2 enclosure versions:
- I- and R-model, e.g. IK 9169 with depth 61 mm or RK 9169 with depth 71 mm with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
- S-model, e.g. SK 9169 depth 100 mm, with terminals at the top for cabinets with mounting plate and cable duct
- Width 17.5 mm

\section*{Approvals and Markings}

\section*{C}

\section*{Applications}

Detection of phase sequence in 3-phase systems. Disable start of motors with fixed direction of rotation in the case of wrong phase sequence
\begin{tabular}{ll}
\hline Indicators & \begin{tabular}{l}
on, when output relay active \\
(contact 11-14 closed)
\end{tabular} \\
\hline Technical Data & \\
\hline
\end{tabular}

Input
\begin{tabular}{ll}
Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & 3 AC 400 V \\
Voltage range: & \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
Frequency range: & \(45 \ldots 65 \mathrm{~Hz}\)
\end{tabular}

\section*{Output}

\section*{Contact:}

IK 9179.11, RK 9169, SK 9179: 1 changeover contact
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15:
NO contact: \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
\(\begin{array}{lll}\text { NC contact: } & 1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} & \text { IEC/EN 60 947-5-1 } \\ \text { Electrical life } & & \text { IEC/EN 60 947-5-1 }\end{array}\)
Electrical life
to \(A C 15\) at 1 A, AC 230 V :
Short-circuit strength
max. fuse rating:
Mechanical life:
4 A
typ. 300000 switching cycles
4 AgL
IEC/EN 60 947-5-1
\(\geq 30 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}
\begin{tabular}{|c|c|c|}
\hline Operating mode: & \multicolumn{2}{|l|}{Continuous operation} \\
\hline Temperature range: & \multicolumn{2}{|l|}{\[
-20 \ldots+60^{\circ} \mathrm{C}
\]} \\
\hline Clearance and creepage distances rated impulse voltage / pollution degree & & \\
\hline (between L1-L2-L3): & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline input/output: & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline \multicolumn{3}{|l|}{EMC} \\
\hline Electrostatic discharge: & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline \multicolumn{3}{|l|}{HF irradiation} \\
\hline 80 MHz ... 2,7 GHz: & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 4 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltages between} \\
\hline wires for power supply: & 2 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 4 kV & IEC/EN 61 000-4-5 \\
\hline HF wire guided: & 20 V & IEC/EN 61 000-4-6 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & IP 20 & IEC/EN 60529 \\
\hline Housing: & Thermoplastic with according to UL su & V behaviour ject 94 \\
\hline Vibration resistance: & Amplitude 0.35 mm frequency 10 ... 55 & \[
\text { IEC/EN } 60 \text { 068-2-6 }
\]
Hz \\
\hline
\end{tabular}

The 1 MHz slow damped oscillator test according to IEC/EN 60255-1 has not been made.
\begin{tabular}{|c|c|}
\hline Climate resistance: & 20/060 / 04 IEC/EN 60 068-1 \\
\hline Terminal designation: & EN 50005 \\
\hline Wire connection: & \multirow[t]{2}{*}{DIN 46 228-1/-2/-3/-4} \\
\hline IK 9179, SK 9179 & \\
\hline \multirow[t]{2}{*}{Cross section:} & \multirow[t]{2}{*}{\(2 \times 0,6 \ldots 2,5 \mathrm{~mm}^{2}\) solid or \(2 \times 0,28 \ldots 1,5 \mathrm{~mm}^{2}\) stranded wire with and without ferrules} \\
\hline & \\
\hline Stripping length: & 10 mm \\
\hline Leiterbefestigung: & Plus-Minus-terminal screws M3,5 with self-lifting clamping piece \\
\hline Fixing torque: & \multirow[t]{2}{*}{0.8 Nm} \\
\hline RK 9179 & \\
\hline Cross section: & 0,34 ... 2,5 mm² solid or \\
\hline & \(0,34 \ldots 2,5 \mathrm{~mm}^{2}\) stranded wire with and without ferrules \\
\hline Stripping length: & 7 mm \\
\hline Wire fixing: & Captive slotted screw / M2,5 \\
\hline Fixing torque: & 0.5 Nm \\
\hline Mounting: & DIN rail IEC/EN 60715 \\
\hline \multicolumn{2}{|l|}{Weight} \\
\hline IK 9179: & 60 g \\
\hline RK 9179: & 74 g \\
\hline SK 9179: & 77 g \\
\hline
\end{tabular}

\section*{Dimensions}

\section*{Width x height x depth}

IK 9179:
RK 9179:
SK 9179:
\(17.5 \times 90 \times 61 \mathrm{~mm}\)
\(17.5 \times 90 \times 71 \mathrm{~mm}\) \(17.5 \times 90 \times 100 \mathrm{~mm}\)

\section*{Function Diagram}

\section*{Circuit Diagram}

AK 9840.82
- According to EN 60 255-1
- For nominal voltages from 3 AC 230 up to 500 V
- Detection of
- voltage asymmetry
- incorrect phase sequence
- phase failure
- undervoltage
- Voltage feedback recognition
- Also suitable for harmonic industrial mains
- Closed circuit operation
- Contact position indication
- With adjustable delay
- \(2 \mathrm{C} / \mathrm{O}\) contacts
- Width: 75 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Application}

Monitoring three-phase mains for voltage asymmetry, phase failure or incorrect phase sequence.

\section*{Function}

The AK 9840 asymmetry relay monitors the voltage symmetry of the phase voltages, the undervoltage and the correct phase sequence L1-L2-L3. Voltage asymmetry and undervoltage are determined by measuring the arithmetic average between the three phases.
If there is no fault in the system being monitored the output relay is energized (closed circuit principle), contact 15-18, 25-28 is closed, and this is indicated by a green LED. The instrument responds to asymmetrical voltage changes caused by unequal mains loading or failure of an outer conductor due to the melting of a fuse. An asymmetry relay always only detects the difference between two voltages, and hence does not react to symmetric voltage falls in the mains supply unless the voltage drops belowthe undervoltage recognition vaiue set at \(0.7 \mathrm{U}_{\mathrm{N}}\). If the set asymmetry is exceeded positively or negatively or if there is undervoltage, the output relay is deenergized alter the set response delay. If the phase sequence is incorrect, the output relay responds without delay. The LED indicator is extinguished. Thanks to the special circuitry which evaluates the phase angle, an a fault condition, the relay will not be affected by any voltage feedback. Depending an the mains conditions, the feedback is identified as asymmetry - delayed - or as incorrect phase sequence - non-delayed.
Mains supplies with a mid-point conductor can also be monitored with the Instrument. It is not necessary to connect the neutral. The nominal voltage for this application must be converted to delta voltage when placing an order.
Industrial mains with thyristors, with automatic reactive current compensating plant and with emergency power generators have a high harmonic content. With the AK 9840 the measuring principle employed ensures that no errors occur in the response values. Also suitable for automatic changeoverto battery-powered operation of emergency lightings when the supply voltage drops by \(30 \%\) (to VDE 0108).

\section*{Indication}

\section*{Technical Data}

\section*{Input}

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :

Voltage range:
Nominal consumption:
Nominal frequency:
Frequency range:
Max. harmonics level:

3 AC 400 V
additional voltages for ranges
3 AC \(100 \ldots 690 \mathrm{~V}\) are also available
\(0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}} / 0.7 \ldots 1.2 \mathrm{U}_{\mathrm{N}}\) to 1.5 s \(\leq 7.1 \mathrm{VA}\)
\(50 / 60 \mathrm{~Hz}\)
\(\pm 5\) \% / 10 \% to 1.5 s
distortion factor \(\mathrm{K} \leq 12 \%\)

Setting Ranges

Setting range:
Hysteresis:
Voltage feedback recognition:

Undervoltage setting:
Delay:
\(5 \ldots 20 \% U_{N}\) voltage asymmetry settable 0.98 fixed
up to \(100 \%\) - setting value, e.g. when setting value \(=5 \%\) asymmetry, \(100 \%-5 \%=95 \%\) Recognition of voltage feedback up to \(95 \%\)

Output

\section*{Contacts}
\begin{tabular}{|c|c|}
\hline AK 9840.82: & 2 changeover contacts \\
\hline Thermal current \(\mathrm{I}_{\text {th }}\) : & 6 A \\
\hline Switching capacity to AC 15 & \\
\hline NO contact: & 3 A AC 230 V IEC/EN 60 947-5-1 \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline Electrical life
to AC 15 at 1 A, AC 230 V : & \(\geq 2.5 \times 10^{5}\) switch. cycl. IEC/EN 60 947-5-1 \\
\hline Short-circuit strength max. fuse rating: & 4 AgL IEC/EN 60 947-5-1 \\
\hline Mechanical life: & > \(30 \times 10^{6}\) switching cycles \\
\hline
\end{tabular}

\section*{General Data}

\section*{Operating mode:}

Temperature range:
Clearance and creepage

\section*{distances}
rated impulse voltage /
pollution degree:
\begin{tabular}{|c|c|c|}
\hline Measuring input to contacts: & \(6 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline Relay contact to relay contact: & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline \multicolumn{3}{|l|}{EMC} \\
\hline Electrostatic discharge: & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline HF irradiation: & \(3 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 2 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltages between} \\
\hline wire for powers supply: & 1 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 2 kV & IEC/EN 61 000-4-5 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & IP 20 & IEC/EN 60529 \\
\hline
\end{tabular}

Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation: Wire connection:

Wire fixing:
Fixing torque:
Mounting:
Weight:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

Dimensions
Width \(\mathbf{x}\) height \(\mathbf{x}\) depth: \(75 \times 78 \times 119 \mathrm{~mm}\)

\section*{Standard Type}

AK 9840.823 AC \(400 \mathrm{~V} 50 / 60 \mathrm{~Hz}\)
Article number: 0040621
- Output: 2 changeover contacts
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}: \quad 3 \mathrm{AC} 400 \mathrm{~V}\)
- Width:

75 mm

Diagramm Start up delay
The diagram shows the start delay in relation of the adjustet asymmetry when the unit is switched to the symmetric mains.

VARIMETER
Asymmetry Relay
BA 9040, MK 9040N

Function Diagram

\section*{Circuit Diagrams}

- According to IEC 255, EN 60 255, VDE 0435 part 303
- Recognition of
- voltage asymmetry
- phase failure
- voltage feedback
- optionally with phase sequence recognition
- Optionally with adjustable response delay
- 2 LED displays for power supply and state of contact
- Wire connection: also \(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled, or \(2 \times 2.5 \mathrm{~mm}^{2}\) solid DIN 46 228-1/-2/-3/-4
- As option with pluggable terminal blocks for easy exchange of devices - with screw terminals
- or with cage clamp terminals
- BA 9040: width 45 mm

MK 9040N: width 22.5 mm

\section*{Approvals and Markings}

* see variants

\section*{Applications}

Monitoring three-phase mains for voltage asymmetry, phase failure or incorrect phase sequence, e.g. in elevators, escalators, crane systems etc.

\section*{Indications}
upper LED: on when supply voltage connected lower LED: on when output relay energized

\section*{Technical Data}

Input
\begin{tabular}{ll}
Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & 3 AC 400 V \\
Voltage range: & \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
Nominal consumption: & \\
BA 9040: & approx. 4.8 VA \\
MK 9040N: & 7 VA \\
Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
Frequency range: & \(45 \ldots 65 \mathrm{~Hz}\) \\
Temperature influence: & \(<0.05 \% / \mathrm{K}\) \\
Frequency influence: & \(<0.02 \% / \mathrm{Hz}\)
\end{tabular}

Setting Ranges

Setting range:
Repeat accuracy:
Release ratio:
Voltage feedback
recognition:

Time delay \(\mathrm{t}_{\mathrm{v}}\)
BA 9040:
MK 9040N:
\(5 \ldots 15 \%\) voltage asymmetry \(\leq 0.5 \%\)
\(<4 \% U_{N}\)
up to \(100 \%\) - setting value, e.g. when setting value = \(5 \%\) asymmetry, \(100 \%-5 \%=95 \%\) Recognition of voltage feedback up to 95 \%
\[
\begin{aligned}
& 0.5 \ldots 5 \mathrm{~s} \\
& 0.5 \ldots 10 \mathrm{~s}
\end{aligned}
\]

\section*{Technical Data}

\section*{Output}

Contacts
Response/release time:
BA 9040:
MK 9040N:
Thermal current \(\mathrm{I}_{\text {th }}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
to DC 13
NO contact:
NC contact:
Electrical life:
to AC 15 at \(3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Permissible switching
frequency:
Short circuit strength
max. fuse rating:

2 changeover contacts
\(\leq 1 \mathrm{~s} / \leq 250 \mathrm{~ms}\)
\(\leq 1.5 \mathrm{~s} / \leq 250 \mathrm{~ms}\)
6 A (see continuous current limit curve)

2 A / AC 230 V IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
1 A / DC \(24 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
1 A / DC 24 V IEC/EN 60 947-5-1
\(10^{5}\) switching cycles IEC/EN 60 947-5-1
6000 switching cycles / h
4 AgL
IEC/EN 60 947-5-1

General Data

Operating mode:
Temperature range:
Clearance and creepage distances
rated impulse voltage / pollution degree:
EMC
Electrostatic discharge:
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Wire connection:

Wire fixing:
BA 9040:
MK 9040N:
Mounting:
Weight:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

4 kV / 2
8 kV (air)
2 kV

2 kV
4 kV
Limit value class B
4-5
\begin{tabular}{ll}
IP 40 & IEC/EN 60529 \\
IP 20 & IEC/EN 60529
\end{tabular}

Thermoplast with V0 behaviour according to UL subject 94
Frequency \(10 \ldots 55 \mathrm{~Hz}\),
Amplitude 0.35 mm IEC/EN 60 068-2-6 20 / 060 / \(04 \quad\) IEC/EN 60 068-1
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4

Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1
Box terminal with wire protection
DIN rail
IEC/EN 60715
325 g

Dimensions
Width x height x depth:
BA 9040:
MK 9040N:
\(45 \times 74 \times 133 \mathrm{~mm}\)
\(22.5 \times 90 \times 100 \mathrm{~mm}\)

\section*{CSA-Data}

Switching capacity: 3 A 230 Vac

Wire connection:
\(60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}\) copper conductors only AWG 20-14 Sol Torque 0.8 Nm
AWG 20-16 Str Torque 0.8 Nm
Technical data that is not stated in the CSA-Data, can be found in the technical data section.

\section*{CCC-Data}

Thermal current \(\mathrm{I}_{\mathrm{th}}\) : 5 A
Switching capacity
to AC 15:
2 A / AC 230 V IEC/EN 60 947-5-1
to DC 13:
1 A / DC 24 V
IEC/EN 60 947-5-1

Technical data that is not stated in the CCC-Data, can be found in the technical data section.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Standard Types} \\
\hline \begin{tabular}{l}
BA 9040.12/001 3 AC \(400 \mathrm{~V} 50 / 60 \mathrm{~Hz}\) \\
Article number: \\
0043764 \\
- With phase sequence detection \\
- Without operate delay \\
- Output: 2 changeover contacts \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : 3 AC 400 V \\
- Width: 45 mm
\end{tabular} & stock item \\
\hline \begin{tabular}{l}
MK 9040N.12/001 3AC \(400 \mathrm{~V} 50 / 60 \mathrm{~Hz}\) \\
Article number:
\[
0055712
\] \\
- With phase sequence detection \\
- Without operate delay \\
- Output: \\
2 changeover contacts \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : \(\quad 3\) AC 400 V \\
- Width: \(\quad 22.5 \mathrm{~mm}\)
\end{tabular} & stock item \\
\hline
\end{tabular}

\section*{Variants}

BA 9040.12/60:
BA 9040:
BA 9040.12/0_0:
BA 9040.12/0 1 :
BA 9040.12/00- :
BA 9040.12/01

MK 9040N.12/0_0:
MK 9040N.12/0-1
MK 9040N.12/00
MK 9040N.12/01
with CSA approval on request with CCC approval on request without phase sequence detection with phase sequence detection without time delay with adjustable time delay
\(\mathrm{t}_{\mathrm{v}}: 0 \ldots 5 \mathrm{~s}\)
without phase sequence detection with phase sequence detection without time delay with adjustable time delay \(\mathrm{t}_{\mathrm{v}}: 0 \ldots 10 \mathrm{~s}\)

\section*{Ordering example for variants}

\section*{Characteristics}

Continuous current limit curve

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp
(PC/plugin cage clamp)

DOLD
- According to IEC 255, EN 60 255, VDE 0435 part 303
- For nominal voltage from 3 AC 230 V to 500 V
- Detection of
- voltage asymmetry
- wrong phase sequence
- phase failure
- Detection of feedback voltage
- BA 9042 optionally with adjustable time delay
- Closed circuit operation
- BA 9042 LED indicators for operation and state of contacts
- Width 45 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Application}

Monitoring three-phase mains for voltage asymmetry, phase failure or incorrect phase sequence.

\section*{Function}

The device responds to unsymmetric voltage changes, which can occur because of unbalanced load or phase failure (blown fuse). An asymmetry relay detects only the voltage difference between 2 phases and does not react on symmetric undervoltage.

\section*{Indicators}

BA 9042
red LED:
on, when supply voltage connected
green LED:
on, when output relay energized

\section*{Notes}

On ambient temperature \(>20^{\circ} \mathrm{C}\) overvoltage together with max. thermal current is not allowed. In industrial voltage systems with high harmonic content (content > \(2 \%\)) measuring faults can occur. Harmonics in industrial systems are caused by thyristor controls, emergency power supplies, reactive current compensators, etc.
Normally the harmonic content of a voltage system is unknown. We recommend therefore to test a sample in the actual circuit which we can provide with the right to return. If problems occur during the test we are able to offer other solutions.

\section*{Technical Data}

Input

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
Voltage range:
Nominal consumption:
Nominal frequency
Frequency range:

\section*{Setting ranges}

\section*{Setting range:}

\section*{Hysteresis}

BA 9042 :
Voltage feedback
recognition:

3 AC 230, 240, 400, 415, 440, 500 V
\(0.8 \ldots 1.1 U_{N}\)
\(\leq 3.8 \mathrm{VA}\)
50 or 60 Hz
\(\pm 5\) \%

5 ... 15 \% voltage asymmetry, settable
\(>0.98\)
up to 100 \% - setting value, e.g. when setting value \(=5 \%\) asymmetry, 100 \% - \(5 \%=95 \%\) Recognition of voltage feedback up to 95 \%

\section*{Technical Data}

\section*{Output}

Contacts
BA 9042: 2 changeover contacts
Al 942.001: 1 changeover contact
Al 942.002:
Release delay:
(at phase failure or asymmetry)

\section*{Operate delay:}
(delay of the contacts when switching on)
Thermal current \(I_{\text {th }}\) :
Switching capacity
Switchin
to AC 15
NO contact:
NC contact:
Electrical life
to AC 15 at 3 A, AC 230 V
Al 942.001:
to AC 15 at 1 A, AC 230 V
BA 9042.12, Al 942.002:
Short-circuit strength
max. fuse rating:
\(\begin{array}{ll}\text { Mechanical life: } & >30 \times 10^{6} \text { switching cycles } \\ \text { General Data } & \end{array}\)
Operating mode: Temperature range: Clearance and creepage

\section*{distances}
rated impulse voltage /

\section*{EMC \\ Electrostatic discharge:}

Fast transients:
Surge voltages between
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{wire for powers supply: between wire and ground:} & 1 kV & IEC/EN 61 000-4-5 \\
\hline & 2 kV & IEC/EN 61 000-4-5 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & IP 20 & IEC/EN 60529 \\
\hline Housing: & \multicolumn{2}{|l|}{Thermoplastic with V0 behaviour acccording to UL subject 94} \\
\hline Vibration resistance: & \multicolumn{2}{|l|}{Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency 10 ... 55 Hz} \\
\hline Climate resistance: & 20 / 060 / 04 & IEC/EN 60 068-1 \\
\hline Terminal designation: & \multicolumn{2}{|l|}{EN 50005} \\
\hline Wire connection: & \multicolumn{2}{|l|}{\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or} \\
\hline & \multicolumn{2}{|l|}{\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve} \\
\hline Wire fixing: & \multicolumn{2}{|l|}{Flat terminals with self-lifting} \\
\hline & clamping piece & IEC/EN 60 999-1 \\
\hline Mounting: & DIN rail & IEC/EN 60715 \\
\hline Weight & & \\
\hline BA 9042: & 310 g & \\
\hline Al 942: & 300 g & \\
\hline
\end{tabular}

Dimensions

\section*{Width \(\mathbf{x}\) height x depth}
\begin{tabular}{ll}
BA 9042: & \(45 \times 73 \times 132 \mathrm{~mm}\) \\
AI 942: & \(45 \times 77 \times 127 \mathrm{~mm}\)
\end{tabular}

\section*{Standard Type}
\begin{tabular}{lll}
BA 90423 AC 400 V 50 Hz & & \\
Article number: & 0040770 & stock item \\
- Output: & 2 changeover contacts & \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & 3 AC 400 V & \\
- Width: & 45 mm &
\end{tabular}
\begin{tabular}{ll}
\hline Variant & \\
BA \(9042 / 002:\) & \begin{tabular}{l}
with time delay \(t_{v}=0.5 \ldots 10 \mathrm{~s}\) \\
on asymmetry detection
\end{tabular}
\end{tabular}

\section*{Ordering example for variant}

\section*{Accessories}

Al 942:
K 70-34: Cover
Article number: 0011790

\section*{VARIMETER}

Frequency Relay
BA 9837, AA 9837, AA 9838
DOLD 発

\section*{Function Diagram}

- According IEC/EN 60255-1
- Detection of under- or overfrequency
- Adjustable response value
- Optionally 1 or 2 changeover contacts
- Width 45 mm

\section*{Approvals and Markings}

\section*{c \(\epsilon\)}

\section*{Application}

The frequency relay can be used especially in applications where the rotor frequency of a slip-ring motor must be measured. The rotor frequency is reciprocal proportional to the speed (see diagram rotor frequency at contercurrent braking).
This behaviour allows to find speed depending switching values and can be used for start up and contercurrent braking of motors on cranes.

\section*{Function}

The device compares 2 frequencies. The measuring frequency is compared to an internally generated, settable frequency reference.

With bridge on \(\mathrm{X} 1-\mathrm{X} 2\) the output relay deenergises when the measuring frequency is higher then the setted frequency.The relay energises again when the measuring frequency drops under the setted frequency \(x\) hysteresis.

With bridge on X2-X3 the output relay energises when the measuring frequency is higher then the setted frequency. The relay deenergises again when the measuring frequency drops under the setted frequency x hysteresis.

An indicating LED shows that the frequency signal is connected. At low frequency the LED flashes. A second LED indicates the state of the output relay.

\section*{Notes}

Terminals X1, X2, X3 should only be connected together with the corresponding wire links. Do not connect external voltage, neutral or ground.
The measuring input is designed for an amplitude of AC 8... 500 V . Higher values AC \(12 . . .800 \mathrm{~V}\) can be achieved by connecting a series resistor, type IK 5110 into the measuring circuit either to terminal n or o .

BA 9837.11,
AA 9837.11, AA 9838.11

BA 9837.12,
AA 9837.12
\begin{tabular}{l}
Connection Terminals \\
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1 & \(+/ \mathrm{L}\) \\
\hline A2 & \(-/ \mathrm{N}\) \\
\hline n, o & Measuring input \\
\hline X1, X3 & Control input \\
\hline X2 & Control output \\
\hline \(11,12,14,21,22,24\) & Changeover contacts \\
\hline
\end{tabular} l \\
\hline
\end{tabular}

\section*{Technical Data}

Input

Measuring input:
Setting range:
BA 9837, AA 9837:

AA 9838:
Setting:
Response value:
Hysteresis:
BA 9837, AA 9837:
AA 9838:
Accuracy:
Temperature influence:
Influence of auxiliary
supply:

\section*{Auxiliary Circuit}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :
BA 9837, AA 9837:
AA 9838:
Voltage range of \(\mathrm{U}_{\mathrm{H}}\) :
Nominal consumption \(\mathrm{U}_{\mathrm{H}}\) :
Nominal frequency of \(U_{\mathrm{H}}{ }^{\text {: }}\)
Output

\section*{Contacts}

BA 9837.11, AA 9837.11,
AA 9838.11:
BA 9837.12, AA 9837.12
Switching delay:
setting range \((\mathrm{Hz})\)
5-15
10-30
20-60
20-80
30-90
40-120
100-300
200-600

AC Amplitude AC 8 ... 500 V r.m.s internal resistance: > \(400 \mathrm{k} \Omega\)
5 ... \(15 \mathrm{~Hz} \quad 40\)... 120 Hz
10 ... \(30 \mathrm{~Hz} \quad 100\)... 300 Hz
20 ... \(60 \mathrm{~Hz} \quad 200 \ldots 600 \mathrm{~Hz}\)

30 ... 90 Hz
20 ... 80 Hz
infinite on absolute scale
\(\geq\) setting value
0.8 ... 0.97 of response value
0.96 of response value
< \(\pm 1\) \%
\(< \pm 0.15 \% /{ }^{\circ} \mathrm{C}\)
\(< \pm 0.5 \%\) at \(0.8 \ldots 1.1 U_{N}\)

AC 24, 42, 110, 127, 230, 240 V
AC 48, 110, 230 V
\(0.8 \ldots 1.1 U_{H}\)
\(<3\) VA
\(50 / 60 \mathrm{~Hz} \pm 5 \%\)

Dimensions
Width x height x depth: \(\quad 45 \times 77 \times 127 \mathrm{~mm}\)

\section*{Standard Type}

BA \(9837.1130 / 90 \mathrm{~Hz}\) AC 230 V AC \(50 / 60 \mathrm{HZ}\)

Article number:
- Output:

0050216
- Measuring frequency:
- Auxiliary voltage U甘:

1 changeover contact

45 mm

1 changeover contact
2 chanceover contacts
\begin{tabular}{ll}
bridge X1-X2 & bridge X2-X3 \\
\(500-800\) & \(650-1000\) \\
\(250-300\) & \(600-800\) \\
\(120-150\) & \(300-430\) \\
\(100-120\) & \(290-430\) \\
\(90-120\) & \(280-400\) \\
\(60-80\) & \(140-210\) \\
\(25-45\) & \(70-120\) \\
\(15-25\) & \(70-100\) \\
switching delay in ms
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Technical Data} \\
\hline Thermal current \(\mathrm{Ita}_{\text {\% }}\) : & 6 A & \\
\hline Switching capacity & & IEC/EN 60 947-5-1 \\
\hline to AC 15, AC 230 V : & \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & \\
\hline Electrical life & & IEC/EN 60 947-5-1 \\
\hline to AC 15 , at \(3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) : & \(2.5 \times 10^{5}\) switching & ycles \\
\hline Short circuit strength max. fuse rating: & 4 AgL & IEC/EN 60 947-5-1 \\
\hline Mechanical life: & \(>30 \times 10^{6}\) switching & cycles \\
\hline \multicolumn{3}{|l|}{General Data} \\
\hline Operating mode: & \multicolumn{2}{|l|}{Continuous operation} \\
\hline \multicolumn{3}{|l|}{Temperature range:} \\
\hline Operation: & \multicolumn{2}{|l|}{\(-20 \ldots+60^{\circ} \mathrm{C}\)} \\
\hline Storage: & \multicolumn{2}{|l|}{\(-20 \ldots+70^{\circ} \mathrm{C}\)} \\
\hline Altitude: & \multicolumn{2}{|l|}{<2.000 m} \\
\hline \multicolumn{3}{|l|}{Clearance and creepage distances} \\
\hline pollution degree: & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline \multicolumn{3}{|l|}{EMC} \\
\hline Electrostatic discharge: & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline \multicolumn{3}{|l|}{HF-irradiation} \\
\hline 80 MHz ... 2,7 GHz: & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 2 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltages} \\
\hline between & & \\
\hline wires for power supply: & 2 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 4 kV & IEC/EN 61 000-4-5 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & IP 20 & IEC/EN 60529 \\
\hline
\end{tabular}

Thermoplastic with Vo behaviour according to UL subject 94 Amplitude 0.35 mm ,
frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
20/060/04 IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting
clamping piece
IEC/EN 60 999-1
\(35 \times 50 \mathrm{~mm}\) and
\(35 \times 60 \mathrm{~mm}\)
0.8 Nm

DIN rail
IEC/EN 60715
250 g
Housing: Thermoplastic with behaviour
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Screw mounting:
Fixing torque:
Mounting:
g

\section*{Variants}

Frequency relay with 2 changeover contacts and internal bridges (\(\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3\))
BA 9837.12/010:
BA 9837.12/020:
AA 9837.12/010:
AA 9837.12/020:
with internal bridge \(\mathrm{X} 1-\mathrm{X} 2\)
with internal bridge X2-X3
with internal bridge X1-X2
with internal bridge X2-X3

\section*{Ordering example for variants}

\section*{Accessories}

IK 5110:

Series resist or for higher measuring voltage AC \(12 \ldots 800 \mathrm{~V}\) eff. Article number: 0015751

Measuring sensitivity
The diagram shows the sensitivity of the input of the frequency relay AA 9837. If the measuring voltage is lower then the curve values the frequency cannot be measured anymore. Please note. Superimposed interference voltages on the measuring input with a ration.

above the curve values can influence the measuring results.
f - frequency on input
\(f_{\max }-\) highest value of the actual frequency range
Example:
\(\mathrm{U}_{\text {meß }}\) : 10 V ; measuring frequency: \(f=4800 \mathrm{~Hz}\)
chosen frequency range: \(\quad 100-300 \mathrm{~Hz}, \quad f_{\max }=300 \mathrm{~Hz}\)
\[
\frac{f}{f_{\max }}=\frac{4800 \mathrm{~Hz}}{300 \mathrm{~Hz}}=16
\]

The meauring frequency is detected, as the measuring voltage is above the response curve.

1 nominal speed reached
\(t_{2}\) start braking
\(\mathrm{t}_{3}\) standstill (end of braking to avoid reverse start)
Rotor frequency at countercurrent braking

\section*{Braking:}

When reversing the phases for braking the rotor frequency changes and drops proportional to the speed to mains frequency. E.g. when the rotor frequency is 5 Hz at nominal speed, it to 95 Hz . When the motor is at stand still the rotor frequency is nominal frequency. At this point the frequency relay has to give the signal to stop braking, before the motor starts up in the opposite direction.

\section*{Connection Example}

Motor control with starting resistance
Start:
To achieve an optimum speed depending starting inertia, different starting resistors are switched into the rotor circuit, when certain speed values are reached. Often this procedure is controlled with timers, but with small loads the motor reaches the speed to switch over much faster then with high loads and the motor still runs on the lower stage. When the switching of the resistors is controlled speed depending by frequency relays, the start up cycles can be shortened and the plant can be used more effective.

\section*{VARIMETER}

\section*{Circuit Diagram}

IL 9837, SL 9837
- According to IEC/EN 60 255-1
- Overfrequency or underfrequency monitoring of AC voltages
- Adjustable response value \(f_{\text {min. }}\) or \(f_{\text {max }} 5 \ldots 200 \mathrm{~Hz}\) or \(15 \ldots 600 \mathrm{~Hz}\)
- Adjustable hysteresis
- Large voltage range of the measuring input (nominal voltage AC 24 ... 440 V)
- De-energized on trip
- LED indication for auxiliary voltage, measuring voltage and contact position
- 1 changeover contact
- As option for frequency inverters with a range of 1 ... 300 Hz
- 2 changeover contacts available on request
- As option adjustable start-up delay available
- Energized on trip function available on request
- Devices available in 2 enclosure versions:

IL 9837: depth 58 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SL 9837: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- 35 mm width

\section*{Approvals and Markings}

* only for IL 9837

\section*{Application}
- Frequency monitoring of A.C. voltages
- Monitoring of the rotor frequency of slipring motors
- Control / monitoring of drives in crane systems
- Frequency monitoring in frequency inverters (IL 9837.11/500)

\section*{Function}

The frequency to be monitored is applied to measuring input IN1-IN2. The measuring circuit is electrically separated from the auxiliary voltage input A1-A2, to which the supply voltage of the frequency relay is connected.

The measured frequency is compared to a response value to be set at the unit.

In overfrequency mode, the output relay switches into alarm position when the preset response value is exceeded. When the system frequency once more falls below the response value minus the preset hysteresis, the output relay will switch back into normal position.

In underfrequency mode, the output relay switches into alarm position when the actual value falls below the preset response value. When the system frequency once more exceeds the response value plus hysteresis, the output relay will switch back into normal position.

If de-energized on trip is selected, the output relay is energized (11-14 closed) in normal status.
If energized on trip is selected, the output relay is energized (11-14 closed) in alarm status.

\section*{Indicators}

\section*{Upper LED:}
applied
Yellow LED:
green light is permanently on, when only the auxiliary voltage has been applied to A1-A2, green-red alternating light, when measuring frequency has also been to IN1-IN2
is on, when the output relay is energized (contacts 11-14 closed)

\section*{Notes}

Monitoring mode underfrequency or overfrequency
The mode can be selected by means of the slide switch at the front of the unit. The operating mode de-energized or energized on trip as well as the response value do not change.

Setting of the hysteresis
With input frequencies < 15 Hz (4 Hz with variant IL 9837.11/500), the hysteresis should not be set to minimum values to avoid cycling of the output relay.

In the "underfrequency" monitoring mode (" \(<\mathrm{f}\) "), with input frequencies close to the end of the respective range, hysteresis can only be set to a maximum of \(4 \ldots 10 \%\) for proper resetting; this is due to reasons of the switching operation. If applicable, select the next higher frequency range.

Variant IL 9837.11/500 for frequency inverter
This variant can be used with frequency inverter to monitor the frequency of \(1 \ldots 300 \mathrm{~Hz}\) generated by the frequency inverter. It has a specifically dimensioned measuring input with low pass character to suppress the cycle frequency of the inverter. Simultaneously, the input sensitivity is adjusted to the voltage/frequency characteristic of the inverter.

\section*{Technical Data}

\section*{Measuring Circuit}

Measuring input:
Nominal voltage \(\mathbf{U}_{\mathrm{N}}\) :
Voltage range:
Input resistance:approx.
Frequency range:

\section*{Response value}
infinitely adjustable:
Hysteresis
infinitely adjustable:
Measuring input:
Max. input voltage:
Min. measuring voltage:
Input resistance:
Frequency range:
Response value
infinitely adjustable:
Hysteresis
infinitely adjustable:

IN1-IN2
AC \(24 \ldots 440 \mathrm{~V}\)
\(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\)
\(1 \mathrm{M} \Omega\)
5 ... \(20 \mathrm{~Hz}, 15 \ldots 60 \mathrm{~Hz}, 50 \ldots 200 \mathrm{~Hz}\) or
\(15 \ldots 60 \mathrm{~Hz}, 45 \ldots 180 \mathrm{~Hz}, 150 \ldots 600 \mathrm{~Hz}\)
selected with rotary switch
\(1: 4\) in each frequency range
\(1 . .20 \%\) of the set response value
IL 9837.11/500
AC 500 V
approx. AC 10 V with \(1 \mathrm{~Hz} \ldots\)... AC 220 V with 300 Hz , see diagramm M8681 approx. \(700 \mathrm{k} \Omega\)
1 ... \(10 \mathrm{~Hz}, 5 \ldots 50 \mathrm{~Hz}, 30 \ldots 300 \mathrm{~Hz}\) selected with rotary switch
\(1: 10\) in each frequency range
1 ... \(20 \%\) of the set response value

\section*{Technical Data}

Auxiliary Circuit

Nominal voltage \(U_{H}\) :
Voltage range
AC:
DC:
Nominal consumption
AC:
DC:
Frequency range
AC:

Output

Contacts:
Thermal current \(I_{\text {th }}\) :
Switching capacity
to AC 15
NO contact: \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
NC contact: \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
to DC 13:
NO contact: 1 A / DC 24 V IEC/EN 60 947-5-1
NC contact:
Contact life:
to AC 15 at 1 A, AC 230V: \(1.5 \times 10^{5}\) switch. cyclesIEC/EN 60 947-5-1
Short circuit strenght
max. fuse rating:
Mechanical life:
General Data
\begin{tabular}{ll}
Nominal operation: & Continous \\
Temperature range: & \(-20 \ldots+60^{\circ} \mathrm{C}\)
\end{tabular}

Temperature range: \(-20 \ldots+60^{\circ} \mathrm{C}\)

Clearance and creepage distances
Rated rated impulse voltage voltage /
Pollution degree:
4 kV / 2
EMC
Electrostatic discharge (ESD): 8 kV (air)
IEC/EN 61 000-4-2
Fast transients:
2 kV
Surge
between
supply lines:
1 kV
IEC/EN 61 000-4-5
HF voltage driven:
Interference suppression:
Degree of protection
Housing:
IEC/EN 61 000-4-5
Limit value class B

Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Mounting:
Net weight
IL 9837:
SL 9837:
IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Thermoplast with V0 behavior
according to UL Subject 94
Amplitude 0.35 mm
Frequency 10 ... 55 Hz IEC/EN 60 068-2-6
\(20 / 060\) / 04
IEC/EN 60 068-1
DIN EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) massive, or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire ferruled
DIN 46 228-1/-2/-3
Screw terminals with self-lifting
clamping piece IEC/EN 60 999-1
DIN rail
IEC/EN 60715
approx. 137 g
approx. 164 g

\section*{Dimensions}

Width \(\mathbf{x}\) height x depth
IL 9837:
\(35 \times 90 \times 59 \mathrm{~mm}\)
SL 9837:
\(35 \times 90 \times 98 \mathrm{~mm}\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{CCC-Data for IL 9837} \\
\hline Thermal current \(\mathrm{I}_{\text {th }}\) : & 4 A & \\
\hline \begin{tabular}{l}
Switching capacity to AC 15: \\
to DC 13:
\end{tabular} & \[
\begin{aligned}
& 5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \\
& 2 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}
\end{aligned}
\] & IEC/EN 60 947-5-1
IEC/EN 60 947-5-1 \\
\hline \multicolumn{3}{|l|}{Technical data that is not stated in the CCC-Data, can be found in the technical data section.} \\
\hline
\end{tabular}

\section*{Standard Type}

IL \(9837.115 \ldots 200 \mathrm{~Hz} \mathrm{U}_{\mathrm{H}}\) AC 230 V Hyst. \(1 \ldots 20 \%\)
Article number:
0056555
- De-energized on trip
- Selection of overvoltage or undervoltage
- Selectable frequency range: \(5 \ldots 20 \mathrm{~Hz}, 15 \ldots 60 \mathrm{~Hz}, 50 \ldots 200 \mathrm{~Hz}\)
- Response value:Infinitely adjustable 1:4
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : AC 230 V
- Hysteresis: 1 ... \(20 \%\) adjustable
- Output contact: \(\quad 1\) changeover contact
- Width: 35 mm

\section*{Varianten}

IL 9837.11/500:

IL 9837.11/__4:

Input designed for frequency inverters
Selection of overfrequency or
underfrequency
Selectable frequency range
\(1 \ldots 10 \mathrm{~Hz}, 5 \ldots 50 \mathrm{~Hz}, 30 \ldots 300 \mathrm{~Hz}\)
Response value infinitely adjustable 1:10
Auxiliary voltage \(U_{H} A C 230 \mathrm{~V}\)
De-energized on trip Output contact 1 changeover contact with adjustable start-up delay 0.1 ... 20 s

\section*{Ordering example for variants}

\section*{Characteristic}

Typical input sensitivity of the measuring input with variant IL 9837.11/500

\section*{Connection Example}

Function Diagram

\section*{Circuit Diagram}

IL 9069.12, SL 9069.12
- According to IEC/EN 60 255-1
- Detection of
- missing neutral in the system
- broken neutral on IL/SL 9069
- neutral exchanged against phase
- Detection of phase failure also with disconnected load
- For 3-phase systems
- De-energized on trip
- LED indicator for operation/state of output contacts
- Single phase connection possible
- Without auxiliary voltage
- 2 cangeover contacts
- Optionally with adjustable asymmetry detection and on delay
- Devices available in 2 enclosure version:

IL 9069: depth 59 mm with terminals at the bottom for installations systems and industrial distribution systems according to DIN 43880
SL 9069: depth 98 mm with terminals at the top for cabinets with mounting plate and cable duct
- Width 35 mm

\section*{Approval and Markings}

\section*{Application}

\section*{Neutral monitoring in 3-phase systems}

In 3-phase systems with neutral often also single phase loads are connected between phase and neutral. If the neutral is missing in a system like this, unsymmetric voltages occur, that could damage single phase consumers, if the voltage rises to high. Also consumers can stop to work if the phase-neutral voltage gets too low. The IL 9069 detects this problem and can switch off the system immediately.

To monitor mobile systems that are connected via plug connectors. On mobile systems that are connected by a very long cable, voltage drop can cause a significant asymmetry also during normal operation. For this case we recommend the variant IL/SL 9069.12/500 with an adjustable asymmetry setting (approx. 5 ...15\%) and an additional response delay.

\section*{Function}

All 3 phase voltages are measured between phase input \(\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3\) and the neutral N . If all 3 phases and the neutral are connected correctly and the asymmetry in good state, the green LED is on and the output relay is energized. If the neutral or one phase is missing or the neutral is exchanged with a phase or the asymmetry exceeds the setting value, the output relay de-energises immediately or after the adjusted time delay (with IL/SL 9069.12/500) and the green LED goes off. The time delay on IL/SL 9069.12/500 is only active when the voltage on terminals L3-N is at least \(0,7 \mathrm{U}_{\mathrm{N}}\) as the unit is supplied from these terminals.

\section*{Indication}

LED green:
on when output relay activated (contact 11-14 and 21-24 are closed)

\section*{Technical Data}

Input
\begin{tabular}{ll}
Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & \(3 / \mathrm{N} \mathrm{AC} 400 / 230 \mathrm{~V}\) \\
Max. overload: & AC 440 V on all measuring inputs \\
Voltage range: & \(0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
Permissible asymmetry & \\
of the phase & \\
IL/SL 9069.12: & max. \(5 \%\) \\
IL/SL 9069.12/500: & adjustable approx. \(5 \ldots .15 \%\) \\
Nominal consumption & approx. \(6 \mathrm{VA}(\mathrm{L} 3-\mathrm{N})\) \\
Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
Frequency range: & \(45 \ldots 65 \mathrm{~Hz}\) \\
Input current at \(\mathrm{U}_{\mathrm{N}}:\) & L1-N. L2-N: approx. 1.5 mA \\
& L3-N: approx. 25 mA \\
On delay & approx. 100 ms \\
IL/SL 9069.12: & approx. \(0.1 \ldots 20 \mathrm{~s}\), adjustable
\end{tabular}

\section*{Output}

\section*{Contact}

IL 9069.12, SL 9069.12:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
according to AC 15:
according to DC 13:
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
max. fuse:
Mechanical life:
General Data
\begin{tabular}{|c|c|c|}
\hline Operating mode: & \multicolumn{2}{|l|}{Continuous operation} \\
\hline Temperature range: & \multicolumn{2}{|l|}{\(-20 \ldots+60^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{3}{|l|}{Clearance and creepage distances} \\
\hline \multicolumn{3}{|l|}{rated rated impulse voltage voltage /} \\
\hline pollution degree: & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline \multicolumn{3}{|l|}{EMC} \\
\hline Electrostatic discharge: & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline HF irradiation: & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 2 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge voltages} \\
\hline between & & \\
\hline wires for power supply: & 2 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 2 kV & IEC/EN 61 000-4-5 \\
\hline Interference suppression: & Limit value class B & EN 55011 \\
\hline \multicolumn{3}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 & IEC/EN 60529 \\
\hline Terminals: & IP 20 & IEC/EN 60529 \\
\hline Housing: & \multicolumn{2}{|l|}{Thermoplastic with Vo behaviour according to UL subject 94} \\
\hline Vibration resistance: & \multicolumn{2}{|l|}{\begin{tabular}{l}
Amplitude 0.35 mm , \\
frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
\end{tabular}} \\
\hline Climate resistance: & 20 / 060 / 04 & IEC/EN 60 068-1 \\
\hline Terminal designation: & \multicolumn{2}{|l|}{EN 50005} \\
\hline \multirow[t]{2}{*}{Wire connection:} & \multicolumn{2}{|l|}{\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or} \\
\hline & \multicolumn{2}{|l|}{\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled} \\
\hline \multirow[t]{2}{*}{Wire fixing:} & \multicolumn{2}{|l|}{Flat terminals with self-lifting} \\
\hline & clamping piece & IEC/EN 60 999-1 \\
\hline Fixing torque: & \multicolumn{2}{|l|}{0.8 Nm} \\
\hline Mounting: & DIN rail & IEC/EN 60715 \\
\hline \multicolumn{3}{|l|}{Weight} \\
\hline IL 9069: & \multicolumn{2}{|l|}{110 g} \\
\hline SL 9069: & \multicolumn{2}{|l|}{137 g} \\
\hline
\end{tabular}

\section*{Dimensions}

\section*{Width x height x depth}
IL 9069:
\(35 \times 90 \times 59 \mathrm{~mm}\)
SL 9069: \(35 \times 90 \times 98 \mathrm{~mm}\)
\[
-2-4 x-x
\]

3 A / AC 230 V IEC/EN 60 947-5-1 2 A / DC 24 V IEC/EN 60 947-5-1
\(\geq 5 \times 10^{5}\) switch. cycl. IEC/EN 60 947-5-1 4 A gL IEC/EN 60 947-5-1 \(\geq 30 \times 10^{6}\) switch. cycles \(\qquad\)

2 changeover contacts

\section*{4 A}

\section*{Standard Type}

IL 9069.12, 3/N AC 400 / 230 V, \(50 / 60\) Hz
Article number: 0048730
- Output: 2 changeover contacts
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}: \quad 3 / \mathrm{N} \mathrm{AC} 400\) / 230 V
- Width: \(\quad 35 \mathrm{~mm}\)

SL 9069.12, 3/N AC 400 / 230 V, \(50 / 60\) Hz
Article number: 0054750
- Output: 2 changeover contacts
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}: \quad 3 / \mathrm{N} \mathrm{AC} 400 / 230 \mathrm{~V}\)
- Width: 35 mm
\begin{tabular}{ll}
\hline Variant & \\
IL/SL 9069.12/500: & \begin{tabular}{l}
with adjustable asymmetry detection \\
and adjustable on delay
\end{tabular} \\
\hline
\end{tabular}

\section*{Order example for variant}

\section*{Installation- / Monitoring technique}

VARIMETER
Fuse Monitor
RL 9075, RN 9075

\section*{Product Description}

The fuse monitors RL 9075 and RN 9075 of the varimeter series monitor up to 3 fuses. The measurement is very simple and without extensive wiring, as no separate auxiliary supply is necessary. The fast detection of a defective fuse protects against expensive damages and the user has the benefit of high operational performance and availability of the plant.

\section*{Function Diagram}

3 -phase connetion to monitor 3 fuses

\section*{Circuit Diagram}

\section*{Your Advantages}
- Increasing the availability of plants by early detection of blown fuses, that may cause damage if undetected
- Fast detection of blown fuses also with disconnected load availability of your plant on request
- Reliable detection of blown fuses inspite of:
- asymmetric mains
- harmonic content

\section*{Features}
- According to IEC/EN 60 255-1
- To monitor fuses in single and 3 -phase AC voltage systems with neutral
- Adjustable operating voltages: \(400 \mathrm{~V} / 230 \mathrm{~V}\) and \(230 \mathrm{~V} / 130 \mathrm{~V}\) and \(110 \mathrm{~V} / 64 \mathrm{~V}\)
- Undervoltage detection below \(0.8 \times \mathrm{U}_{\mathrm{B}}\)
- Fast detection of a blown fuse
- No separate auxiliary necessary
- Output: 1 changeover contact
- De-energized on trip
- Adjustable switching delay
- Width:
- RL 9075:
- RN 9075: 52.5 mm

\section*{Approvals and Markings}

\section*{}

\section*{Application}

Monitors the state of 1-3 fuses in single- or 3-phase voltage systems with neutral, e.g. for automatic disconnection and lockout in the case of a fuse failure.

\section*{Indication}
green LED „ON":
on, when supply connected
red LED „L1, L2, L3":
shows that the voltage is dropped under \(0.8 \times \mathrm{U}_{\mathrm{B}}\) after the fuse which indicates a blown fuse

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L1 & Phase voltage L1 \\
\hline L2 & Phase voltage L2 \\
\hline L3 & Phase voltage L3 \\
\hline N & Neutral \\
\hline \(11,12,14\) & Changeover contacts (outputrelays) \\
\hline
\end{tabular}

\section*{Function}

When monitoring fuses in a 3-phase system all the phases are measured against N . The recognition of a blown fuse is done by monitoring the voltage at the fuse input terminals L1, L2 and L3. A voltage drop on one of these input terminals below \(0.8 \times U_{B}\) is an indication for a blown fuse. In case an undervoltage condition on any of the three terminals has been recognized the LED of the corresponding terminal starts blinking red. After the switching delay time has expired, the LED switches on red continuously. At the same time the relay, which works in open circuit alarm mode, switches its state. After the terminal voltage exceeds the switching level again e.g. by replacing the blown fuse, the corresponding LED immediately turns off and at the same time the relay switches back into idle mode.

When monitoring fuses in a 1-phase system, up to 3 fuses can be connected to the same phase and being monitored.

If less than 3 fuses are monitored at 3 - or single-phase monitoring, the unused terminals LX have to be bridged (see connection examples).

Via rotary switch the both operating ranges \(400 \mathrm{~V} / 230 \mathrm{~V}\) or \(230 \mathrm{~V} / 130 \mathrm{~V}\) at RN 9075 can be selected. At RL 9075 the operating voltage is fixed.

\section*{Notes}

During initialisation the fuse monitor recognises the mains frequency (50 Hz or 60 Hz).

For reliable detection of fuse failure with large inductive loads we recommend to have symmetric loads.
When using the fuse monitor with motor loads it could happen, due to feedback voltage, that the failed fuse is only detected after the motor is switched off.

Adjustable operating voltages via rotary swich:
\begin{tabular}{|c|c|c|}
\hline Device & \begin{tabular}{c}
Function \\
Lx/N
\end{tabular} & \begin{tabular}{c}
Voltages \\
\(\mathbf{0 . 8} \mathbf{x ~ L x} / \mathbf{N}\)
\end{tabular} \\
\hline \multirow{2}{*}{ RN 9075} & 230 V & 184 V \\
\cline { 2 - 3 } & 130 V & 104 V \\
\hline RL 9075 & - & 51 V \\
\hline
\end{tabular}

\section*{Technical Data}

Input
Operating voltage \(U_{B}\) :

RL 9075:

RN 9075:
Voltage rated operating \(\mathrm{U}_{\mathrm{e}}\) :
RL 9075:
RN 9075:
Voltage range:
RL 9075:
RN 9075:
Nominal frequency:
Frequency range:
Nominal consumption:
Output
\begin{tabular}{|c|c|}
\hline Contacts: & 1 changeover contact \\
\hline Contact material: & AgNi \\
\hline Switching voltage: & AC 250 V \\
\hline Thermal current \(\mathrm{t}_{\text {th }}\) : & 5 A \\
\hline Switching capacity to AC 15 & \\
\hline NO contact: & 3 A / AC 230 V IEC/EN 60 947-5-1 \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline \begin{tabular}{l}
Electrical life \\
to \(A C 15\) at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) : \\
short circuit strength
\end{tabular} & \begin{tabular}{l}
typ. \(\times 10^{5}\) switching cyles \\
IEC/EN 60 947-5-1
\end{tabular} \\
\hline max. fuse rating: & 5 AgL \\
\hline Mechanical life: & > \(30 \times 10^{6}\) switching cyles \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{Measuring circuit}

\section*{Monitoring voltage}

RL 9075:
\(\mathrm{Lx} / \mathrm{N}=51 \mathrm{~V}(0.8 \times 64 \mathrm{~V})\)
RN 9075:

\section*{Monitoring range}

RL 9075:
RN 9075:
Nomber of monitored
fuse:
Switching delay \(\mathrm{t}_{\mathrm{v}}\) :
Repeat accuracy:
Temperature influence:
\(L x / \mathrm{N}=184 \mathrm{~V}(0.8 \times 230 \mathrm{~V})+\)
\(L x / N=104 \mathrm{~V}(0.8 \times 130 \mathrm{~V})\)
\(0.7 \ldots 1.1 \mathrm{U}_{\mathrm{B}}\)
\(0.6 \ldots 1.1 U_{B}^{B}\)
1 .. 3
infinite adjustable
instantaneuos, \(2 \ldots 30 \mathrm{~s}\)
\(\pm 2\) \%
\(\pm 1 \%\)

\section*{General Data}

\section*{Operating mode:}

\section*{Temperature range}

Operation:
Storage:
Relative air humidity:

\section*{Altitude:}
continuous operation
\(-20 \ldots+55^{\circ} \mathrm{C}\)
\(-25 \ldots+60^{\circ} \mathrm{C}\)
\(93 \%\) at \(40^{\circ} \mathrm{C}\)
<2,000 m

\section*{Clearance and creepage}

\section*{distances}

Rated impuls voltage/
Pollution degree:
6 kV / 2
EC 60 664-1
EMC
Electrostatic discharge (ESD): 8 kV (air)
HF irradiation
80 MHz ... 1 GHz :
\(1 \mathrm{GHz} \ldots 2,7 \mathrm{GHz}\) :
Fast transients:
\begin{tabular}{ll}
\(12 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
2 kV & IEC/EN 61 000-4-4
\end{tabular}

Surge
between
wires for power supply:
between wire and ground:
HF wire guided:
Interference suppression:
Degree of protection:
Housing:
Terminals:
Enclosure:

\section*{Vibration resistance:}

Climate resistance:
Terminal designation:
Wire connection:
Fixed screw terminals
Cross section:

Stripping length:
Fixing torque:
Wire fixing:
Fixed
High-voltage terminals
Cross section:

Stripping length:
Fixing torque:
Wire fixing:
Mounting:
Weight:
RL 9075:
RN 9075:

\section*{Dimensions}

Width x height x depth:
\begin{tabular}{lr}
RL 9075: & \(35 \times 90 \times 71 \mathrm{~mm}\) \\
RN 9075: & \(52.5 \times 90 \times 71 \mathrm{~mm}\)
\end{tabular}
\(35 \times 90 \times 71 \mathrm{~mm}\)
\(52.5 \times 90 \times 71 \mathrm{~mm}\)

\section*{UL-Data}

ANSI/UL 60947-1, \(5^{\text {th }}\) Edition
ANSI/UL 60947-5-1, \(3^{\text {rd }}\) Edition
CAN/CSA-C22.2 No. 60947-1-13, \(2^{\text {nd }}\) Edition CAN/CSA-C22.2 No. 60947-5-1-14, \(1^{\text {st }}\) Edition

\section*{Switching capacity:}

Wire connection
RL 9075:
RN 9075
for terminals 11, 12, 14 for terminals L1, L2, L3, N

Pilot duty B300
5A 240Vac Resistive, G.P.
5 A 30 Vdc Resistive or G.P. 5A 250Vac G.P
\(60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}\) copper conductors only AWG 24-12 Sol/Str Torque 0.6 Nm

AWG 24-12 Sol/Str Torque 0.6 Nm AWG 30-10 Sol/Str Torque 0.7 Nm

Technical data that is not stated in the UL-Data, can be found in the technical data section

\section*{Standard Types}

RL 9075.11 3/N AC \(110 \mathrm{~V} / 64 \mathrm{~V} \quad 0 \ldots 30 \mathrm{~s}\)
Article number: 0066880
- Output: 1 changeover contact
- Operating voltage: \(\quad 3 / \mathrm{NAC} 110 \mathrm{~V} / 64 \mathrm{~V}\)
- Switching delay: \(0 \ldots 30\) s
- Width: 35 mm

RN \(9075.113 / \mathrm{N}\) AC \(230 \mathrm{~V} / 130 \mathrm{~V}+3 / \mathrm{N}\) AC \(400 \mathrm{~V} / 230 \mathrm{~V} 0 \ldots 30 \mathrm{~s}\) Article number:
- Output:

0066928
- Operating voltage: \(3 / \mathrm{N}\) AC \(230 \mathrm{~V} / 130 \mathrm{~V}+3 / \mathrm{N} \mathrm{AC} 400 \mathrm{~V} / 230 \mathrm{~V}\)
- Switching delay:

0 ... 30 s
- Width
\(52,5 \mathrm{~mm}\)

\section*{Ordering Examples}

Connection Examples

M11501_a
3 -phase connection to monitor 3 fuses

1-phase connection to monitor 2 fuses

\section*{VARIMETER}

Function Diagram

- According to IEC/EN 60 255-1
- Recognizes fuse failures in three-phase mains up to 3 AC 690 V
- Can be used for all types and sizes of fuses
- Independent of phase sequence
- Signals even if loads are switched off
- No malfunction on
- asymmetrical mains
- mains with harmonic waves
- motors producing feedback
- Shorter response time than with motor circuit-breakers
- Green LED for intact fuses
- Red LED for fuse failure
- As option: energized / de-energized on trip in the case of IP 9075 programmable via X4-X5 or X3-X4
- As option: with manual reset function and remote reset, programmable via X1-X2
- As option: 1 NO contact or 2 changeover contacts
- Devices available in 2 enclosure versions:

I-model: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
S-model: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- IL 9075, SL 9075: width 35 mm

IP 9075, SP 9075: width 70 mm
Approvals and Markings
) only IL 9075

\section*{Applications}

Fuse monitoring in the three-phase mains, e.g. for automatic switching-off and switch-on blockage of three-phase motors in the event of one or more phase fuses failing.

\section*{Indicators}
\begin{tabular}{ll}
green LED: & for healthy fuse \\
red LED: & for blown fuse
\end{tabular}

Notes
The internal resistance of the fuse monitor's measuring path is in the MOhm range, meaning that the regulations as regards touch voltage are fulfilled if a fuse is not present or if it is faulty (IEC 974-1, internal resistance \(>2000\) Ohm/V).

\section*{Circuit Diagrams}

IL 9075.01,
SL 9075.01

IL 9075.01/01, SL 9075.01/01_

IL 9075.12/01
SL 9075.12/01_

IL 9075.12/001,
SL 9075.12/001

IP 9075.12, SP 9075.12

without bridge : manual reset with bridge : auto reset

IP 9075.12/010, SP 9075.12/010

\section*{Technical Data}

Input
Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
IL/SL 9075.01/ /_ _

3 AC \(110 \ldots 127\) V
3 AC 220 ... 240 V
3 AC 380 ... 415 V
3 AC 400 ... 440 V
3 AC 110 V
3 AC 230 V
3 AC 400 V
3 AC 480 ... 550 V, 600 ... 690 V
\(0.8 \ldots 1.1 U_{N}\)
2.0 VA (on L2 / L3)
3.0 VA (on L1 / L2)
\(50 \ldots 400 \mathrm{~Hz}\)
\(>2000 \Omega / \mathrm{V}\)
max. 90 \%

\section*{Output}

\section*{Contacts}

IL/SL 9075.01/ \(\qquad\) :
IL/SL 9075.12/ \(\qquad\)
IP/SP 9075.12/ ___ :
Response/release time:
de-energized on trip IL/SL 9075. _ / 001 :
IL/SL 9075. _ _/011
IP/SP 9075:
energized on trip
IL/SL 9075. - :

IL/SL 9075. - / 010 :
IP/SP 9075:
Output nominal voltage:
Thermal current \(I_{\text {th }}\) :
Switching capacity
to AC 15
IL/SL 9075:
NO contact:
NC contact:
to DC 13:
IP/SP 9075:
Schließer:
Öffner:

\section*{Electrical life}
to AC 15 at 1 A, AC 230 V
IL/SL 9075:
IP/SP 9075:
Short circuit strength
max. fuse rating:
Mechanical life:

1 NO contact
2 changeover contacts
2 changeover contacts
\(<50 \mathrm{~ms}\)
\(<50 \mathrm{~ms}\)
\(<50 \mathrm{~ms}\)
\(<500 \mathrm{~ms}\)
\(<500 \mathrm{~ms}\)
< 500 ms
max. AC 250 V
4 A

3 A / AC 230 V IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
1 A / DC 24 V IEC/EN 60 947-5-1

3 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V
IEC/EN 60 947-5-1
\(1.5 \times 10^{5}\) switching cycles \(2.5 \times 10^{5}\) switching cycles

4 A gL
IEC/EN 60 947-5-1
\(>10^{8}\) switching cycles

\section*{Technical Data}

\section*{General Data \\ Operating mode:}

Temperature range:
Operation:
Storage:

\section*{Altitude:}

\section*{distances}
rated rated impulse voltage voltage /
pollution degree: \(\quad 4 \mathrm{kV} / 2\)

\section*{EMC}
Electrostatic discharge:
HF irradiation

HF irradiation
80 MHz ... 1 GHz :
1 GHz ... 2.7 GHz :
Fast transients:
Surge voltages between
wires for power supply: between wire and ground: HF wire guided: Interference suppression: Degree of protection: Housing:
Terminals:
Vibration resistance:
Climate resistance: Terminal designation:

Min. cross section:
Insulation of wires or sleeve length: Wire fixing:

Fixing torque: Mounting:

\section*{Weight:}

IL 9075:
SL 9075:
IP 9075:
157

SP 9075:
Dimensions
Width x height x depth
\begin{tabular}{ll}
IL 9075: & \(35 \times 90 \times 59 \mathrm{~mm}\) \\
SL 9075: & \(35 \times 90 \times 98 \mathrm{~mm}\) \\
IP 9075: & \(70 \times 90 \times 59 \mathrm{~mm}\) \\
SP 9075: & \(70 \times 90 \times 98 \mathrm{~mm}\)
\end{tabular}

\section*{Standard Types}

IL 9075.01/001 AC 380 ... 415 V \(50 \ldots 400 \mathrm{~Hz}\)
Article number: 0041517

SL 9075.01/001 AC \(380 \ldots 415 \mathrm{~V} \quad 50 \ldots 400 \mathrm{~Hz}\)
Article number: 0054755
- De-energized on trip
- Automatic reset
- 1 NO contact
- Nominal voltage \(U_{N}\) : AC \(380 \ldots 415 \mathrm{~V}\)
- Width: 35 mm

\section*{Variants}

For rated voltages up to 3 AC 400 resp. 440 V :
IL 9075. \(\qquad\) energized on trip, automatic reset

IL 9075. _ _ /001 : de-energized on trip, automatic reset
IL 9075._-_/010 : energized on trip, manual reset
IL 9075. _ / 011 : de-energized on trip, manual reset

For rated voltages up to 3 AC 690 V, open/de-energized on trip, settable:
IP 9075.12 : automatic reset IP 9075.12/010 : manual reset or automatic reset settable

\section*{Ordering example for variants}

Fuse monitoring in the 2-phase mains, e.g. for motor protection with IL 9075/001 or with IP 9075, de-energized on trip, jumper X3-X4

*) a second fuse can be monitored in the same or a different phase via the terminals L1-L1

Function Diagram

3-phase connetion to monitor 3 fuses
\begin{tabular}{|c|c|c|c|}
\hline LED F1 & LED F2 & LED F3 & Relay output \\
\hline 1 & 1 & 1 & off \\
\hline 0 & 1 & 1 & on \\
\hline 1 & 0 & 1 & on \\
\hline 1 & 1 & 0 & on \\
\hline 0 & 0 & 1 & on \\
\hline 0 & 1 & 0 & on \\
\hline 1 & 0 & 0 & on \\
\hline 0 & 0 & 0 & off \\
\hline \begin{tabular}{l}
Logic table for 3 fuses \\
1: fuse OK, 0: fuse blown
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline LED F1 & LED F2 & LED F3 & Relay output \\
\hline 1 & 1 & 1 & off \\
\hline 0 & 1 & 1 & on \\
\hline 1 & 0 & 0 & on \\
\hline 0 & 0 & 0 & off \\
\hline
\end{tabular}

\footnotetext{
Logic table for monitoring of 2 fuses
}
in a single-phase a.c. system
1: fuse OK, 0: fuse blown

\section*{Your advantages}
- increasing the availability of plants by early detection of blown fuses, that may cause damage if undetected
- fast detection of blown fuses also with disconnected load availability of your plant on request
- reliable detection of blown fuses inspite of:
- asymmetric mains
- harmonic content

\section*{Features}
- According to IEC/EN 60 255-1
- To monitor fuses in single and 3-phase AC voltage systems
- Undervoltage detection below \(0.7 \times U_{\mathrm{N}}\)
- No separate auxiliary necessary
- 2 changeover contacts
- 2 nominal voltages adjustable:

3/N AC \(240 \mathrm{~V} / 140 \mathrm{~V}\) or 3/N AC400 V / 230 V or
fixed nominal voltage: 3/N AC \(110 \mathrm{~V} / 64 \mathrm{~V}\)
- Adjustable operate delay
- Energized on trip
- Automatic adjustment to 50 Hz and 60 Hz mains frequency
- Width 22.5 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Application}

Monitors the state of 1-3 fuses in single- or 3-phase voltage systems. e.g. for automatic disconnection and lockout of a 3 phase motor in the case of a fuse failure.

\section*{Function}

During initialisation the fuse monitor recognises the mains frequency (50 Hz or 60 Hz). When monitoring fuses in a 3-phase system all the phases are measured against N . The recognition of a blown fuse is done by monitoring the voltage at the fuse input terminals F1, F2 and F3. A voltage drop on one of these input terminals below \(0.7 \times U_{N}\) is an indication for a blown fuse. In case an undervoltage condition on any of the three terminals has been recognized the LED of the corresponding terminal starts blinking red. After the adjusted response time has expired, the LED switches on red continuously. At the same time the relay, which works in open circuit alarm mode, switches its state. After the terminal voltage exceeds the switching level again e.g. by replacing the blown fuse, the corresponding LED immediately turns off and at the same time the relay switches back into idle mode.

When monitoring fuses in a 1-phase system, up to 3 fuses can be connected to the same phase and being monitored.

At Variant for 3/N AC \(240 \mathrm{~V} / 140 \mathrm{~V}\) and 3/N AC \(400 \mathrm{~V} / 230 \mathrm{~V}\) are both voltage ranges via potentiometer settable.

\section*{Notes}

For reliable detection of fuse failure with large inductive loads we recommend to have symmetric loads.

When using the fuse monitor with motor loads it could happen, due to feedback voltage, that the failed fuse is only detected after the motor is switched off.

\begin{tabular}{l}
Connection Terminals \\
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L1, L2, L3, N & Connection for fuses \\
\hline \(11,12,14,21,22,24\) & \begin{tabular}{l}
Blown fuse-indicatior relay \\
(2 changeover contacts)
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Indicators & \\
\hline green LED "ON" & on when supply connected \\
red LED "F1, F2, F3" & \begin{tabular}{l}
shows that the voltage is dropped under \\
\\
\\
\\
blown fuse
\end{tabular}
\end{tabular}

\section*{Technical Data}

Input
\begin{tabular}{|c|c|}
\hline Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & \[
\begin{aligned}
& 3 / \mathrm{N} \text { AC } 240 \mathrm{~V} / 140 \mathrm{~V} \\
& 3 / \mathrm{N} \text { AC } 400 \mathrm{~V} / 230 \mathrm{~V} \\
& 3 / \mathrm{N} \text { AC } 110 \mathrm{~V} / 64 \mathrm{~V}
\end{aligned}
\] \\
\hline Voltage range: & \(0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
\hline Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
\hline Nominal consumption: & approx. 2 W \\
\hline \multicolumn{2}{|l|}{Measuring circuit} \\
\hline \multirow[t]{3}{*}{Monitoring voltage \(\mathrm{U}_{\mathrm{N}}\) :} & \(3 / \mathrm{N}\) AC \(240 \mathrm{~V} / 140 \mathrm{~V}\) \\
\hline & \(3 / \mathrm{NAC} 400 \mathrm{~V} / 230 \mathrm{~V}\) \\
\hline & \(3 / \mathrm{N}\) AC \(110 \mathrm{~V} / 64 \mathrm{~V}\) \\
\hline Monitoring range: & \(0.7 \ldots 1.1 U_{N}\) \\
\hline Response value: & \(0.7 \times \mathrm{U}_{\mathrm{N}}\) \\
\hline Hysteresis: & 10 \% \\
\hline \multicolumn{2}{|l|}{Nomber of monitored} \\
\hline fuse: & 1 ... 3 \\
\hline \multirow[t]{2}{*}{On delay:} & infinite adjustable \\
\hline & instantaneuos (<200 ms), \(2 \ldots 25\) s \\
\hline Release delay: & instantaneuos \\
\hline Accuracy: & \(\pm 3\) \% \\
\hline Repeat accuracy: & \(\pm 1 \%\) \\
\hline \multicolumn{2}{|l|}{Output} \\
\hline Contacts: & 2 changeover contacts \\
\hline \multicolumn{2}{|l|}{Switching capacity to AC 15} \\
\hline NO contact: & 3 A / AC 120 V IEC/EN 60 947-5-1 \\
\hline NC contact: & 1.5 A / AC 240 V IEC/EN 60 947-5-1 \\
\hline to DC 13 & \\
\hline NO contact: & 0.22 A / DC 120 V IEC/EN 60 947-5-1 \\
\hline NC contact: & 0.1 A / DC 250 V IEC/EN 60 947-5-1 \\
\hline \multicolumn{2}{|l|}{Electrical life} \\
\hline to AC 1 at 8 A, AC 250 V : & \(>10^{5}\) switching cyles IEC/EN 60 947-5-1 \\
\hline \multicolumn{2}{|l|}{Shortcircuit protection} \\
\hline max. fuse: & 3 AgL IEC/EN 60 947-5-1 \\
\hline Mechanical life: & \(>3 \times 10^{7}\) switching cyles \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{General Data}

Operating mode:
Temperature range
Operation:
Storage:
Relative air humidity:
Altitude:
Rated impulse voltage/
Pollution degree:
EMC
Electrostatic discharge (ESD): HF irradiation
\(80 \mathrm{MHz} \ldots 2,7 \mathrm{GHz}: \quad 10 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3

Fast transients:
Surge
between
wires for power supply:
between wire and ground:
HF-wire bound:
Interference suppression:
Protection degree:
Enclosure:
Terminals:
Enclosure:

Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
Plugin with
screw terminals (PS)
max. cross section for connection:

Insulation of wires
or sleeve length:
Wire fixing:
Fixing torque:
Mounting:
Weight:
Dimensions

\section*{Standard Types}

UG 9075.12 PS \(3 / \mathrm{N}\) AC \(240 / 140 \mathrm{~V}+3 / \mathrm{N}\) AC \(400 / 230 \mathrm{~V}\)
Article number:
- 2 nominal voltages adjustable:
\(3 / \mathrm{N}\) AC \(240 / 140 \mathrm{~V}+3 / \mathrm{N}\) AC \(400 / 230 \mathrm{~V}\)
- Output:

2 changeover contacts
- Width: 22,5 mm

UG 9075.12PS 3/N AC 110 / 64 V
Article number:
0065532
- fixed nominal voltage:

3/N AC 110 / 64 V
- Output: 2 changeover contacts
- Width: 22,5 mm

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

\section*{Application Examples}

M11519
3-phase connection to monitor 3 fuses

1-phase connection to monitor 2 fuses

Function Diagram

\section*{Circuit Diagram}

IK 9143, SK 9143
- According to IEC/EN 60 255, DIN VDE 0435-303
- Monitoring of overfrequency and underfrequency (selectable) in A.C. power systems
- Without auxiliary voltage
- Selection of frequency range for 50 or 60 Hz systems
- Adjustable response value
- Adjustable hysteresis
- De-energized on trip (output relay not activated in case of error)
- LED indicators for measuring voltage and contact position
- 1 changeover contact
- As option energized on trip (output relay activated in case of error)
- Devices available in 2 enclosure versions:

IK 9143: depth 58 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SK 9143: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- 17.5 mm width

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Application}

Frequency monitoring function in in-plant generation units and local power supply systems

\section*{Function}

The system to be monitored is connected to the terminals A1-A2. Its internal supply voltage is also taken from these terminals. The input frequency is compared to response value to be set at the unit.

In overfrequency mode, the output relay switches into alarm position when the preset response value is exceeded. When the system frequency once more falls below the response value minus the preset hysteresis, the output relay will switch back into normal position.

In underfrequency mode, the output relay switches into alarm position when the actual value falls below the preset response value. When the system frequency once more exceeds the response value plus hysteresis, the output relay will switch back into normal position.

If de-energized on trip is selected, the output relay is energized (11-14 closed) in normal status.
If energized on trip is selected, the output relay is energized (11-14 closed) in alarm status.

\section*{Indicators}

Green LED:

Yellow LEDs:
On, when measuring voltage is connected to A1-A2

On, when the output relay is energized (contacts 11-14 closed)

\section*{Notes}

Monitoring mode underfrequency or overfrequency
The mode can be selected by means of the slide switch at the front of the unit. The operating mode de-energized or energized on trip as well as the response value do not change.

M9347

\section*{Technical Data}

\section*{Input}

Nominal voltage \(\mathbf{U}_{n}: A C 110,230,400 \mathrm{~V}\)
Voltage range:0.8 ... 1.1 \(\mathrm{U}_{\mathrm{N}}\)
Nominal consumption:
AC 110 Vapprox. 3 VA
AC 230 V:approx. 5 VA
AC 400 V:approx. 8 VA
Frequency range:50/60 Hz, selectable with rotary switchResponse

\section*{value}
infinitely adjustable:- 10 ... + 10\% of the selected
frequency range
Hysteresis
infinitely adjustable:0.5 ... 10\% of the set response value

\section*{Output}

Contacts:1 changeover contact

\section*{Thermal current \(I_{n}: 4 \mathrm{~A}\)}

\section*{Switching capacity}
to AC 15
NO contact:3 A / AC 230 VIEC/EN 60 947-5-1
NC contact:1 A / AC 230 VIEC/EN 60 947-5-1
to DC 13
NO contact:1 A / DC 24 V IEC/EN 60 947-5-1
NC contact:1 A / DC 24 V IEC/EN 60 947-5-1
Contact life:
to \(A C 15\) with \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) : > \(1.5 \times 10^{5}\) operating cycles
IEC/EN 60 947-5-1
Short circuit strenght
max. fuse rating:4 A gLIEC/EN 60 947-5-1
Mechanical life: \(\geq 30 \times 10^{\circ}\) operating cycles
General Data

Nominal operation:
Temperature range:
Clearance and creepage

\section*{distances}

Rated impulse voltage /
Pollution degree:
IEC 60 664-1
\(4 \mathrm{kV} / 2\)
Continous
\(-20 \ldots+60^{\circ} \mathrm{C}\)

\section*{Technical Data}

EMC
Electrostatic discharge (ESD): 8 kV (air discharge) IEC/EN 61 000-4-2 Fast transients: 2 kV IEC/EN 61 000-4-4
Surge between
supply lines:
Interference suppression:
Degree of protection:
Housing:
Terminals:
Housing:
Vibration resistance:

Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Mounting:
Net weight
K 9143:
SK 9143:

\section*{Dimensions}

Width x height x depth
\begin{tabular}{ll}
IK 9143: & \(17.5 \times 90 \times 58 \mathrm{~mm}\) \\
SK 9143: & \(17.5 \times 90 \times 98 \mathrm{~mm}\)
\end{tabular}

\section*{Standard Type}

IK \(9143.1150 / 60 \mathrm{~Hz} \pm 10 \%\) AC 230 V Hyst. \(0.5 \ldots 10 \%\)
Article number: 0055922
- De-energized on trip
- Selection of overvoltage or undervoltage
- Selectable frequency range: 50 or 60 Hz
- Response value:
\(\pm 10\) \% adjustable
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : \(\quad\) AC 230 V
- Hysteresis: \(0.5 \ldots \pm 10\) \% adjustable
- Width:
17.5 mm

\section*{Variants:}

K 9143.11/001,
SK 9143.11/001: energized on trip

\section*{Ordering example for variants}

VARIMETER

\section*{Your Advantages}
- Universal usage
- Easy handling

\section*{Features}
- According to IEC/EN 60 255-1
- Detection of over- or underfrequency of alternating voltage (adjustable function)
- Fast reaction time by measuring duration of cycle of input frequency
- Universal measuring input for AC-voltages of \(15 \ldots 280 \mathrm{~V}\) as well as \(30 \ldots 550 \mathrm{~V}\)
- As option with measuring input for inverters
- 4 ranges adjustable response value \(1,5 \ldots 200 \mathrm{~Hz}\) or \(5 \ldots 600 \mathrm{~Hz}\)
- Adjustable hysteresis
- Adjustable start up time delay \(0 . . .50 \mathrm{~s}\) at function underfrequency
- Adjustable monitoring time for missing input signal at function overfrequency
- Response delay programmable via terminals 0 ... 100 s
- Alarm storing or auto-reset programmable via terminals
- Galvanic separation between measuring input, auxiliary voltage and output contacts
- MH 9837 available with wide input range for auxiliary supply (AC/DC 24 ... 60 V or AC/DC 110 ... 230 V)
- 2 changeover contacts, closed circuit operation
- Open circuit operation on request
- LED indication for auxiliary voltage, measuring voltage and alarm status
- MH 9837.12/008: with galvanic separated analogue output (current/ voltage) and 11 step LED chain for the actual frequency
- Device available with 2 response values and seperately controlled outputrelays for under- and overfrequency see MK 9837N/500
- 2 possible compact designs:

MK 9837N: Width \(22,5 \mathrm{~mm}\)
MH 9837: Width 45 mm

\section*{Approvals and Markings}

*) only MK 9837N

\section*{Applications}
- Monitoring of frequency in AC systems
- Monitoring of rotor frequency on slip ring motors
- Control and monitoring of motors in sewage water treatment plants
- Monitoring of output voltage on inverters (variant /050)
- Monitoring of supply voltage frequency on railway rolling stock

\section*{Circuit Diagrams}

MK 9837N

MH 9837/008

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1 +, A1 & \(+/ \mathrm{L}\) \\
\hline A2 & \(-/ \mathrm{N}\) \\
\hline E0, E1, E2 & Frequency input \\
\hline X1, X2, X3 & Programming terminals \\
\hline M & Reference for programming terminals \\
\hline U & Analogue output voltage \\
\hline I & Analogue output current \\
\hline G & Reference for analogue output \\
\hline Y1 & Range selection for analogue output \\
\hline \(11,12,14,21,22,24\) & \begin{tabular}{l}
"monitoring output frequency failure \\
(2 changeover contacts)"
\end{tabular} \\
\hline
\end{tabular}

\section*{Functions}

The auxiliary supply is connected to terminals A1-A2.
Terminals E0-E1-E2 form the measuring input. For low voltages the measuring voltage is connected to E1-E0 and for higher voltages to E2E0 (see section technical data).
The input frequency is compared to the setting value (response value \(=\) fine tunig \(x\) range).
As the device measures the cycle duration the fastest frequency measurement is possible (reaction time = cycle time +10 ms).
In overfrequency mode (switch on front in pos. ">f") the output relay switches to alarm state if the input frequency rises above the response value for a longer time then selected on the terminals. If the measuring frequency drops again under the hysteresis value, the output relay switches back to good state without delay.
In underfrequency mode (switch on front in pos. "<f") the output relay switches to alarm state, if the input frequency drops below the response value for a longer time then selected on the terminals. If the measuring frequency rises again above the hysteresis value, the output relay switches back to good state without delay.

If manual reset is chosen, the output relay stays in tripped position, even if the frequency is back to normal. The reset is made by bridging terminals X2-M or by disconnecting the auxiliary supply.

In alarm state the yellow LEDs „R1" / "R2" are continuously on, during time delay they flash with short pulse.

In de-energized on trip mode the output relay is energized in good state (contacts 11-14 etc. closed).
In energized on trip mode the output relay is energized in alarm state (contacts 11-14 etc. closed).

If start up delay is selected a timer is started after connection of auxiliary supply that disables the measuring circuit for the adjusted time. This start up delay avoids an alarm e.g. when starting a generator or motor.

When measuring overfrequency, monitoring of the signal on E0-E1-E2 can be selected. If the signal is missing longer then the selected monitoring time, relay 2 (contacts 21-22-24) and LED "R2" indicate alarm.

\section*{Indicators}

Upper LED „UH/E": - green, when only auxiliary voltage connected to A1-A2
- yellow/green, when measuring frequency is detected on E0-E1-E2
Lower LED „R1" (yellow): - On, when alarm state (under- / overfrequency) flashes (with short pulse) when time delay is active
Lower LED „R2" (yellow): - On, when alarm state (under- / overfrequency) flashes (with short pulse) when time delay is active
- additional flashes at signal monitoring alarm LEDs "R1" and "R2" flash together during start up delay

\section*{Notes}

\section*{Frequency measuring input}

The standard measuring input is divided up in to voltage ranges (E1-E0 AC \(15 \ldots 280 \mathrm{~V}\) and E2-E0 AC \(30 \ldots 550 \mathrm{~V}\)). If the measuring voltage is always higher then AC 30 V , the higher range should be used. To measure the output frequency on inverters the variant /_5_ has to be used. A special dimensioned measuring input with low pass characteristic avoids the measuring of the pulse frequency. In addition the input sensitivity is adapted to the voltage-/frequency-characteristic of inverters (see diagram in technical data).
Visual indication of measuring voltage: If the voltage on the measuring input is to low for correct function on inputs E0-E1-E2 the upper 2-colour LED "UH/E" shows green continuous light. If underfrequency is selected the unit indicates underfrequency alarm, if overfrequency is selected together with measuring signal monitoring the unit indicates measuring signal alarm. If the voltage on the measuring input is high enough the LED "UH/E" flashes yellow/green.

\section*{Notes}

\section*{Start up delay / monitoring of measuring signal.}

The start up time delay (t A) can be adjusted with the lowest potentiometer on the front side of the unit and is activated when connecting the auxiliary supply.
In underfrequency mode ("<f") the start up delay can be extended/restarted at any time with a control contact between terminals X3-M. As long as X3-M is bridged the start up delay is continuously on and the frequency is not measured. When the link on \(\mathrm{X} 3-\mathrm{M}\) is opened the start up delay time restarts.
In overfrequency mode (" \(\gg\) ") with a bridge on X3-M, the lowest potentiometer sets the measuring signal monitoring time (tS) (The adjusted time values \(t A / t S\) are identically).
When signal monitoring in mode " \(>f\) " is selected by bridging X3-M the measuring input is monitored as follows: If during the adjusted monitoring time interval no measuring signal is detected, measuring signal alarm is indicated. As soon as the measuring signal returns the alarm status is reset (auto reset selected) and the monitoring interval tS starts again.
The alarm status is indicated on relay 2 (contacts 21-22-24) and LED "R2" and can be easily differentiated from under/over frequency alarm where both relays (contacts 11-12-14and 21-22-24) and LEDs "R1"and "R2") are active.
The detection of missing measuring signal can increase the safety in critical applications on overfrequency. It detects if the measuring signal is connected to the input of the device and works correctly

\section*{Programming terminals (\(\mathrm{M}-\mathrm{X} 1-\mathrm{X} 2-\mathrm{X} 3\)):}

Attention! The terminals \(\mathrm{M}-\mathrm{X} 1-\mathrm{X} 2-\mathrm{X} 3\) have no galvanic separation to the measuring circuit, and must be operated potential free.

M: Common connection (Ground) of the programming terminals
X1: A response delay of \(0 . .100 \mathrm{~s}\) after connection of auxiliary supply is achieved by connecting a X 1 to M with a potentiometer or fixed resistor (see technical data). The delay can be stopped by bridging X 1 to M at any time. If no start up delay is required the terminals \(\mathrm{X} 1-\mathrm{M}\) must be linked.
X2: Manual reset with NO contact push button on X2-M, auto reset with terminals X2-M bridged.
X3: \(\quad\) When \(\mathrm{X} 3-\mathrm{M}\) is bridged in mode "underfrequency" the start up delay is continuously active or the time is restarted. In mode overfrequency the monitoring of the measuring signal is switched on by bridging X3-M.

\section*{Adjustment aid for start up delay and alarm delay}

During the elapse of start up delay and alarm delay the yellow LED „R1" and „R2" is flashing with a frequency of 2 Hz . To set a specific time value in seconds the number of flash pulses can be used to check the setting: Number of flash pulses divided by 2 = time delay in seconds.

\section*{Variant MH 9837.12/008: 45 mm width}

Identically to MK 9837N.12, but with 11 step LED chain indicator and galvanic separated analogue output to display the actual measured frequency.
On terminals \(\mathrm{U} / \mathrm{G}\) of the analogue output \(0-10 \mathrm{~V}\) are provided, on terminals I/G 0-20 mA are available. By bridging terminals Y1 and G the output can be switched over to \(2-10 \mathrm{~V}\) and \(4-20 \mathrm{~mA}\). The max. value of the analogue output is indicating 2 times of the max. value of the selected range this allows also to indicate overfrequency values. The scaling is linear to the input frequency (lowest analogue value is 0 Hz). The LED chain indicator shows on 10 LEDs the actual frequency (\(\leq 10 \% \ldots 100 \%\) of the setting range). If the frequency exceeds the maximum value of the range the idicator is switched over to \(2 \times\) max value and the top LED (red) is on.

\section*{Technical Data}

\section*{Frequency Measuring Input (E0-E1-E2)}

Standard-frequency measuring

\section*{Voltage range}
\begin{tabular}{ll}
E0-E1: & AC \(15 \ldots 280 \mathrm{~V}\), \\
E0-E2: & AC \(30 \ldots 550 \mathrm{~V}\) \\
Input resistance & \\
E0-E1: & approx. \(300 \mathrm{k} \Omega\) \\
E0-E2: & approx. \(850 \mathrm{k} \Omega\)
\end{tabular}

Frequency Measuring Input for Inverters (variant /_5_)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Max. input voltage: Min. measuring voltage: Input resistance:} & \multicolumn{8}{|c|}{AC 550 V see characteristic M9349 approx. \(900 \mathrm{k} \Omega\)} \\
\hline \multicolumn{12}{|l|}{Common Data for Both Measuring Inputs} \\
\hline \multicolumn{5}{|l|}{Galvanic separation} & \multicolumn{7}{|l|}{Frequency measuring input to auxiliary voltage and output contacts} \\
\hline \multicolumn{12}{|l|}{\begin{tabular}{|c|c|c|c|}
\(1,5 \ldots 6 \mathrm{~Hz}\) & \(5 \ldots 20 \mathrm{~Hz}\) & \(15 \ldots 60 \mathrm{~Hz}\) & \(50 \ldots 200 \mathrm{~Hz}\) or
\end{tabular}} \\
\hline \multicolumn{12}{|l|}{\(5 \ldots 20 \mathrm{~Hz} \quad 15 \ldots 60 \mathrm{~Hz} 50 \ldots 200 \mathrm{~Hz} 150 \ldots 600 \mathrm{~Hz} 4\) ranges selectable} \\
\hline \multicolumn{5}{|l|}{Response time (response value):} & \multicolumn{7}{|l|}{continously variable; 1:4 in each response value} \\
\hline \multicolumn{5}{|l|}{Tolerances of the adjusted tripping values at variation of auxiliary supply and temperature: Hysterese:} & \multicolumn{7}{|l|}{better than \(\pm 1 \%\) continously variable: 0,5 ... \(50 \%\) of adjustable response value} \\
\hline \multicolumn{4}{|l|}{Response delay:} & & \multicolumn{7}{|l|}{Duration of 1 cycle (inverse value adjusted frequency) +10 ms adjustable \(0 \ldots 100 \mathrm{~s}\) with resitor/potentiometer across terminals X1-M:} \\
\hline \(\mathrm{R} / \mathrm{k}\) : & 0 & 15 & 22 & 33 & 47 & 68 & 100 & 150 & 220 & 470 & \(\infty\) \\
\hline \(\mathrm{t}_{\mathrm{v}} / \mathrm{s}\) : & 0 & 0.3 & 0.7 & 1.3 & 2.3 & 5 & 9 & 15 & 25 & 50 & 100 \\
\hline
\end{tabular}

Time between connection
of auxiliary supply and ready to mesure:
Start up time delay /
Signal monitoring time:
approx. \(0,4 \mathrm{~s}\) (with start up delay is 0)
20 ms ... 50 s continously variable on logarithmic scale

Auxiliary Circuit (A1-A2)
Auxiliary voltage \(\mathbf{U}_{\mathbf{H}}\)
(galvanic separation):

Voltage range
AC:
DC:
AC/DC:
Frequency range
AC:
Nominal consumption:
AC:
DC:
AC 115, 230, 400 V
DC 12, 24, 48 V
AC/DC 24 ... 60, 110 ... 230 V (only for MH -version possible)
\(0,8 \ldots 1,1 U_{H}\)
\(0,9 \ldots 1,2 \cup_{H}^{H}\)
\(0,75 \ldots 1,2 U_{H}\)
\(45 . .440 \mathrm{~Hz}\)
approx. 4 VA
approx. 2 W
Output (11-12-14, 21-22-24)

Contacts:
Thermal current \(I_{\text {th }}\) :
Switching capacity
according to AC 15
NO contact: 3 A / AC \(230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
NC contact:
according to DC 13
NO contact:
NC contact:
Electrical life
acc. to AC 15 at 1 A, AC 230 V: \(1,5 \times 10^{5}\) switching cycles IEC/EN \(60947-5-1\)
Short circuit strength
max. fuse rating:
Mechanical life:

\section*{2 changeover contacts}

4 A

1 A / AC 230 V IEC/EN 60 947-5-1 1 A / DC 24 V IEC/EN 60 947-5-1 1 A / DC 24 V IEC/EN 60 947-5-1

4 AgL
\(\geq 30 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{Analogue Output with MH 9837.12/008}

\section*{galvanic separation AC 3750 V}
to auxiliary supply, measuring circuit and relay outputs
terminal \(\mathrm{U}(+)\) / G(-): \(\quad 0 \ldots 10 \mathrm{~V}\), max. 10 mA
terminal I (+) / G(-): \(\quad 0 \ldots 20 \mathrm{~mA}\), max. burden 500 Ohm
change to \(2 \ldots 10 \mathrm{~V}\) or \(4 \ldots 20 \mathrm{~mA}\) by bridging terminal Y 1 and G .
scaling is linear with frequency (lowest value at \(f=0\), highest value at 2 x max setting value)

\section*{General Data}

Nominal operating mode: continuous operation
Temperature range
Operation:

Storage:
Altitude:
Clearance and creepage distance
rated impulse voltage /
pollution degree:
output to measuring circuit: \(\quad 4 \mathrm{kV} / 2 \quad\) IEC \(60664-1\)
output to auxiliary circuit:
output to output:
auxiliary circuit to
measuring input:
Programming terminals
M-X1-X2-X3:

\section*{EMV}

Electrostatic discharge (ESD): 8 kV (air)
HF-irradiation
\(80 \mathrm{MHz} \ldots 1 \mathrm{GHz}\) :
\(1 \mathrm{GHz} \ldots 2.5 \mathrm{GHz}\) :
2.4 GHz ... 2.7 GHz:

Fast transients:
Surge voltage
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:
Degree of protection:
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Fixing torque:
Mounting:
Weight:
MK 9837N:
MH 9837:
\(1 \mathrm{kV} \quad\) IEC/EN 61 000-4-5
\(2 \mathrm{kV} \quad\) IEC/EN 61 000-4-5
10 V
Limit value class B
IEC/EN 61 000-4-6
IP 40 IEC/EN 60529

P 20 —
thermoplastic with V0 behaviou
according to UL subject 94
Amplitude 0,35 mm
Frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20/060/04 IEC/EN 60 068-1
EN 50005
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(2 \times 1,5 \mathrm{~mm}^{2}\) solid or
\(1 \times 2,5 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46 228-1/-2/-3/-4 or
\(2 \times 1,5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/
Plus-minus terminal screws
M3,5 box terminals with wire protection 0.8 Nm

DIN rail
IEC/EN 60715
approx. 210 g
approx. 350 g

Dimensions
Width x heigh x depth:
MK 9837N:
\(22,5 \times 90 \times 97 \mathrm{~mm}\)
MH 9837:
\(45 \times 90 \times 97 \mathrm{~mm}\)

\section*{Classification to DIN EN 50155}

\section*{Vibration and}
shock resistance:
Ambient temperature:

Category 1, Class B
T1 compliant
T2, T3 and TX with operational limitations

\section*{Protective coating of the PCB: No}

\section*{CCC-Data}

\section*{Auxiliary voltage \(\mathbf{U}_{\mathrm{N}}\) :}

MK 9837N:
AC 115, 230 V
DC 12, 24, 48 V

\section*{Switching capacity}
to AC 15
NO contact:
1,5 A / AC 230 V
IEC/EN 60 947-5-1
Technical data that is not stated in the CCC-Data, can be found in the technical data section.

\section*{Standard Types}

MK 9837N. \(125 \ldots 600 \mathrm{~Hz} U_{H}\) AC 230 V
Article number: 0058719
- Switchable monitoring modus: over- or underfrequency
- Closed circuit operation
- Mode overfrequency with selectable signal monitoring
- 4 settable frequency ranges are possible:
\(5 \ldots 20 \mathrm{~Hz}, 15 \ldots 60 \mathrm{~Hz}, 50 \ldots 200 \mathrm{~Hz}, 150 \ldots 600 \mathrm{~Hz}\)
- Settalbe hysteresis of 0,5 ... 50 \%
- Start up time delay / signal monitoring time: settable to \(0 \ldots 50 \mathrm{~s}\)
- Response delay: settalbe with external resitor to \(0 \ldots 100 \mathrm{~s}\)
- Alarm storing or auto-reset selectable
- Frequency measuring input: AC \(15 \ldots 280 \mathrm{~V} / \mathrm{AC} 30 \ldots 550 \mathrm{~V}\)
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :
- Output:
- Width: AC 230 V
2 changeover contacts
22,5 mm

\section*{Variants}

MK 9837N.12/050: as MK 9837N.12, but with measuring input
MH 9837.12:

MH 9837.12/008:
for intverters as MK 9837N.12, but for variants with wide auxiliary voltage range Width: 45 mm
similar to MK 9837N.12, but with galvanic separated analogue output (current/voltage) and 11 step LED chain. Width: 45 mm

\section*{Ordering example for variants}

\section*{Setting}

\section*{Your Advantages}
- Separate output signals for under and over frequency
- Simple wiring
- Easy handling

\section*{Features}
- According to IEC / EN 60 255, VDE 0435 Teil 303
- Monitoring of AC voltage for under and overfrequency, can be used also for pre-warning
- Separate relay outputs for over- or underfrequency (1 or 2 changeover contacts each)
- Alternative usage for monitoring of a frequency window
- Separate adjustment of response value for over- or underfrequency at 4 ranges each, \(1.5 \ldots 200 \mathrm{~Hz}\) or \(5 \ldots 600 \mathrm{~Hz}\)
- Second response value for prewarning possible
- Fast reaction time by measuring duration of cycle of input frequency
- Universal measuring input for AC-voltages of 15 ... 280 V as well as 30 ... 550 V
- As option with measuring input for inverters
- Programmable hysteresis of response value: 2 ... \(10 \%\)
- Start up time delay programmable via terminals from 0 ... 50 s e.g. continuously
- Manual or auto-reset programmable via terminals
- Galvanic separation between measuring input, auxiliary voltage and output contacts
- MH 9837/508: with galvanic separated analogue output (current/ voltage) and 11 step LED chain for the actual frequency
- MH 9837/5_0: with wide input range for auxiliary voltage available (AC/DC 24 ... 60 V or AC/DC \(110 \ldots 230 \mathrm{~V}\))
- Closed circuit operation (de-energized on trip)
- LED indication for auxiliary voltage, measuring voltage and alarm status
- Device available with 2 contacts

MK 9837N/5_0: \(2 \times 1\) changeover contact
MH 9837/5_0: \(2 \times 2\) changeover contacts or wide auxiliary voltage range
- 2 possible compact designs: MK 9837N/5_0: Width 22,5 mm MH 9837/5_0: Width 45 mm

\section*{Approvals and Markings}

*) only MK 9837N/5_0

\section*{Application}
- Monitoring of frequency in AC systems
- Monitoring of rotor frequency on slip ring motors
- Control and monitoring of motors in sewage water treatment plants
- Monitoring of output frequency on inverters (variant/550)

\section*{Circuit Diagrams}

MK 9837N/500
\(\mathbf{- - -}-\)\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline A1 & 11 & 12 & 14 & & 31 & 32 & 34 \\
\hline A2 & 21 & 22 & 24 & & 41 & 42 & 44 \\
\hline
\end{tabular}

MH 9837/500

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1 +, A1 & \(+/ \mathrm{L}\) \\
\hline A2 & \(-/ \mathrm{N}\) \\
\hline \(\mathrm{E} 0, \mathrm{E} 1, \mathrm{E} 2\) & Frequency input \\
\hline \(\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3\) & Programming terminals \\
\hline M & Reference for programming terminals \\
\hline U & Analogue output voltage \\
\hline I & Analogue output current \\
\hline G & Reference for analogue output \\
\hline Y 1 & Range selection for analogue output \\
\hline \begin{tabular}{l}
\(11,12,14,21,22,24\), \\
\(31,32,34,41,42,44\)
\end{tabular} & \begin{tabular}{l}
"monitoring output frequency failure \\
(2 or 4 changeover contacts)"
\end{tabular} \\
\hline
\end{tabular}

\section*{Functions}

The auxiliary supply is connected to terminals A1-A2.
Terminals E0-E1-E2 form the measuring input. For low voltages the measuring voltage is connected to \(\mathrm{E} 1-\mathrm{E} 0\) and for higher voltages to \(\mathrm{E} 2-\mathrm{E} 0\) (see section technical data).
The input frequency is compared to the setting value for over- and underfrequency (response value f1 e.g. \(\mathrm{f} 2=\) fine tunig x range).
As the device measures the cycle duration the fastest frequency measurement is possible (reaction time \(=\) cycle time +10 ms).

If the input frequency on the measuring input \(\mathrm{E} 0-\mathrm{E} 1-\mathrm{E} 2\) is under the response value f 1 less hysteresis (both upper potentiometers) and over the response value f2 (both lower potentiometers) plus hysteresis then the output relays are energized and the yellow LEDs "<f1" and ">f2" are on.

If the frequency rises above the value of \(f 1\), the relay 1 de-energizes (contacts 11-12 close) in " 2 level mode", in "window mode" also relay 2 de-energizes (contacts 21-22 close). The yellow LED "<f1" goes off. Only when the input frequency drops under the level f1 minus hysteresis, the output relay (both relays in window mode) energize again and the yellow LED" 41 " is on.

If the frequency drops below the value of f 2 , the relay 2 de-energizes (contacts \(21-22\) close) in " 2 level mode", in "window mode" also relay 1 de-energizes (contacts 11-12 close). The yellow LED "<f2" goes off. Only when the input frequency rises above the level \(\mathfrak{f 2}\) plus hysteresis, the output relay (both relays in window mode) energize again and the yellow LED"<f2" is on.

If manual reset is active (terminal x2 not connected) and the frequency returns to good state the relay (relays) remain in alarm position (de-energized) and the corresponding LED is off. To reset the alarm terminals X2-M must be bridged, or the auxiliary supply has to be switched off and on again.

Ilf a start-up delay is adjusted, this delay starts with the connection of the auxiliary supply. During this time the frequency is not detection is off, the yellow LEDs "<f1" and ">f2" flash and the output relays are in good state (energized). The start-up delay allows to avoid alarms during the starting period of a generator or motor.

Using the sliding switch on the front of the unit the user can chose between the two function modes"2-level mode" and "window mode",
,2 level-mode":
"window-mode": \(2 \times 1\) c/o contacts; the output relays 1 and 2 switch separately at the corresponding response value f1 and \(\mathfrak{f}\).
2 c/o contacts; the output relays switch together at the response values for f 1 and f 2 (where f1>f2); i.e. the relays switch off together the frequency rises over f1 or drops under f2.

\section*{Indicators}

Upper LED „UH/E": - green, when only auxiliary voltage connected to A1-A2
- yellow/green, when measuring frequency is detected on E0-E1-E2
Lower LED „<f1" (yellow): - On, input frequency is lower than response value f1 (= relay 1 energized in "2-level mode")
Lower LED „>f2" (yellow): - On, when input frequency is higher than response level f2 (= relay 2 energized in " 2 -level mode") LEDs "<f1" and ">f2" flashes during start up delay

\section*{Notes}

Setting of response values f 1 and f 2 / function energized on trip for output relays
Normally the response value \(f 1\) is used for overfrequency and \(f 2\) for underfrequency the hysteresis works accordingly to these settings. Both relays operate de-energized on trip. In "2-level-mode" the frequency detection and the control of the corresponding relays at the response values f1 and \(\ddagger 2\) work completely independent. So it is possible to adjust \(\ddagger 2\) higher than f 1 if auto reset is selected. If \(\mathfrak{f 2}\) is used for overfrequency, the unit works energized on trip, as the relay \(2(21-22-24)\) always energizes when the frequency rises above response value + hysteresis. In the same way the response value f1-hysteresis can be used for underfrequency so that relay 1 (11-12-14) is energized on trip.

When using manual reset in "window mode" the response value f1 (minus hysteresis) must always be higher than f2 (plus hysteresis) to avoid that the output relays do not switch anymore and the yellow LEDs "<f1" and ">f2" remain dark.

\section*{Frequency measuring input}

The standard measuring input is divided up in to voltage ranges (E1-E0 AC \(15 \ldots 280 \mathrm{~V}\) and E2-E0 AC \(30 \ldots 550 \mathrm{~V}\)). If the measuring voltage is always higher then AC 30 V , the higher range should be used.

To measure the output frequency on inverters the variant /550 has to be used. A special dimensioned measuring input with low pass characteristic avoids the measuring of the pulse frequency. In addition the input sensitivity is adapted to the voltage-/frequency-characteristic of inverters (see diagram in technical data).

Visual indication of measuring voltage:
If the voltage on the frequency measuring input is high enough for monitoring the upper dual color LED "UH/E" is ON yellow/green. If the voltage on the input is to low, the LED "UH/E" shows only green color.
Attention: If the measuring voltage is to low the unit reacts as on underfrequency!

Programming terminals (\(\mathrm{M}-\mathrm{X} 1-\mathrm{X} 2-\mathrm{X} 3\)):
Attention! The terminals \(M-X 1-X 2-X 3\) have no galvanic separation to the measuring circuit (E0-E1-E2), and must be operated potential free.

M : Common connection (Ground) of the programming terminals
X1: start up delay at range of \(0 . . .50 \mathrm{~s}\) is achieved by connecting a X1 to M with a potentiometer \((0.25 \mathrm{~W})\) or fixed resistor (see technical data). If no start up delay is required the terminals \(\mathrm{X} 1-\mathrm{M}\) must be linked.

X2: \(\quad\) Manual reset with NO contact push button on X2-M, auto reset with terminals \(\mathrm{X} 2-\mathrm{M}\) bridged.

X3: Hysteresis setting at range of \(2 . . .10 \%\) is achieved by connecting the terminal X3 to M with a potentiometer (0.25 W) or fixed resistor (see technical data).
For a hysteresis of 2 \% the terminal X3 remains open; for a hysteresis of \(10 \%\) s the terminals X3-M must be linked.

\section*{Start up delay}

A start up delay (\(\mathrm{t}_{\mathrm{A}}=0 \ldots 50 \mathrm{~s}\)) adjusted by connecting a resistor \(0 \ldots 500 \mathrm{kOhm}\) to the terminals X1 and M see technical data. This start up delay is started when connecting the auxiliary supply. During this time monitoring is disabled and both output relays are energized. If the connection between X1 and M is open circuit (resistance \(>500 \mathrm{kOhm}\)), the startup delay is continuously on. With this possibility the frequency monitoring can be disabled by an external contact until e.g. a system reaches its normal operation status. When the circuit X1 - M closes the time delay set by a resistor in this circuit runs down before the monitoring starts.
If no start up delay is required, the terminals \(\mathrm{X} 1-\mathrm{M}\) must be linked.
There must be a connection between \(\mathrm{X} 1-\mathrm{M}\) when the frequency should be monitored.
While the start up delay is active, the yellow LEDs "<f1" and ">f2" flash with 2 Hz . To adjust a specific time the number of flashing cycles can be counted. Number of cycles divided by \(2=\) start up time in seconds.

\section*{Notes}

\section*{Manual / automatic reset}

To enable manual reset the connection X2-M remains open. Storing of the alarm influences the output relays and the corresponding LEDs.
Reset is made by closing the connection between X 2 and M or by disconnecting the auxiliary supply.

\section*{Setting of hysteresis}

Connecting terminal X3 via a resistor to M adjusts the hysteresis. Both response values (f 1 and f 2) have the same hysteresis in percentage of the adjusted response values. So the absolute value of the hysteresis is higher on the higher response value then on the lower response value.

Variant MH 9837.38/508: (45 mm width)
Identically to MK 9837N.12, but with 11 step LED chain indicator and galvanic separated analogue output to display the actual measured frequency. On terminals U/G of the analogue output 0-10 V are provided, on terminals I/G \(0 \ldots 20 \mathrm{~mA}\) are available. By bridging terminals Y 1 and G the output can be switched over to \(2 \ldots 10 \mathrm{~V}\) and \(4 \ldots 20 \mathrm{~mA}\). The max. value of the analogue output is indicating 2 times of the max. value of the selected range this allows also to indicate overfrequency values. The scaling is linear to the input frequency (lowest analogue value is 0 Hz). The LED chain indicator shows on 10 LEDs the actual frequency (\(\leq 10 \% \ldots 100 \%\) of the setting range). If the frequency exceeds the maximum value of the range the idicator is switched over to 2 x max value and the top LED (red) is on.

\section*{Technical Data}

\section*{Frequency Measuring Input (E0-E1-E2)}

\section*{Standard-frequency measuring}

Voltage range
\begin{tabular}{ll}
E0-E1: & AC \(15 \ldots 280 \mathrm{~V}\), \\
E0-E2: & AC \(30 \ldots 550 \mathrm{~V}\) \\
Input resistance & \\
E0-E1: & approx. \(300 \mathrm{k} \Omega\) \\
E0-E2: & approx. \(850 \mathrm{k} \Omega\)
\end{tabular}

Frequency measuring input for inverters (variant /550)
\begin{tabular}{l}
Max. input voltage: \\
Min. measuring voltage:
\end{tabular}
\begin{tabular}{ll}
AC 550 V \\
approx.. AC 10 V (at1 Hz) ... AC 150 V \\
(at 200 Hz); (see characteristic M8681) \\
Input resistance: & approx. \(900 \mathrm{k} \Omega\)
\end{tabular}
Common Data for Both Measuring Inputs

Response time f1, f2 (response value):
Tolerances of the adjusted tripping values at variation of auxiliary supply and temperature:
Hysteresis:
separately adjustable at absolute scale
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Resistance:} & 0 & \multicolumn{2}{|l|}{\(15 \mathrm{k} \Omega\)} & \(39 \mathrm{k} \Omega\) & \multicolumn{2}{|l|}{\(120 \mathrm{k} \Omega\)} & \(\infty\) \\
\hline Hysteres & & & & & 10 \% & & \% & 6 \% & 4 \% & & \(2 \%\) \\
\hline \begin{tabular}{l}
Reaction Frequen \\
Start up
\end{tabular} & m & itor & & & Duratio adjuste adjusta resitor/ termina & n of d fre ble fror pote als X & & \begin{tabular}{l}
le (inve \\
cy) +1 \\
0 ... 50 \\
eter ac
\end{tabular} & & ue & \\
\hline R/k & 0 & 15 & 22 & 33 & 47 & 68 & 100 & 150 & 220 & 470 & \(\infty\) \\
\hline \(\mathrm{t}_{\mathrm{v}} / \mathrm{s}\) : & 0 & 0,3 & 0,7 & 1,3 & 2,3 & 5 & 9 & 15 & 25 & 50 & \(\infty\) \\
\hline
\end{tabular}

Time between connection of auxiliary supply and ready to mesure:

\section*{Technical Data}

\section*{Auxiliary Circuit (A1-A2)}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\)
(galvanic separation):

\section*{Voltage range}

AC:
AC 115, 230, 400 V
DC \(12,24,48 \mathrm{~V}\)
AC/DC 24 ... 60, 110 ... 230 V (only for MH-version possible)

DC:
AC/DC:
\(0.8 \ldots 1.1 U_{H}\)
\(0.9 \ldots 1.2 U_{H}\) 0.75 ... \(1.2 \mathrm{U}_{\mathrm{H}}\)

45 ... 440 Hz
approx. 4 VA
approx. 2 W

Output (11-12-14, 21-22-24 + 31-32-34, 41-42-44 at MH 9837.39/5_0)

\section*{Contacts:}

MK 9837N.38/5 0:

MH 9837.39/5_0:

Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
1 A / AC 230 V
1 A / DC 24 V
(EN 60 947-5-1
NO contact:
NC contact:
Electrical life
to AC 15 at 1 A, AC 230 V:
Short circuit strength
max. fuse rating:
Mechanical life:
\(2 \times 1\) changeover contact (1 each for over- and underfrequency alarm)
\(2 \times 2\) changeover contacts
(2 each for over- and underfrequency alarm)
4 A
\begin{tabular}{ll}
\(3 \mathrm{~A} / \mathrm{AC} \mathrm{230} \mathrm{V}\) & IEC/EN 60 947-5-1 \\
\(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
& \\
\(1 \mathrm{~A} / \mathrm{DC} \mathrm{24V}\) & IEC/EN 60 947-5-1 \\
1 A / DC 24 V & IEC/EN 60 947-5-1
\end{tabular}
\(1,5 \times 10^{5}\) switching cycles IEC/EN 60 947-5-1

4 AgL
IEC/EN 60 947-5-1

\section*{Analogue Output with MH 9837.38/508}

\section*{galvanic separation AC 3750V}
to auxiliary supply, measuring circuit and relay outputs
terminal \(U(+) / G(-): \quad 0 \ldots 10 \mathrm{~V}\), max. 10 mA
terminal \(I(+) / G(-): \quad 0 \ldots 20 \mathrm{~mA}\), max. burden 500 Ohm
change to \(2 \ldots 10 \mathrm{~V}\) or \(4 \ldots 20 \mathrm{~mA}\) by bridging terminal Y 1 and G .
scaling is linear with frequency (lowest value at \(f=0\), highest value at \(2 \times\) max setting value)

\section*{General Data}

Nominal operating mode: continuous operation
Temperature range: \(-20 \ldots+60^{\circ} \mathrm{C}\)

\section*{Clearance and creepage distance}
rated impulse voltage / pollution degree:
output to measuring circuit: \(\quad 4 \mathrm{kV} / 2 \quad\) IEC 60 664-1
output to auxiliary circuit: \(\quad 4 \mathrm{kV} / 2 \quad\) IEC 60 664-1
output to output: \(4 \mathrm{kV} / 2 \quad\) IEC 60 664-1
auxiliary circuit to
measuring input:
Programming terminals
M-X1-X2-X3:
EMV
Electrostatic discharge (ESD):
transients
Surge voltage
between
wires for power supply: 1 kV IEC/EN 61 000-4-5
between wire and ground: \(\quad 2 \mathrm{kV}\) IEC/EN 61 000-4-5
HF-wire guided:
Interference suppression:

10 V
Limit value class B

IEC/EN 61 000-4-2
IEC/EN 61 000-4-4

IEC/EN 61 000-4-6
EN 55011

\section*{Technical Data}

Degree of protection:

Housing:
Terminals:
Housing:
Vibration resistance:

Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Mounting:
Weight:
MK 9837N/5_0:
MH 9837/5_0:
MH 9837/508:
Dimensions
Width x heigh x depth:

MK 9837N/5_0:
MH 9837/5 :

\section*{CCC-Data}

Auxiliary voltage \(\mathrm{U}_{\mathrm{N}}\) :
MK9837N/5
AC 115, 230 V
DC 12, \(24,48 \mathrm{~V}\)

\section*{Switching capacity}
to AC 15
NO contact:
\(22.5 \times 90 \times 97 \mathrm{~mm}\)
\(45 \times 90 \times 97 \mathrm{~mm}\)

Technical data that is not stated in the CCC-Data, can be found in the technical data section.
\begin{tabular}{ll}
IP 40 & IEC/EN 60529 \\
IP 20 & IEC/EN 60529
\end{tabular}
thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm
Frequency \(10 \ldots 55 \mathrm{~Hz}\) IEC/EN 60 068-2-6
20 / 060 / \(04 \quad\) IEC/EN 60 068-1
EN 50005
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46 228-1/-2/-3/-4 or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/
Plus-minus terminal screws M3.5 box terminals with wire protection DIN rail

IEC/EN 60715
approx. 210 g
approx. 295 g
approx. 350 g

\section*{Standard Type}

MK 9837N. \(38 / 5002 \times 5 \ldots 600 \mathrm{~Hz} U_{H}\) AC 230 V
Article number: 0061295
- 2 adjustable response values at 4 ranges each:
\(5 \ldots 20 \mathrm{~Hz}, 15 \ldots 60 \mathrm{~Hz}, 50 \ldots 200 \mathrm{~Hz}, 150\)... 600 Hz
- Switchable monitoring mode: „2 Level" or „Window"
- Hysteresis: programmable via terminal: 2 ... 10 \%
- start up time delay: settalbe with external resitor 0 ... 50 s
- Alarm storing or auto-reset selectable
- Frequency input AC \(15 . . .280 \mathrm{~V} / \mathrm{AC} 30 . .550 \mathrm{~V}\)
- Closed circuit operation
- Auxiliary voltage \(U_{H}\) : AC 230 V
- Output: 2 changeover contacts
- Width: 22,5 mm

\section*{Variants}

MK 9837N.38/550

MH 9837.38/5_0:

MH 9837.38/508:

MH 9837.39/5_0:

\section*{Ordering example for variants}

Typical sensitivity of the measuring input at variant MK 9837N.12/_5_

\section*{Circuit Diagrams}

MK 9143N. 38

MH 9143.39

MH 9143.38/008

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1 +, A1 & \(+/ \mathrm{L}\) \\
\hline A2 & \(-/ \mathrm{N}\) \\
\hline E0, E1, E2 & Frequency input \\
\hline X1, X2, X3 & Programming terminals \\
\hline M & Reference for programming terminals \\
\hline U & Analogue output voltage \\
\hline I & Analogue output current \\
\hline G & Reference for analogue output \\
\hline Y1 & Range selection for analogue output \\
\hline \(11,12,14,21,22,24\) & \begin{tabular}{l}
"monitoring output frequency failure \\
(2 changeover contacts)"
\end{tabular} \\
\hline
\end{tabular}
- According to IEC / EN 60 255-1
- Monitoring of 50 - and 60 Hz -current supply on over- and underfrequency
- Monitoring of local generator sets and voltage supplies
- For precise frequency measuring with fast response time
- High disturbance immunity
- Separately adjustable trip points and separate outputs for overand underfrequency (1 or \(2 \mathrm{c} / \mathrm{o}\) each)
- MK 9143N / MH 9143:

Trip points adjustable precisely and reproducible on 10 step rotational switch in the range of \(\pm 0,1 \mathrm{~Hz}\) to \(\pm 5 \mathrm{~Hz}\) related to 50 or 60 Hz
- Nominal frequency 50 or 60 Hz selectable
- Fixed hysteresis optimised for trip point
- Time delay for over and underfrequency each adjustable from 0 to 20 s
- As option one common output for under and overfrequency "Window"-mode (MK 9143N/400 / MH 9143/400)
- MH 9143.38/008: with galvanic separated analogue output (current/ voltage) and 11 step LED chain for the actual frequency
- MK 9143N/600 / MH 9143/600:
- Variable alarm value in the range of 45 to 65 Hz
- Hysteresis adjustable for under- and overfrequency separately adjustable 0 ... \(20 \%\)
- Common output for under and overfrequency "Window"-mode can be selected
- Start up delay \(0 . . .30 \mathrm{~s}\) selectable
- Manual or auto reset selectable
- Output relay energized or de-energized on trip selectable for overfrequency
- Output relay de-energized on trip for underfrequency
- Universal frequency measuring input for AC \(40 \ldots 550 \mathrm{~V}\)
- Several options for auxiliary supply
- As option without aux. supply for voltage range AC \(18 \ldots 70 \mathrm{~V}\) or 70 ... 275V
- LED indicators for auxiliary supply, input frequency, over and under frequency alarm
- 2 possible contact arrangements

MK 9143N and MK 9143N/600: \(2 \times 1\) C/O contacts, width \(22,5 \mathrm{~mm}\) MH 9143 and MH 9143/600: \(2 \times 2\) C/O contacts, width 45 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Application}

Monitoring of local generator sets and voltage supplies

\section*{Function}

The auxiliary supply is connected to terminals A1-A2.
(If the measuring voltage is within the tolerances pf the auxiliary supply the terminals A1-A2 can also be supplied from the Measuring voltage.)
The measuring input is on terminals E0-E1-E2 with low voltages on E1-E0 and high voltages on E2-E0 (see technical data). The input frequency is compared to the values set on the device.
If the input frequency falls below or rises above the tripping value, the corresponding output relay goes in alarm state (with time delay if adjusted) and the LED >f or <f lights up. When the frequency returns to good state the relays the hysteresis is active before the relays return to good state and the corresponding LED goes off.
If manual reset is selected the relay and the LED remain in alarm state when the frequency returns to good state.
Manual reset is made by bridging terminals X2-M or by disconnecting the auxiliary supply.

In de-energized on trip mode the output relay is energized in good state (contacts 11-14 etc. closed).
In energized on trip mode the output relay is energized in alarm state (contacts 11-14 etc. closed).

If start up delay is selected a timer is started after connection of auxiliary supply that disables the measuring circuit for the adjusted time. Both LEDs \(<f\) and >f flash together and the relays are in non tripped state (Good state). Using the start up delay an alarm can be avoided during start up of a generator.

\section*{Indicators}

Upper LED „UH/E":
- green, when only auxiliary voltage connected to A1-A2
- yellow/green, when measuring frequency is detected on input
Lower LED ">f" (yellow):- On, when overfrequency is detected, flashes (with short pulse) when time delay is active
Lower LED „<f" (yellow): - On, when underfrequency is detected, flashes (with short pulse) when time delay is active
LEDs „>f" and „<f": flash together during start up delay.

\section*{Settings}

MK 9143N

MK 9143N/600

\section*{Notes}

\section*{Frequency measuring input}

The standard frequency measuring input for Ac voltages AC 40...550V is divided in 2 ranges (\(40 \ldots 150 \mathrm{~V}\) on E1-E0 and \(150-550 \mathrm{~V}\) on E2-E0) to achieve a higher immunity against Harmonics and disturbance. If the measuring voltage is around 150 V the smaller range should be used, as it can be overloaded continuously up to 250 V . In the case of lower measuring voltages an input for AC \(10-280 \mathrm{~V}\) E1-E0 and 20 to 550 V E2-E0 is available with slightly lower disturbance immunity. If the measuring signal is missing or if it is to low on E0-E1-E2 the upper 2 colour LED UH/E lights green. The underfrequency output is tripped in this case as well. When the input voltage is high enough on the measuring input this LED light yellow-green.

\section*{Output contacts}

Relay 1 (11-12-14, and 31-32-34 on MH 9143.39) is tripped on overfrequency. Relay 2 (21-22-24, and 41-42-44 on MH 9143.39) is tripped on underfrequency.
On the variant /600the slide switch on the front can be switched to position W (window mode) in that position both relays switch on under- and overfrequency.
Relay 1 can be switched over from energized to de-energized on trip, relay 2 only operates de-energized on trip.
The model \(/ 400\) operates always window mode. Both relays switch on over- and underfrequency. On this variant both relays can be switched over together between energized and de-energized on trip

Programming terminals (\(\mathrm{M}-\mathrm{X} 1-\mathrm{X} 2-\mathrm{X} 3\)):
Attention! The terminals M-X1-X2-X3 have no galvanic separation to
 the measuring circuit, and must be operated potential free.

M: Common connection (Ground) of the programming terminals
X1: A start up delay of \(0 \ldots 30 \mathrm{~s}\) after connection of auxiliary supply is achieved by connecting a X 1 to M with a potentiometer or fixed resistor (see technical data). The start up delay can be stopped by bridging X 1 to M at any time. If no start up delay is required the terminals X1-M must be linked.

X2: Manual reset with NO contact push button on X2-M, auto reset with terminals X2-M bridged.
X3: selection of nominal frequency 50 or 60 Hz with MK 9143 N and MH 9143;
selection of relay mode energized or de-energized on trip for relay 1 with MK 9143N/600 and MH 9143/600

\section*{Model MK 9143N and MH 9143:}

This variant offers a very accurate frequency setting that is required e.g. for small generator sets which feed the public mains:
- the adjustment of the tripping values for over and underfrequency is accurate and reproducible in 10 steps from \(+/-0,1 \mathrm{~Hz}\) to \(+/-5 \mathrm{~Hz}\)
- the hysteresis is always \(1 / 8\) of the adjusted tripping value, I, e, at setting + or \(-0,1 \mathrm{~Hz}\) it is \(0,012 \mathrm{~Hz}\) and at setting + or -4 Hz it is approx. \(0,5 \mathrm{~Hz}\)
- the tripping delay is separately adjustable for over and under-
frequency with a range of 20 s .
- switching between energized and de-energized on trip of relay 1 by slide switch Rel. 1 on the front
- programming of mains frequency 50 or 60 Hz with terminal X3:

X3 open: \(\quad\) Frequency 50 Hz
\(X 3\) linked to \(M\) : Frequency 60 Hz

\section*{Notes}

\section*{Variant MH 9143.38/008: 45 mm width}

Identically to MK 9143N, but with 11 step LED chain indicator and galvanic separated analogue output to display the difference between measured frequency and the mains frequency (50 or 60 Hz).
On terminals \(\mathrm{U} / \mathrm{G}\) of the analogue output \(0-10 \mathrm{~V}\) are provided, on terminals \(\mathrm{I} / \mathrm{G} 0-20 \mathrm{~mA}\) are available. By bridging terminals Y 1 and G the output can be switched over to \(2-10 \mathrm{~V}\) and \(4-20 \mathrm{~mA}\). The middle value of the analogue output indicates nominal frequency, the display and analogue output shows \(\pm 10 \%\) difference to the nominal frequency.

\section*{Model MK 9143N/400 and MH 9143/400}

Identical with MK 9143 N and MH 9143 but both output relays switch together (Window mode) and both can be switched over together via slide switch from energized to de-energized on trip.

\section*{Model MK 9143N/600 and MH 9143/600}

To be used on local generator sets and other equipment where larger frequency tolerances are necessary:
- Adjustment of the tripping values for over and underfrequency individual between 45 and 65 Hz
- Separate adjustable hysteresis for over and underfrequency in a range of \(0,5 \ldots 20 \%\) of the tripping value
- Output function can be changed with slide switch (S1)on the front:

Position „N": Normal mode: relay 1 for overfrequency, relay 2 for underfrequency
Position „W": Window mode: relay \(1+2\) switch together at over and underfrequency
- Switching between energized and de-energized on trip of relay 1 by terminal X3:
X3 open: \(\quad\) de-energized on trip for relay 1
X 3 linked to M : energized on trip for relay 1

\section*{Adjustment aid for start up delay and alarm delay}

During the elapse of start up delay and alarm delay on MK 9143 N and MH 9143) the yellow LED <f or >f is flashing with a frequency of 2 Hz . To set a specific time value in seconds the number of flash pulses can be used to check the setting: Number of flash pulses divided by \(2=\) time delay in seconds.

\section*{Technical Data}

Measuring Input (E0-E1-E2)
Voltage range
E0-E1: AC \(40 \ldots 150 \mathrm{~V}\),
E0-E2:
E0-E1: approx. \(170 \mathrm{k} \Omega\)
E0-E2:
Galvanic separation:
Response time of Frequency monitoring:

Time between connection
of auxiliary supply and
ready to mesure:
Start up time delay:
approx. \(640 \mathrm{k} \Omega\)
Frequency measuring input to auxiliary voltage and output contacts
typ. 60 ms
(when alarm delay is 0)
approx. \(0,4 \mathrm{~s}\) (with start up delay is 0) adjustable from \(0 \ldots 30 \mathrm{~s}\) with resitor/potentiometer between terminals X1 and M:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline\(R / k \Omega:\) & 0 & 4,7 & 12 & 22 & 39 & 56 & 100 & 180 & 390 & \(\infty\) \\
\hline \(\mathrm{t}_{\mathrm{An} \text { / }} / \mathrm{s}:\) & 0 & 0,5 & 1 & 2 & 4 & 6 & 10 & 15 & 20 & 100 \\
\hline
\end{tabular}

Adjustment of the response values (frequency threshold for alarm)
MK 9143N, MH 9143: 10 individual step as deviation from nominal frequency.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline Overfrequency: & \(+0,1\) & \(+0,2\) & \(+0,5\) & +1 & \(+1,5\) & +2 & \(+2,5\) & +3 & +4 & +5 & Hz \\
\hline Underfrequency: & \(-0,1\) & \(-0,2\) & \(-0,5\) & -1 & \(-1,5\) & -2 & \(-2,5\) & -3 & -4 & -5 & Hz \\
\hline
\end{tabular}

\section*{Setpiont frequency:}

Accuracy of the
frequency threshold:

50 or 60 Hz , selectable via connection of terminal X3
better than 200 ppm (\(0,02 \%\))
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Technical Data} & \multicolumn{3}{|l|}{Technical Data} \\
\hline Auxiliary voltage- and temperature influence: & less than 200 ppm (\(<0,02\) \%) & General Data & & \\
\hline Hysterese: & \(1 / 8\) of adjusted deviation value of nominal frequency & Nominal operating mode: Temperature range: & continuous operatio & \\
\hline Time delay: & separately adjustable for over- and under frequency alarm: \(0 \ldots 20 \mathrm{~s}\) adjustable on logarithmic scale. & Operation: Storage: Altitude: & \[
\begin{aligned}
& -20 \ldots+60^{\circ} \mathrm{C} \\
& -25 \ldots+60^{\circ} \mathrm{C} \\
& <2.000 \mathrm{~m}
\end{aligned}
\] & \\
\hline \multicolumn{2}{|l|}{Adjustment of response value (frequency threshold for alarm)} & \multicolumn{3}{|l|}{Clearance and creepage distance rated impulse voltage / pollution degree:} \\
\hline MK 9143N/600, MH 9143/600: & continously variable, separately for overand underfrequency alarm: each \(45 \ldots 65 \mathrm{~Hz}\) & output to measuring circuit: output to auxiliary circuit: & \[
\begin{aligned}
& 4 \mathrm{kV} / 2 \\
& 4 \mathrm{kV} / 2
\end{aligned}
\] & IEC 60 664IEC 60 664- \\
\hline \multirow[t]{2}{*}{Setting accurancy: Hysteresis:} & approx. 1 Hz & output to output to: & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline & continously variable, separately for overand underfrequency alarm: each \(0,5 . .20 \%\) of the setting alarm threshold & auxiliary circuit to measuring input: Programming terminals & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
\hline \multirow[t]{2}{*}{Tolerances of the adjusted tripping values at variation of auxiliary supply and temperature:} & & M-X1-X2-X3:
EMC & \multicolumn{2}{|l|}{without galv. separation to measuring circuit} \\
\hline & \(\pm 0,2 \mathrm{~Hz}\) & Electrostatic discharge (ESD): HF irradiation & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline \multicolumn{2}{|l|}{Auxiliary Circuit} & \(80 \mathrm{MHz} . . .1 \mathrm{GHz}\) : & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline \multirow[t]{5}{*}{Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) (galvanic separation):} & & 1 GHz ... 2.7 GHz : & \(3 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline & & Fast transients: & 4 kV & IEC/EN 61 000-4-4 \\
\hline & AC 115, 230, 400 V DC 12, 24, 48 V & \multicolumn{3}{|l|}{Surge} \\
\hline & AC/DC \(24 \ldots .60,110 \ldots 230 \mathrm{~V}\) (only for & wires for power supply: & 1 kV & IEC/EN 61 000-4-5 \\
\hline & MH-version possible) & between wire and ground: & 2 kV & IEC/EN 61 000-4-5 \\
\hline \multicolumn{2}{|l|}{Voltage range:} & HF-wire guided: & 30 V & IEC/EN 61 000-4-6 \\
\hline AC: & \(0,8 \ldots 1,1 \mathrm{U}_{\text {H }}\) & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Interference suppression: Limit value class B \(\quad\) EN 55011
Degree of protection:}} \\
\hline DC: & \(0,9 \ldots 1,2 U_{\text {H }}\) & & & \\
\hline AC/DC: & \(0,75 \ldots 1,2 U_{H}\) & Housing: & IP 40 & IEC/EN 60529 \\
\hline \multicolumn{2}{|l|}{Frequency range} & Terminals: & IP 20 & IEC/EN 60529 \\
\hline & 45 ... 440 Hz & \multirow[t]{2}{*}{Housing:} & \multicolumn{2}{|l|}{thermoplastic with Vo behaviour} \\
\hline \multicolumn{2}{|l|}{Nominal consumption:} & & \multicolumn{2}{|l|}{thermoplastic with \(V 0\) behaviour according to UL subject 94} \\
\hline AC: & approx. 4 VA & \multirow[t]{2}{*}{Vibration resistance:} & \multicolumn{2}{|l|}{Amplitude \(0,35 \mathrm{~mm}\)} \\
\hline \multirow[t]{2}{*}{DC:} & \multirow[t]{2}{*}{approx. 2 W} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Frequency \(10 \ldots 55 \mathrm{~Hz}\) IEC/EN 60 068-2-6}} \\
\hline & & Climate resistance: & & \\
\hline \multicolumn{2}{|l|}{Output 11-12-14, 21-22-24; + 31-32-34, 41-42-44 at MH 9143.39} & \multicolumn{3}{|l|}{Terminal designation: EN 50005} \\
\hline \multicolumn{2}{|l|}{Contacts} & \multirow[t]{4}{*}{Cross section:} & \multicolumn{2}{|l|}{\(1 \times 4 \mathrm{~mm}^{2}\) solid or} \\
\hline MK 9143N.38, MK 9143.38/600: & \(2 \times 1\) C/O contacts, each 1 for over- and underfrequency alarm & & \multicolumn{2}{|l|}{\begin{tabular}{l}
\(2 \times 1,5 \mathrm{~mm}^{2}\) solid or \\
\(1 \times 2,5 \mathrm{~mm}^{2}\) stranded wire with sleeve
\end{tabular}} \\
\hline MH 9143.39, MH 9143.39/600: & \(2 \times 2 \mathrm{C} / \mathrm{O}\) contacts, each 2 for over- and underfrequency alarm & & \multicolumn{2}{|l|}{DIN 46 228-1/-2/-3/-4 or \(2 \times 1,5 \mathrm{~mm}^{2}\) stranded wire with sleeve} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Thermal current \(\mathrm{I}_{\text {th }}\) :
Switching capacity}} & & \multicolumn{2}{|l|}{DIN 46 228-1/-2/-3/} \\
\hline & & Stripping length: & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
8 mm \\
Plus-minus terminal screws
\end{tabular}}} \\
\hline \multicolumn{2}{|l|}{according to AC 15} & \multirow[t]{2}{*}{Wire fixing:} & & \\
\hline NO contact: & \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{M 4 box terminals with wire protection
0.8 Nm}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NC contact:
according to DC 13}} & \multirow[t]{2}{*}{Fixing torque: Mounting:} & & \\
\hline & & & DIN rail & IEC/EN 60715 \\
\hline NO contact: & \(1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) IEC/EN 60 947-5-1 & Weight: & & \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) IEC/EN 60 947-5-1 & \multirow[t]{2}{*}{MK 9143N, MK 9143/600: MH 9143, MH 9143/600:} & \multicolumn{2}{|l|}{approx. 210 g} \\
\hline \multicolumn{2}{|l|}{Elektrical life} & & approx. 295 g & \\
\hline \multicolumn{2}{|l|}{acc. to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}: 1,5 \times 10^{5}\) switching cycles IEC/EN 60 947-5-1} & MH 9143.38/008: & \multicolumn{2}{|l|}{approx. 350 g} \\
\hline \multicolumn{2}{|l|}{Short circuit strength} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Dimensions}} \\
\hline max. fuse rating: & \multirow[t]{2}{*}{\begin{tabular}{l}
\(4 \mathrm{AgL} \quad\) IEC/EN 60 947-5-1 \\
\(30 \times 10^{6}\) switching cycles
\end{tabular}} & & & \\
\hline Mechanical life: & & \multirow[t]{3}{*}{Width x heigh x depth: MK 9143N, MK 9143/600: MH 9143, MH 9143/600:} & & \\
\hline & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
22,5 \times 90 \times 97 \mathrm{~mm}
\]}} \\
\hline \multicolumn{2}{|l|}{Analogue Output with MH 9143.38/008} & & & \\
\hline \multicolumn{5}{|l|}{galvanic separation AC 3750V} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{to auxiliary supply, measuring circuit and relay outputs.
terminal \(\mathrm{U}(+) / \mathrm{G}(-)\) : \(\quad 0 \ldots 5.10 \mathrm{~V}\) max. 10 mA}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{change to \(2 \ldots 10 \mathrm{~V}\) or \(4 \ldots 20 \mathrm{~mA}\) by bridging terminal Y 1 and G Analogue output: \(+10 \%\) difference to the nominal frequency}} \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Standard Type}

MK 9143N. \(38+/-5 \mathrm{~Hz} U_{H}\) AC 230 V
Article number: 0060936
- Each \(1 \mathrm{C} / \mathrm{O}\) contact for over- and underfrequency
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : AC 230 V
- Frequency measuring input: AC \(40 \ldots 150\) / \(150 \ldots 550 \mathrm{~V}\)
- Trip points adjustable precisely and reproducible on 10 step rotational switch in the range of \(\pm 0.1 \mathrm{~Hz}\) to \(\pm 5 \mathrm{~Hz}\) related to 50 or 60 Hz
- Switching setpoint frequency: \(50 / 60 \mathrm{~Hz}\)
- Time delay for over and underfrequency each adjustable from 0 ... 20 s
- Start up delay: 0 ... 30 s selectable
- Manual or auto reset selectable
- Width: 22.5 mm
\begin{tabular}{|c|c|}
\hline Variants & \\
\hline MK 9143N.38/400: & Same as MK 9143N.38, but with output relay in "Window"-Mode \\
\hline MK 9143N.38/600: & \begin{tabular}{l}
over- and underfrequency threshold each continously variable of \(45 \ldots 65 \mathrm{~Hz}\) without time delay \\
- Hysteresis at over- and underfrequency each continously variable of 0.5 ... 20 \% \\
Funktion mode of the outputrelay switchable on "Window"
\end{tabular} \\
\hline MK 9143N.38/801: & Same as \(/ 600\), but with fixed time delay for over- and underfrequency of 100 ms \\
\hline MH 9143.38/008: & \begin{tabular}{l}
Same as MK 9143N.38, but with galvanic separated analogue output (current/voltage) and 11 step LED chain. \\
Width: 45 mm
\end{tabular} \\
\hline MH 9143.39: & Same as MK 9143N.38, but with each \(2 \mathrm{C} / \mathrm{O}\) contacts for over- and underfrequency width: 45 mm \\
\hline MH 9143.39/400: & Same as MK 9143 N. \(38 / 400\), but with each \(2 \mathrm{C} / \mathrm{O}\) contacts for over- and underfrequency Width: 45 mm \\
\hline MH 9143.39/600: & Same as MK 9143N.38/600, but with \(2 \mathrm{C} / \mathrm{O}\) contacts for over- and underfrequency Width: 45 mm \\
\hline
\end{tabular}

\section*{Ordering example for variants}

\section*{Circuit Diagram}

- According to DIN EN 60255-1, DIN EN 60947-1
- Voltage and frequency monitoring for generator sets >30 kVA on public grid, according to VDEW directive
- RP 9800: 3-phase voltage measurement to neutral
- Disconnection on rise and drop of voltage
- Disconnection on rise and drop of frequency
- Disconnection when 10 minute mean value differs to nominal voltage (overvoltage)
- Frequency and voltage are indicated by separate output relays
- Permits connection or re-connection after adjustable time delay \(\mathrm{t}_{\mathrm{w}}\)
- Protection against manipulation by sealable transparent cover over setting switches
- Precise adjustment and indication of setting values according to the directive
- High measuring accuracy
- Width 70 mm

\section*{Approvals and Markings}

\section*{Application}

Monitoring of voltage and frequency for generator set >30 kVA connected to the public grid according to VDEW directive
As alternative to disconnector switches in plants with \(<30 \mathrm{kVA}\), when a manual isolator switch is used.

\section*{Function}

The RP 9800 monitors the voltage of the 3 phases against neutral indicating over and undervoltage. The phase with the highest voltage (overvoltage) and the phase with the lowest voltage (undervoltage) will cause the relay to switch. The unit is calibrated to the mean RMS value.

The frequency is measured single phase in phase L1. (Reference N).
The voltage and frequency monitoring operate 2 separate output relays. When exceeding the setting values the outputrelays switch into de-energized state.

If the measured values are within or return to the adjusted ranges the activation or reset takes place after an adjustable time delay \(\mathrm{t}_{\mathrm{w}}\).

\section*{Note}

When using the variant RP 9800.12 N-terminal for 3-pase 4 wire connection, the neutral has to be connected.

\section*{Indication}
green LED ON On, when auxiliary supply connected.
red LED f<> On, when frequency out of range.
red LED U<> On, when voltage out of range,
Flashes, when 10 min mean value is higher then setting.
yellow LED f<> On, when relay \(f<>\) is energized, flashes during time delay \(\mathrm{t}_{\mathrm{w}}\)-relay \(\mathrm{f}<>\).
yellow LED U<> On, when relay Rel. U<> s energized, flashes during time delay \(\mathrm{t}_{\mathrm{w}}\) - Rel. U<>.

\section*{Adjustment Facilities}

Adjustment with 8-or 10 step rotary switches:
Poti \(f>(\mathrm{Hz})\) : \(\quad\) - overfrequency (variant /500: 2 potentiometers)
Poti \(f(\mathrm{~Hz})\) : - underfrequency
Poti U>(\%): - overvoltage
Poti U (\%): - undervoltage (variant /500: not available)
Poti \(\mathbb{C} 10 \mathrm{~min}\) : - overvoltage, 10 min mean value
Poti \(t_{w}(\mathrm{~s})\) : - time delay for activation or reset
Standard factory settings according to VDE 0126
(not for time delay for activation):
Response value for: - overfrequency \(f>=50,2 \mathrm{~Hz}\)
Response value for: - underfrequency \(\mathrm{f}<=47,5 \mathrm{~Hz}\)
Response value for: - overvoltage U>=115\%
Response value for: - undervoltage \(U<=80 \%\)
Response value for: - overvoltage, 10 min mean value \(\overline{\mathrm{U}} 10 \mathrm{~m}>=110 \%\)
Time delay for: \(\quad-\) activation \(\mathrm{t}_{\mathrm{w}}=40 \mathrm{~s}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Technical Data} \\
\hline \multicolumn{2}{|l|}{Overfrequency:} \\
\hline RP 9800: & \[
50.2 \ldots 52 \mathrm{~Hz}
\] \\
\hline & \begin{tabular}{l}
50.2; 50.3; 50.4; 50.6; 50.8; 51.0; \\
51.5. 52 Hz
\end{tabular} \\
\hline \multirow[t]{4}{*}{RP 9800/500:} & 50.2 .. 51.5 Hz \\
\hline & Adjustment on 2 Pots each with 8 steps in steps of 0.1 Hz \\
\hline & Pot. 2 min. + Pot. \(150.2 \ldots 50.8 \mathrm{~Hz}\) and \\
\hline & Pot. 1 max. + Pot. 250.9 .. 51.5 Hz \\
\hline \multirow[t]{2}{*}{Underfrequency:} & \begin{tabular}{l}
47 ... 49.8 Hz \\
setting via 8 step rotary switch
\end{tabular} \\
\hline & \[
47 ; 47.5 ; 47.8 ; 48.2 ; 48.6 ; 49.0 ; 49.4
\]
\[
49.8 \mathrm{~Hz}
\] \\
\hline \multirow[t]{5}{*}{Overvoltage:} & \(197 . . .218 \mathrm{~V}\) (L-N) (182 V) \\
\hline & 248 ... 276 V (L-N) (230 V) \\
\hline & setting via 8 step rotary switch \\
\hline & 108\%, 110\%, 112\%, 114\%, 115\%, \\
\hline & 116\%, \(118 \%, 120 \%\) of \(U_{N}\) \\
\hline \multicolumn{2}{|l|}{Undervoltage} \\
\hline \multirow[t]{5}{*}{RP 9800:} & 131... 164 V (\(\mathrm{L}-\mathrm{N}\)) (182 V) \\
\hline & 166 ... 207 V (L-N) (230 V) \\
\hline & setting via 8 step rotary switch \\
\hline & 72\%, \(74 \%, 76 \%, 78 \%, 80 \%, 82 \%, 86 \%\), \\
\hline & \(90 \%\) of \(U_{N}\) \\
\hline RP 9800/500: & 80\% of \(U_{N}\) fixed \\
\hline \multicolumn{2}{|l|}{Overvoltage,} \\
\hline \multirow[t]{5}{*}{10 minute mean value:} & \(189 . . .211 \mathrm{~V}\) (L-N) (182 V) \\
\hline & 239 ... 267 V (L-N) (230 V) \\
\hline & setting via 8 step rotary switchr \\
\hline & 104\%, 106\%, 108\%, 110\%, 112\%, \\
\hline & \(114 \% 115 \% 116 \%\) von \(\mathrm{U}_{\mathrm{N}}\) \\
\hline \multirow[t]{2}{*}{Time delay for activation or reset:} & \\
\hline & \[
5,10,20,30,40,50,60,70,80,90 \mathrm{~s}
\] \\
\hline \multirow[t]{2}{*}{Repeat accuracy:} & Voltage measuring \(\leq \pm 1 \%\) \\
\hline & Frequency measuring \(\leq \pm 0.02 \%\) \\
\hline \multirow[t]{2}{*}{Hysteresis:} & Voltage measuring \(\leq 2.5 \%\) \\
\hline & Frequency measuring 0.05 Hz \\
\hline Response time (disconnection): & < 100 ms (typ. 75 ms) \\
\hline
\end{tabular}

\section*{Output}

\section*{Thermal current \(\mathrm{I}_{\mathrm{th}}\) :}

\section*{Switching capacity}
according to AC 15
NO contacts:
NC contacts:
Electrical life
to AC 15 at 1 A, AC 230 V
NO contacts:
Max. fuse rating:
Mechanical life:

\section*{5 A}

3 A / AC \(230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
\(3 \times 10^{5}\) switching cycles IEC/EN 60 947-5-1
4 A gL
IEC/EN 60 947-5-1
\(>50 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}

De-energized on trip:

Voltage range:
Terminals:
Cross section:
Flexible with
multicore cable ends:
Multiple wire connection:
Temperature range:
Clearance and creepage
distance
rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge (ESD): 8 kV (air) IEC/EN 61 000-4-2
HF irradiation:
Fast transients:
Surge voltage
between
wires for power supply: between wire and ground:
Interference suppression:
Degree of protection
Housing:
Termials:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Cross section:
Stranded ferruled:
Multiple wire connection:
Wire fixing:
Mounting:
Weight:
are switched off when failure indicated or voltage is switched off 2 relays with \(\mathrm{C} / \mathrm{O}\) contact each
1. Rel. for f<>, 2. Rel. for U<>
\(3 \times\) AC \(85 \mathrm{~V} . . .280 \mathrm{~V}\)
(\(U_{H}\) of all 3 -phases to neutral)
box terminal with cross recess screw solid / stranded \(0,5-4 \mathrm{~mm}^{2}\)
\(0.5-2.5 \mathrm{~mm}^{2}\)
\(0.5-1.5 \mathrm{~mm}^{2}\) (2 wires of same diameter) \(-20 \ldots . .60^{\circ} \mathrm{C}\)

6 kV / 2
IEC 60 664-1
\(8 \mathrm{kV}(\mathrm{air})\)
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
4 kV
IEC/EN 61 000-4-5
Limit value class B
EN 55011

\section*{Dimensiones}

\section*{Width \(\mathbf{x}\) height \(\mathbf{x}\) depth: \(\quad 70 \times 90 \times 71 \mathrm{~mm}\)}
\begin{tabular}{|c|}
\hline Standard Types \\
\hline RP 9800.12 3/N AC 400/230V \\
\hline Article number: 0062263 \\
\hline RP 9800.12 3/N AC 315/182 V \\
\hline Article number: 0063103 \\
\hline RP 9800.12/200 3/N AC 690/400 V \\
\hline Auxiliary voltage \(U_{H}\) : \(\quad\) AC/DC \(24 \ldots 80 \mathrm{~V}\) \\
\hline Article number: 0063268 \\
\hline RP 9800.12/500 3/N AC 400/230V \\
\hline Article number: 0064515 \\
\hline
\end{tabular}

Application Example

VARIMETER NA

\begin{tabular}{l}
Connection Terminals \\
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline L1, L2, L3 / N & \begin{tabular}{l}
Auxiliary voltage and \\
measuring inputs
\end{tabular} \\
\hline \(11,12,14\) & Control of section switch 1 \\
\hline \(21,22,24\) & Control of section switch 2 \\
\hline \(31,32,34\) & Contacts fault signalling relay \\
\hline X1, B1 / X2, B2 & Enabling inputs \\
\hline KA, KE & Feedback circuit of section switch \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Your Advantages}
- Easy adjustment via rotational switch
- Precise adjustment and indication of setting values
- Indication, diagnostics and fault presentation via display
- Protection against manipulation by sealable transparent cover over setting switches
- Mains and system protection for your generator set

\section*{Features}
- Certificate of conformity (test certificate) of the BG ETEM
acc. to VDE-AR-N 4105
- Following DIN V VDE V 0126-1-1
- According to DIN EN 60 255-1
- Can be used according to EEG 2012 and SysStabV
- Voltage and frequency monitoring for generator sets \(>30 \mathrm{kVA}\) on public grid, as option also for \(\leq 30 \mathrm{kVA}\)
- Fail-safe because of 2-channel structure
- Certificate of conformity (test certificate) of the BG ETEM
- Monitoring of the section switches with measuring of response time
- System test via test button
- Isolated grid detection
- Manual reset
- With additional enabling input, e.g. for ripple control receiver
- Connection or re-connection after adjustable delay time \(t_{w}\)
- Factory setting according to VDE-AR-N 4105
- Random controlled disconnection in the range of 50.2 Hz and 51.5 Hz for non-regulated power generation systems
- Protection against manipulation by sealable transparent cover over setting switches
- Additional fault signalling relay output
- High measuring accuracy
- Installion type enclosure 4TE (width \(\times\) height \(\times\) depth: \(70 \times 90 \times 71 \mathrm{~mm}\))

\section*{Approvals and Markings}

\section*{C \(\in\) bgetem}

\section*{Applications}
- Photovoltaic, wind power
- Combined heat and power stations, water power
- Monitoring of voltage and frequency for generator set connected to the public grid according to VDE-AR-N 4105 directive

\section*{Functions}

The voltage and frequency module RP 9810 monitors in domestic generator sets the mains of the energy supplier. It is built up in a redundant way and each of the 2 channels act on a separate output relay. The adjustment is made via rotational switches. The factory default setting is according to the description in VDE-AR-N 4105. The limit value for undervoltage is fixed at \(80 \%\) of Un. After setup the settings may be sealed with a transparent front cover.

Measured values above or below the limits will lead to a disconnection of the generator system from the mains. The reconnection of the generator system to the mains is only enabled, when the frequency and the voltage are within the limits for the adjusted time tw without interruption. After a disconnection because of a short interruption, the reconnection is made when the frequency and the voltage are within the limits for 5 s without interruption. When the supply voltage has failed the conditions for the short interruption are not valid.

The voltage frequency monitor measures the voltage in all 3 phases between phase and neutral. In addition the phase-to-phase voltages are calculated and monitored. The frequency is measured single phase in both models in L1.

The indication of the operating status, the measured values and the fault memory is done on an LCD display. The value to be displayed is selected by pressing a pushbutton.

The colour of the backlight indicates the operating status of the device
Off: No supply voltage connected
Green: Normal operation.
Red: Failure status.
Yellow: Warning (failure message not acknowledged or test button pressed).
2 display modes can be selected, the actual value display and the failure memory display
Pressing the button "Mode" (>2s) toggles between both display modes.

\section*{Actual value display}

Displays the actual frequency and the voltage. Short activation of the button "mode" displays the next value.

\section*{Indication}

\section*{Display of failure memory}

In failure display mode the failure entries with failure cause and relative time to event are shown. Short activation of the button "mode" displays the next failure message. If no entries are stored, the display shows "NoErr".

Display of operating data (variant /_02)
This variant displays additionally to the actual value and failure memory, the operating time or the disconnection time. Pressing the button "Mode" for more then 2 s toggels the display between actual value, failure memory and operating data.

Within this display mode the following operating data (Operational data can be selected by short actuation of the "Mode" button:
Od.1: „T.Run": \(\quad \sum\) Operating time (powersupply connected)
Od.2: „t.Err":
\(\sum\) Alarm-/ Failure duration
Od.3: „t.Xof": \(\quad \sum\) Duration of external disconnection (via input B1/B2)

All operational data is deleted by pressing "Mode" and "Test" for more than 2 seconds in operational data display mode. The reset is confirmed on the display "ResOd" (Reset operational data).

\section*{Error Indication}

The failure status of the unit is indicated by a red backlight. If a failure is detected the unit automatically changes to failure memory display. The last 9 failures are stored, where failure 1 is the newest and failure 9 the oldest. The failures are displayed as follows
"U<": undervoltage
"U10m>": overvoltage, 10 min mean value
"U>>": overvoltage
"f1<": underfrequency
"f1>": overfrequency
"KS": failure section switch (broken wire in feedback circuit KA/KE or section switch contacts welded)
„KS??": Warning section switch K1 and K2 energized but feedback circuit KA/KE indicates open section switch
"Setup": Setting of the 2 overfrequency potentiometers (\(\mathrm{f}>\)) is not plausible
"Sys.X": System error
"Int.X": Internal error
When leaving the failure state, the backlight changes from red to yellow in the first step. Only when the failures are acknowledged, either by deleting the failure memory or by changing into display mode actual value, the backlight changes to green. The entries of the failure memory stay valid when resetting a failure message (pressing the pushbutton "Mode" for \(>2 \mathrm{~s}\)).

The failure memory is deleted by pressing the buttons "Mode" and "Test" simultaneously for more than 2 seconds in display mode failure or by disconnecting the supply L1/L2/L3/N for a longer period.

\section*{Fault Signalling Relay}

A third output relay K3 indicates the disconnection of the generator system in the case of a failure (contact 31-32).

\section*{Isolated Grid Detection}

The RP9810 includes a passive procedure to detect an isolated network according to chapter 6.5.3 and annex D2 of VDE-AR-N 4105. The 3-phase voltage monitoring allows this isolated network detection.

\section*{System Test}

With the pushbutton "Test" the contacts of the section switch can be tested for correct function. Pressing the test button disconnects the generator system from the mains. When testing the release time of the section switch is monitored via the feedback circuit. The measured time is shown on the LCD display. To determine the full disconnection time the measuring and evaluation time is added to the release time of the section switch. According to VDE-AR-N 4105200 ms must not be exceeded.

\section*{Monitoring of Section Switches}

Via the 2 contacts 11-14 and 21-24 the 2 section switches are controlled. The monitoring of the section switches is made by the feedback circuit (terminals KA-KE) to which the NC contacts of the section switches are connected (see connection diagrams).

The voltage and frequency monitor only connects the generator system to the mains when in disconnected state the feedback circuit KA-KE is closed, i.e. the section switches are de-energised (NC contacts are closed). As long as the section switch is not energized the feedback circuit KA-KE must be closed if not the failure "KS" is displayed.

\section*{Random Switch Off at Overfrequency}

In VDE-AR-N 4105 a frequency range between 50.2 Hz and 51.5 Hz was defined. In this range a step less reduction of the generated power can be made if the generator is controllable.

Non controllable generator systems can alternatively disconnect themselves in the frequency range of 50.2 Hz and 51.5 Hz from the mains. In this case a symmetric distribution within this range of the disconnection frequency for each plant has to be observed. The RP9810 has a random setting facility within this range, by turning both related switches into position "random". With this setting also the connection and reconnection time is automatically selected within a range of \(1 \ldots 10\) minutes.

\section*{Adjustment Facilities}

Adjustment with 8-or 10 step rotary switches:
Poti \(1+2 \mathrm{f}>(\mathrm{Hz})\) : - overfrequency
Poti \(\mathrm{f}<(\mathrm{Hz})\) : - underfrequency
Poti U>>(\%): - overvoltage
Poti Ū10m>(\%): - overvoltage, 10 min mean value
Poti \(t_{w}(s): \quad-\) time delay for activation or reset
fixed: - undervoltage
Standard factory settings according to VDE-AR-N 4105
(not for time delay for activation):
Response value for: - overfrequency \(f>=51.5 \mathrm{~Hz}\)
Response value for: - underfrequency \(\mathrm{f}<=47.5 \mathrm{~Hz}\)
Response value for: - overvoltage U>> = 115 \%
Response value for: - undervoltage \(\mathrm{U}<=80 \%\)
Response value for: - overvoltage, 10 min mean value
U10m> = 110 \%
Time delay for: - time delay for activation or reset \(\mathrm{t}_{\mathrm{w}}=60 \mathrm{~s}\)

\section*{Technical Data}

\section*{Overfrequency:}

Random disconnection:
Underfrequency:

\section*{Overvoltage}
at version \(\leq 30 \mathrm{kVA}\)
at version \(>30 \mathrm{kVA}\) :
both versions are
setting via 8 step rotary switch:

\section*{Undervoltage}
at version \(\leq 30 \mathrm{kVA}\) :
at version > 30 kVA
both versions:

\section*{Overvoltage,}

10 minute mean value:
at version \(\leq 30 \mathrm{kVA}\)
at version \(>30 \mathrm{kVA}\)
both versions are
setting via 8 step rotary switch:
Time delay for activation or reset:

Random
Random reconnection:
Reconnecting conditions
voltage:
frequency
Repeat accuracy:
Response time (disconnection):
Output
Relay K1 and K2:
relay K3:
1 changeover contact each
R \(\quad 1\) changeover contact
The 3 Output relays are de-energized on trip, after disconnection or failure
Thermal current \(I_{t}\) :
5 A
Switching capacity
according to AC 15
NO contact:
NC contact:
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\)
NO contact:
Short circuit strength
max. fuse rating:
Mechanical life:
\(50.2 \ldots 51.5 \mathrm{~Hz}\)
Adjustment on 2 Potis each with 8 steps in steps of 0.1 Hz
Poti 2 min. + Poti 150.2 ... 50.8 Hz or Poti 1 max. + Poti \(250.9 \ldots 51.5 \mathrm{~Hz}\) 50.2 ... 51.5 Hz setting \(\mathrm{f}>\) "random" 47.0 ... 49.8 Hz setting via 8 step rotary switch 47.0; 47.5; 47.8; 48.2; 48.6; 49.0; 49.4; 49.8 Hz

253 ... 288 V (L - N)
253 ... \(288 \mathrm{~V}(\mathrm{~L}-\mathrm{N})+438\)... 498 V (L-L)
\(110 \%, 112 \%, 114 \%, 115 \%, 116 \%\),
\(118 \%, 120 \%, 125 \%\) von \(U_{N}\)
184V (L - N)
\(184 \mathrm{~V}(\mathrm{~L}-\mathrm{N})+319 \mathrm{~V}(\mathrm{~L}-\mathrm{L})\)
\(80 \%\) von \(U_{N}\) fixed

253 ... 267 V (L-N)
253... 267 V (L-N) + 438... 462 V (L- L)

Off, 110\%, 111\%, 112\%, 113\%, 114\%, \(115 \%, 116 \%\) von \(U_{N}\)

0 ... 600s
setting via 10 step rotary switch
\(0,30,60,90,120,180,240,300,450,600\) s
60 ... 600 s
setting \(\mathrm{f}>\) "random"
5\% hysteresis
\(47.5 \mathrm{~Hz} \ldots 50.05 \mathrm{~Hz}\)
Voltage measuring \(\leq \pm 1 \% \quad \pm 1\) digit
Frequency measuring \(\leq \pm 0.02 \% \pm 1\) digit
< 100 ms

3 A / AC 230 V
\(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
\(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1
\(3 \times 10^{5}\) switch. cycles IEC/EN 60 947-5-1
6 A gL
IEC/EN 60 947-5-1
\(>50 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}

Voltage range: \(\quad 3 \times \mathrm{AC} 85 \mathrm{~V} \ldots 288 \mathrm{~V}\)
(\(\mathrm{U}_{\mathrm{H}}\) of all 3-phases to neutral)
Enabling inputs B1/B2:
Temperature range:
Operation:

Storage:

\section*{Altitude:}

Clearance and creepage distance
rated impulse voltage/
pollution degree:
Measuring circuit / 11, 12, 14 /
21, 22, 24:
Measuring circuit / B1, B2 /
31, 32, 34 :
\(6 \mathrm{kV} / 2\)
IEC 60 664-1
the Measuring circuit are:
4 kV / 2
IEC 60 664-1
EMC
Electro static discharge (ESD): 8 kV (air)
HF irradiation
\(80 \mathrm{MHz} . . .2,7 \mathrm{GHz}\) :
\(10 \mathrm{~V} / \mathrm{m}\)
10 V
IEC/EN 61 000-4-3
Fast transients: \(\quad 4 \mathrm{kV} \quad\) IEC/EN 61 000-4-4
Surge voltage
between
\(\begin{array}{lll}\text { wires for power supply: } & 2 \mathrm{kV} & \text { IEC/EN 61 000-4-5 } \\ \text { between wire and ground: } & 4 \mathrm{kV} & \text { IEC/EN 61 000-4-5 }\end{array}\)
HF wire guided: \(\quad 10 \mathrm{~V} \quad\) IEC/EN 61 000-4-6
interference suppression:
Degree of protection
Housing: IP 40 IEC/EN 60529
Terminals: IP 20 IEC/EN 60529

Housing
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Cross section:
Stranded ferruled:
Stripping length:
Wire fixing:
Fixing torque:
Mounting:
Weight:
thermoplastic with VO behaviour acc. to
UL subject 94
Amplitude 0.35 mm
Frequenz \(10 \ldots . .55 \mathrm{~Hz}\), IEC/EN 60 068-2-6
20 / 060 / 04 IEC/EN 60 068-1 EN 50005
solid/stranded \(0.5 \ldots 4 \mathrm{~mm}^{2}\)
\(0.5 \ldots 4 \mathrm{~mm}^{2}\)
6.5 mm

Plus-minus terminal screws
M3.5 box terminals
0.5 Nm

DIN-rail
215 g
Recommend fuse protection
measuring inputs:
Dimensions
Width x height x depth: \(\quad 70 \times 90 \times 71 \mathrm{~mm}\)

\section*{Standard Type}

RP 9810.13 3/N AC 400/230V > 30 kVA
Article number: 0064814
RP 9810.13/100 3/N AC 400/230V \(\leq 30 \mathrm{kVA}\)
Article number:
0064860

\section*{Variant}

RP 9810.13/_02:
with additional display of operating data
Ordering example for variant

enable via external contact

enable via external power AC \(24 \mathrm{~V} 40 \ldots 400 \mathrm{~Hz}\)

\section*{VARIMETER NA}

Voltage and Frequency Monitor
RP 9811
DOLD 発

\section*{Product Description}

The voltage and frequency monitor RP 9811 represents a safe solution to monitor and optimize mains supply when feeding power to a public grid that conforms with various national standards. User-friendly: The unit can be adjusted quickly and simply with only two rotary switches. Use the first rotary switch to select one of the already preset standards according to your national requirements. Use the second rotary switch to set the type of system, quickly and simply, on the unit. You can adjust each parameter individually with menu-guidance in case of different requirements. All measuring variables required are constantly determined by the unit. If incorrect voltage or frequency values occur, the RP 9811 disconnects the distributed power generation system securely from the mains.

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1(+), A2 & Auxiliary voltage AC or DC \\
\hline L1, L2, L3, N & Connections for measuring ciruit \\
\hline KA, K1, K2 & \begin{tabular}{l}
Feedback circuit of external section switch \\
KA / K1: section switch 1 \\
KA / K2: section switch 2
\end{tabular} \\
\hline BA; B1, B2, B3 & \begin{tabular}{l}
Enabling of monitoring function: \\
BA / B1 + BA / B2 bridged) + BA / B3 open \\
With setting standard CEI 0-21: \\
BA / B2 - function selection
\end{tabular} \\
\hline K1 (13, 14) & Connection section switch 1 - NO contact \\
\hline K2 (23, 24) & Connection section switch 2 - NO contact \\
\hline K3 (33, 34) & \begin{tabular}{l}
Fault indicating relay - NO contact \\
(open NO: indicates fault)
\end{tabular} \\
\hline
\end{tabular}

\section*{Your Advantages}
- Mains and system protection for your generator set
- Can be used in several countries
- DIN VDE 0126-1-1 (generator sets on public grid)
- VDE-AR-N 4105 (generator sets on public grid)
- BDEW-directive (generator sets on medium voltage grid)
- CEI 0-21 (generator sets in Italy)
- ÖVE/ÖNORM E8001-4-712 (generator sets in Austria)
- G59/3 (generator sets in UK)
- Easy adjustment via rotational switch and menu display
- Indication, diagnostics and fault presentation via display and LEDs
- Password protected
- Protection against manipulation by sealable transparent cover over setting switches
- CRC-value for parameter testing
- Adjustment of the voltage for nominal voltage will change the limit values accordingly
- Mains synchronization on generator operation

\section*{Features}
- Certificate of conformity (test certificate) of the BG ETEM
- Acc. to VDE-AR-N 4105, DIN VDE 0126-1-1, BDEW-directive, CEI-0-21
- Acc. to DIN EN 60 255-1
- Can be used according to EEG 2012 and SysStabV
- Voltage and frequency monitoring for generator sets
- Fail-safe 2-channel structure
- Monitoring of the section switches by measuring the response time
- System test via test button
- Enabling inputs allow integration into various ripple control and plant concepts
- Isolated grid detection
- Manual reset
- Memorising of disconnection time
- Connection or re-connection after adjustable delay time \(\mathrm{t}_{\text {on }}\)
- Factory setting according to:
- VDE-AR-N 4105, DIN VDE 0126-1-1, BDEW-directive, CEI 0-21, ÖVE/ÖNORM, G59/3 LV
- Random controlled disconnection in the range of 50.2 Hz and 51.5 Hz for non-regulated power generation systems
- Random operated connection time (\(\mathrm{t}_{\text {on }}\)) setting range \(60 . . .600 \mathrm{~s}\)
- Additional fault signalling relay output
- High measuring accuracy
- Installion type enclosure 4TE (width \(x\) height \(\times\) depth: \(70 \times 90 \times 71 \mathrm{~mm}\))

\section*{Approvals and Markings}

\section*{C \(\in\) bg ETEM}

\section*{Applications}

Monitoring of voltage and frequency for generator sets e.g.:
- Photovoltaic
- Wind power
- Water power
- Combined heat and power stations

\section*{Functions}

The voltage and frequency module RP 9811 monitors the domestic generator set and the mains of the energy supplier. It is built up in a redundant way and each of the 2 channels act on a separate output relay. The adjustment is made via menu and rotational switches. The factory default setting is set by rotational switch and can be setted via menu. After setup the settings can be sealed with a transparent front cover or alternatively protected by password.

Measured values above or below the limits will lead to a disconnection of the generator system from the mains. The reconnection of the generator system to the mains is only enabled, when the frequency and the voltage are within the limits for the adjusted time \(t_{\text {on }}\) without interruption.

The voltage frequency monitor RP 9811 measures the voltage in all 3 phases between phase and neutral. Depending on the rotary switch setting the phase-to-phase voltages are calculated and monitored. The frequency is measured single phase in both models on L1.

The operating state, measured values, error memory and the parameters are viewed via LCD display. The measured value, operating data or scan of the error memory is selected via the "Mode" button, the parameters are selected via the "RUN/SET" button.
Status LEDs are available also.
Parameter No. 25 short interruption (tonShort) = on:
After the disconnection due to a short interruption \(<3 \mathrm{~s}\), reconnection automatically occurs if the mains frequency and voltage have been continuously within the tolerance range for 5 s . A short term interruption does not register as a hard failure of the operating voltage.

\section*{Changing the mains rated voltage - limit values adjust automatically}

If the mains voltage must be adjusted because of the requirements of the power supply utility or if the operation of the voltage and frequency monitor takes place on a medium-voltage grid, parameter 1 (rated voltage \(U_{N}\)) must be adjusted accordingly. With a medium-voltage grid, this is due to the transformation ratio of the voltage measuring transducer used through which the device is connected to the grid.
The voltage-related monitoring parameters are set as percentage deviation of the mains rated voltage. When the mains rated voltage changes, the absolute limits adjust automatically to the changed mains rated voltage.

\section*{Functions}

\section*{Function RoCoF (df/dt)}

\section*{RoCoF „Rate of Change of Frequency" (rate of Change of Frequency)}

Parameter:
Parameter table
\begin{tabular}{|l|l|l|l|}
\hline & Display & Value & \\
\hline 1) & RoCoF & \(0,10 \ldots 5 \mathrm{~Hz} / \mathrm{s} / \mathrm{off}\) & \(\mathrm{df} / \mathrm{dt}\) \\
\hline 2) & T_df/dt & \(0,05 \ldots 10 \mathrm{~s} /\) off & off delay \\
\hline 3) & Perio & \(4 \ldots 50\) & Number of cycles for measurement \\
\hline \multicolumn{4}{|l|}{ Default- setting: 4 cycles } \\
\hline
\end{tabular}

\section*{Description}

The voltage and frequency monitor RP 9811 is able to measure the rate of change of frequency df/dt (frequency gradient). If the frequency gradient rises for an adjustable time over an adjustable value the RP 9811 switches off after an adjustable time.

The frequency gradient can be positive or negative, i.e. rising frequency as well as dropping frequency can be detected.

\section*{Response}

If for the duration of the selected number of cycles the frequency gradient is exceeded, the adjusted time delay „T_df/dt" is started, the display shows the failure message "RoCoF" and the fault signaling relay switches.
If the failure gradient goes under the response value minus hysteresis of \(5 \%\) within the selected number of cycles or the direction of change of frequency changes the monitoring cycle starts again from the beginning.
Only when the time delay „T_df/dt" is finished the RP 9811 switches off. If "T_df/dt" = off the RP9811 switches off immediately.

\section*{Functions}

\section*{Function Vector shift}

\section*{Parameter:}

Parameter table
\begin{tabular}{|l|l|l|l|}
\hline 1) & VecSh & \(2 \ldots 20^{\circ} /\) off & (Vector shift) \\
\hline 2) & Phase & \(1 / 3\) & (single- oder 3-phase) \\
\hline
\end{tabular}

\section*{Description}

The add-on fast disconnection on vector shift detects phase jumps in all 3 phases simultaneously. Independent of this the unit can be set to react on single phase vector shift (sensitive measurement).
The selection is done with parameter "Phase" number of phases 1 or 3 phases. When selecting 3 phases the vector shift response takes only place when the adjusted vector shift angle is exceeded in all 3 phases.

The shift angle can be adjusted between 2 and 20\%. The value could be positive or negative. The actual frequency is continuously measured in all 3 phases. The measurement is based on time measurements of full frequency cycles and is calculated as mean value of 8 cycles before a vector shift. To detect a vector shift the sum of two cycles is relevant.
After each cycle a new sum is calculated. A angle shift that has the length of 2 cycles is reliably detected.

\section*{Response}

When detecting a vector shift the RP 9811 disconnects within \(<50 \mathrm{~ms}\).

\section*{Reset}

If a disconnection was caused by the functions "vector shift" or "RoCoF" the reset is started after a delay of 5 seconds. The adjustable reset time " tON " elapses. To start the reset the mains must be without fault and the monitoring function is enabled (inputs BA/B1, B2, B3).

\section*{Application}

The functions „RoCoF" and vector shift are mainly used in generator operation. See also Application example „Generator operation with mains synchronization,, in the data sheet.

M11223
The colour of the backlight indicates the operating status of the device
Off: No supply voltage connected
Green: Normal operation.
Red: Failure status.
Yellow: Warning (failure message not acknowledged or test button pressed).
Four display modes can be selected: the measured value display, operating data display, error memory display and the display of the set parameters. Switching between the display modes is done by pressing the "Mode" button long (>2 s). Switching to the display of the parameters set is done by pressing the RUN/SET button long (> 2s). When in the display mode of the parameters set, switch to the input mode for parameters to change the settings. This is done by pressing the \(\boldsymbol{\nabla} \boldsymbol{\perp}\) button

\section*{Actual value display}

Displays the actual frequency and the voltage. Short activation of the button "mode" displays the next value

\section*{Indicators}

\section*{Display of the operating data}

If the operating voltage is present, various operating data, e.g. the operating duration of the device or the disconnect time, is recorded and added.

Within this display mode the following operating data can be selected by short actuation of the "Mode" button:
Od.1:„T.Run": \(\quad \sum\) Operating time (powersupply connected)
Od.2: „t.Err": \(\quad \sum\) Alarm-/ Failure duration
Od.3: „t.Xof": \(\quad \sum\) Duration of external disconnection (via input B1/B2/B3)

Time
Operational data
e.g. the operating time of device:
week, 3 days, 18 hours and 59 minutes

All operational data is deleted by pressing "Mode" and "Test" for more than 2 seconds in operational data display mode. The reset is confirmed on the display "ResOd" (Reset operational data).

\section*{Display of failure memory}

In failure display mode the failure entries with failure cause and relative time to event are shown. Short activation of the button "mode" displays the next failure message. If no entries are stored, the display shows "NoErr".

Time since failure e.g. fault 9 occured:

\section*{ndication LED}

RUN:
SET:
RUN+SET
simultaneity on:
K1 on:
K1 flashing:
K2 on:
K2 flashing:

\section*{Adjustment Facilities}

\section*{Operating element}
\begin{tabular}{ll}
MODE & \begin{tabular}{l}
Press the button > \(2 \mathrm{~s}:\) \\
Device switches to the display mode (measured \\
value, operating data, error memory)
\end{tabular} \\
RUN/SET > \(2 \mathrm{~s}:\) & \begin{tabular}{l}
Device switches to the parameter mode or also \\
back to the display mode. \\
In the parameter mode: \\
Scroll through the parameters stored by briefly \\
pressing the button. They are shown on the dis- \\
play. \\
Press the button in the input mode > \(2 \mathrm{~s}:\) \\
Save parameters, switch to the RUN mode.
\end{tabular} \\
A Up \(\quad\)\begin{tabular}{l}
If the device is in the parameter mode, pressing \\
these buttons switches to the input (SET) mode of \\
the parameters.
\end{tabular} \\
ESC/TEST \begin{tabular}{l}
The values are changed in the input mode.
\end{tabular} \\
\begin{tabular}{l}
Switch to the display mode without saving \\
changed values. The device switches \\
to the display (RUN) mode without saving the \\
changed values.
\end{tabular} \\
In the RUN and parameter mode: \\
Test function is triggered; the disconnect time \\
of the section switches is measured here and \\
shown on the display in (ms).
\end{tabular}

\section*{Adjustment by rotational switch}

\section*{Rotary switch Standard selection:}

Device works according to
\begin{tabular}{ll}
1: & DIN V VDE V 0126-1-1 \\
2: & VDE-AR-N 4105 (rotary switch network connection: \(\lambda \& \Delta / \mathrm{N}!\)) \\
3: & BDEW-directive \\
4: & CEI 0-21 \\
5: & ÖVE/ÖNORM \\
6: & G59/3 \\
7 ... 8: & Reserved
\end{tabular}

\section*{Rotary switch network connection:}
\(\triangle\) : Delta voltage
\(\lambda / \mathrm{N}\) : \(\quad\) Star voltage
\(\lambda \& \triangle / N\) : Delta- and star-voltage
L1/N: Voltage L1-N

\section*{Example:}

\section*{Standard factory settings according to VDE-AR-N 4105}
(not for time delay for activation):
Response value for: - overfrequency \(\mathrm{f}>=51,5 \mathrm{~Hz}\)
Response value for: - underfrequency \(\mathrm{f}<=47,5 \mathrm{~Hz}\)
Response value for: - overvoltage \(\mathrm{V} \gg=115 \%\) of \(U_{N}\)
Response value for: - undervoltage \(\mathrm{V}<=80 \%\) of \(U_{N}\)
Response value for: - overvoltage, 10 min mean value \(\overline{\mathrm{V} 10 \mathrm{~m}}>=110 \%\)
Time delay for: \(\quad\) - reactivation \(\mathrm{t}_{\mathrm{on}}=60 \mathrm{~s}\)

\section*{Adjustment Facilities}

Remark to standard G59/3 (rotary switch for standard selection position 6) The parameters for G59/3 LV (Low Voltage Grid) are preset.

If the RP9811 should operate according to G59/3 HV (High Voltage Grid) the following settings have to be changed:
e.g. for 110 V L-L: (rotary switch for standard selection position 6)
- rotary switch network connection: Delta voltage
- Parameter Nr. 1: Nominal voltage (Phase to Phase) change from 400 V to 110 V .
- Parameter Nr. 2: U> change from \(114 \%\) to \(110 \%\) (acc. to standard)
- Parameter Nr. 6: U>> change from 119\% to 113\% (acc. to standard)
- Parameter Nr. 20: U> On change from \(114 \%\) to \(110 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|r|}{VDE 0126} & \multicolumn{2}{|l|}{VDE-AR-N 4105} & \multicolumn{2}{|l|}{BDEWmedium voltage} & \multicolumn{2}{|r|}{Italy CEIO-21} & \multicolumn{2}{|r|}{ÖVE/ÖNORM E 8001-4-712} & \multicolumn{2}{|l|}{Großbritannien G59/3 Low Voltage Grid} \\
\hline & & Default & Setting range \\
\hline \multicolumn{14}{|l|}{Monitoring-/ disconnection parameters:} \\
\hline 1 & Nominal voltage \(U_{N}\) (Delta- or star-voltage depending on rotary switch setting) & \[
\begin{aligned}
& 230 \mathrm{~V} \\
& (400 \mathrm{~V})
\end{aligned}
\] & 50-230V (87-400V) Step 1V & \[
\begin{aligned}
& 230 \mathrm{~V} \\
& (400 \mathrm{~V})
\end{aligned}
\] & \(50-230 \mathrm{~V}\) (87-400V) Step 1V & \[
\begin{array}{|l|}
\hline 230 \mathrm{~V} \\
(400 \mathrm{~V})
\end{array}
\] & 50-230V (87-400V) Step 1V & \[
\begin{aligned}
& 230 \mathrm{~V} \\
& (400 \mathrm{~V})
\end{aligned}
\] & 50-230V (87-400V) Step 1V & \[
\begin{aligned}
& 230 \mathrm{~V} \\
& (400 \mathrm{~V})
\end{aligned}
\] & 50-230V (87-400V) Step 1V & \[
\begin{gathered}
230 \mathrm{~V} \\
(400 \mathrm{~V})
\end{gathered}
\] & \(50-230 \mathrm{~V}\) (87-400V) Step 1V \\
\hline 2 & Overvoltage U> & off & \[
\begin{gathered}
\hline 100-130 \% / \text { off } \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & off & \[
\begin{array}{|c|}
\hline 100-130 \% ~ / ~ o f f ~ \\
\text { Step 1\% } \\
\hline
\end{array}
\] & 108\% & \[
\begin{gathered}
\hline 100-130 \% \text { / off } \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & off & \[
\begin{gathered}
100-130 \% ~ / ~ o f f ~ \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & off & \[
\begin{gathered}
\hline 100-130 \% / \text { off } \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & 114\% & \[
\begin{array}{|c|}
\hline 100-130 \% ~ / ~ o f f ~ \\
\text { Step 1\% } \\
\hline
\end{array}
\] \\
\hline 3 & Time delay overvoltage t U> & off & 0-60s / off Step 0,1s & off & 0-60s / off Step 0,1s & 60s & 0-60s / off Step 0,1s & off & 0-60s / off Step 0,1s & off & 0-60s / off Step 0,1s & 1s & 0-60s / off Step 0,1s \\
\hline 4 & Overvoltage, 10 min mean value U \(>\) & 110\% & \[
\begin{gathered}
\hline 100-120 \% \text { / off } \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & 110\% & \[
\begin{gathered}
\hline 100-120 \% ~ / ~ o f f \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & off & \[
\begin{gathered}
\hline 100-120 \% \text { / off } \\
\text { Step } 1 \% \\
\hline
\end{gathered}
\] & 110\% & \[
\begin{array}{|c|}
\hline 100-120 \% ~ / ~ o f f ~ \\
\text { Step 1\% }
\end{array}
\] & 112\% & \[
\begin{gathered}
\hline 110-115 \% ~ / ~ o f f \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & off & \[
\begin{array}{|c|}
\hline 100-120 \% ~ / ~ o f f ~ \\
\text { Step 1\% } \\
\hline
\end{array}
\] \\
\hline 5 & time delay Overvoltage, 10 min mean value \(t \bar{U}>\) & 3s & \[
\begin{gathered}
0,2-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,1s }
\end{gathered}
\] & 3s & \[
\begin{aligned}
& 0,2-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step 0,1s }
\end{aligned}
\] & off & \[
\begin{aligned}
& \text { 0,2-10s / off } \\
& \text { Step 0,1s }
\end{aligned}
\] & 3 s & \[
\begin{aligned}
& 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step } 0,05 \mathrm{~s}
\end{aligned}
\] & off & \[
\begin{gathered}
0,2-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,1s }
\end{gathered}
\] & off & \[
\begin{gathered}
0,2-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,1s }
\end{gathered}
\] \\
\hline 6 & Overvoltage 2 U>> & 115\% & \[
\begin{aligned}
& \hline \text { 100-130\% } \\
& \text { Step 1\% }
\end{aligned}
\] & 115\% & \[
\begin{aligned}
& \hline 100-130 \% \\
& \text { Step 1\% } \\
& \hline
\end{aligned}
\] & 120\% & \[
\begin{aligned}
& \hline 100-130 \% \\
& \text { Step 1\% } \\
& \hline
\end{aligned}
\] & 115\% & \[
\begin{aligned}
& \hline 100-130 \% \\
& \text { Step 1\% } \\
& \hline
\end{aligned}
\] & 115\% & \[
\begin{gathered}
\hline 100-130 \% \\
\text { Step 1\% }
\end{gathered}
\] & 119\% & \begin{tabular}{l}
100-130\% \\
Step 1\%
\end{tabular} \\
\hline 7 & Time delay overvoltage 2
t U>> & off & \[
\begin{aligned}
& 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step } 0,05 \mathrm{~s} \\
& \hline
\end{aligned}
\] & off & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step } 0,05 \mathrm{~s} \\
\hline
\end{gathered}
\] & off & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s } \\
\hline
\end{gathered}
\] & 0,2s & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step } 0,05 \mathrm{~s} \\
\hline
\end{gathered}
\] & off & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s } \\
\hline
\end{gathered}
\] & 0,5s & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s } \\
\hline
\end{gathered}
\] \\
\hline 8 & Undervoltage U< & 80\% & 10-100\% Step 1\% & 80\% & 10-100\% Step 1\% & 80\% & 10-100\% Step 1\% & 85\% & 20-100\% Step 1\% & 80\% & 10-100\% Step 1\% & 87\% & 10-100\% Step 1\% \\
\hline 9 & Time delay undervoltage t U< & off & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] & off & \[
\begin{array}{|c}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s } \\
\hline
\end{array}
\] & 2,7s & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] & 0,4s & \[
\begin{aligned}
& \hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step 0,05s } \\
& \hline
\end{aligned}
\] & off & \[
\begin{array}{|c|}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s } \\
\hline
\end{array}
\] & 2,5s & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s } \\
\hline
\end{gathered}
\] \\
\hline 10 & Undervoltage 2 U<< & off & \[
\begin{array}{|c|}
\hline 10-100 \% ~ / ~ o f f ~ \\
\text { Step 1\% } \\
\hline
\end{array}
\] & off & \[
\begin{array}{|c|}
\hline 10-100 \% / \text { off } \\
\text { Step 1\% } \\
\hline
\end{array}
\] & 45\% & \[
\begin{gathered}
\hline 10-100 \% / \text { off } \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & 40\% & \[
\begin{gathered}
20-100 \% \text { / off } \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & off & \[
\begin{gathered}
\hline 10-100 \% \text { / off } \\
\text { Step 1\% }
\end{gathered}
\] & 80\% & \[
\begin{gathered}
\hline 10-100 \% \text { / off } \\
\text { Step 1\% }
\end{gathered}
\] \\
\hline 11 & \begin{tabular}{l}
Time delay undervoltage 2 \\
t U<<
\end{tabular} & off & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] & off & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s } \\
\hline
\end{gathered}
\] & 0,3s & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s } \\
\hline
\end{gathered}
\] & 0,2s & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step } 0,05 \mathrm{~s}
\end{gathered}
\] & off & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step } 0,05 \mathrm{~s}
\end{gathered}
\] & 0,5s & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] \\
\hline 12 & \(\underset{f>}{\text { Overfrequency }}\) & \[
\begin{gathered}
50,2 \\
\mathrm{~Hz}
\end{gathered}
\] & \begin{tabular}{|c}
\(50-52 \mathrm{~Hz} /\) off \\
Step \(0,05 \mathrm{~Hz}\) \\
Random \\
\(50,2 \ldots 51,5 \mathrm{~Hz}\)
\end{tabular} & \[
\begin{gathered}
51,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 50-52 \mathrm{~Hz} / \text { off } \\
\text { Step } 0,05 \mathrm{~Hz} \\
\text { Random } \\
50,2 \ldots 51,5 \mathrm{~Hz} \\
\hline
\end{array}
\] & \[
\begin{gathered}
51,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \begin{tabular}{|c}
\(50-52 \mathrm{~Hz} /\) off \\
Step \(0,05 \mathrm{~Hz}\) \\
Random \\
\(50,2 \ldots 51,5 \mathrm{~Hz}\)
\end{tabular} & \[
\begin{gathered}
50,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \(50-52 \mathrm{~Hz}\)
Step \(0,05 \mathrm{~Hz}\)
Random
\(50,2 \ldots . .51,5 \mathrm{~Hz}\) & 51,0 & \[
\begin{gathered}
50-52 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] & 51,5Hz & \(50-52 \mathrm{~Hz}\) / off Step 0,05Hz \\
\hline 13 & Time delay overfrequency t f> & off & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] & off & \[
\begin{array}{|c}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s } \\
\hline
\end{array}
\] & off & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] & 0,1s & \[
\begin{aligned}
& 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step 0,05s }
\end{aligned}
\] & off & \[
\begin{aligned}
& \hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step 0,05s } \\
& \hline
\end{aligned}
\] & 90s & \(0-99 \mathrm{~s} / \mathrm{off}\) Step 0,1s \\
\hline 14 & Overfrequency 2 f>> & off & \(50-52 \mathrm{~Hz} /\) off Step \(0,05 \mathrm{~Hz}\) & off & \[
\begin{aligned}
& 50-52 \mathrm{~Hz} / \text { off } \\
& \text { Step } 0,05 \mathrm{~Hz}
\end{aligned}
\] & off & \(50-52 \mathrm{~Hz} / \mathrm{off}\) Step 0,05Hz & \[
\begin{gathered}
51,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \(50-52 \mathrm{~Hz}\)
Step \(0,05 \mathrm{~Hz}\) & off & \(50-52 \mathrm{~Hz} /\) off Step \(0,05 \mathrm{~Hz}\) & 52,0H & \(50-52 \mathrm{~Hz} /\) off Step \(0,05 \mathrm{~Hz}\) \\
\hline 15 & Time delay overfrequency 2 t fl> & off & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] & off & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] & off & \[
\begin{aligned}
& 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step } 0,05 \mathrm{~s}
\end{aligned}
\] & 0,1s & \[
\begin{aligned}
& 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step } 0,05 \mathrm{~s}
\end{aligned}
\] & off & \[
\begin{aligned}
& 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step } 0,05 \mathrm{~s}
\end{aligned}
\] & 0,5s & \[
\begin{aligned}
& \hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step 0,05s }
\end{aligned}
\] \\
\hline 16 & Underfrequency \(\mathrm{f}<\) & \[
\begin{gathered}
47,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
47,5 \\
\mathrm{~Hz} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
47,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{aligned}
& 47-50 \mathrm{~Hz} / \text { off } \\
& \text { Step } 0,05 \mathrm{~Hz}
\end{aligned}
\] & \[
\begin{gathered}
49,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] & 47,0Hz & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz} \\
\hline
\end{gathered}
\] & 47,5H & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz} \\
\hline
\end{gathered}
\] \\
\hline 17 & Time delay underfrequency \(\mathrm{t} \mathrm{f}<\) & off & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] & off & \[
\begin{aligned}
& 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step } 0,05 \mathrm{~s}
\end{aligned}
\] & off & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step } 0,05 \mathrm{~s}
\end{gathered}
\] & 0,1s & \[
\begin{aligned}
& \hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step } 0,05 \mathrm{~s}
\end{aligned}
\] & off & \[
\begin{aligned}
& \hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step } 0,05 \mathrm{~s}
\end{aligned}
\] & 20s & 0-99s / off Step 0,1s \\
\hline 18 & Underfrequency 2 \(\mathrm{f} \ll\) & off & \(47-50 \mathrm{~Hz} / \mathrm{off}\) Step \(0,05 \mathrm{~Hz}\) & off & \(47-50 \mathrm{~Hz} /\) off Step 0,05Hz & off & \[
\begin{aligned}
& \hline 47-50 \mathrm{~Hz} / \text { off } \\
& \text { Step } 0,05 \mathrm{~Hz}
\end{aligned}
\] & \[
\begin{gathered}
47,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] & off & \(47-50 \mathrm{~Hz}\) / off Step \(0,05 \mathrm{~Hz}\) & 47,0Hz & \[
\begin{aligned}
& 47-50 \mathrm{~Hz} / \text { off } \\
& \text { Step } 0,05 \mathrm{~Hz}
\end{aligned}
\] \\
\hline 19 & Time delay underfrequency 2 t ¢<< & off & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] & off & \[
\begin{array}{|c}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{array}
\] & off & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step 0,05s }
\end{gathered}
\] & 0,1s & \[
\begin{aligned}
& 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step } 0,05 \mathrm{~s}
\end{aligned}
\] & off & \[
\begin{aligned}
& \hline 0,05-10 \mathrm{~s} / \text { off } \\
& \text { Step } 0,05 \mathrm{~s}
\end{aligned}
\] & 0,5s & \[
\begin{gathered}
0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step } 0,05 \mathrm{~s}
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|r|}{VDE 0126} & \multicolumn{2}{|l|}{VDE-AR-N 4105} & \multicolumn{2}{|l|}{BDEWmedium voltage} & \multicolumn{2}{|r|}{Italy CEIO-21} & \multicolumn{2}{|r|}{ÖVE/ÖNORM E 8001-4-712} & \multicolumn{2}{|l|}{Großbritannien G59/3 Low Voltage Grid} \\
\hline & & Default & Setting range \\
\hline \multicolumn{14}{|l|}{Connection parameters:} \\
\hline 20 & Reactivation after overvoltage
U> On & 110\% & \[
\begin{gathered}
\hline 100-120 \% ~ / ~ o f f ~ \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & 110\% & \[
\begin{gathered}
100-120 \% ~ / ~ o f f ~ \\
\text { Step 1\% }
\end{gathered}
\] & off & \[
\begin{gathered}
\mid 100-120 \% ~ / ~ o f f ~ \\
\text { Step } 1 \%
\end{gathered}
\] & 110\% & \[
\begin{gathered}
100-120 \% ~ / ~ o f f ~ \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & 112\% & \[
\begin{gathered}
100-120 \% ~ / ~ o f f \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] & 114\% & \[
\begin{gathered}
\hline 100-120 \% / \text { off } \\
\text { Step 1\% } \\
\hline
\end{gathered}
\] \\
\hline 21 & Reactivation after undervoltage
\(\mathrm{U}<\mathrm{On}\) & 85\% & \[
\begin{aligned}
& \hline 20-100 \% \\
& \text { Step 1\% } \\
& \hline
\end{aligned}
\] & 85\% & \[
\begin{aligned}
& \hline 20-100 \% \\
& \text { Step 1\% } \\
& \hline
\end{aligned}
\] & 95\% & \[
\begin{aligned}
& \hline 20-100 \% \\
& \text { Step 1\% } \\
& \hline
\end{aligned}
\] & 85\% & \[
\begin{aligned}
& \hline 20-100 \% \\
& \text { Step 1\% } \\
& \hline
\end{aligned}
\] & 80\% & \[
\begin{aligned}
& \hline 20-100 \% \\
& \text { Step 1\% } \\
& \hline
\end{aligned}
\] & 87\% & \[
\begin{aligned}
& \hline 20-100 \% \\
& \text { Step 1\% } \\
& \hline
\end{aligned}
\] \\
\hline 22 & Reactivation after overfrequency
\[
\mathrm{f}>\mathrm{On}
\] & \[
\begin{gathered}
50,05 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
50-52 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
\hline 50,05 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
50-52 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
50,05 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
50-52 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 50,10 \\
\mathrm{~Hz} \\
\hline
\end{array}
\] & \[
\begin{gathered}
50-52 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] & 51,0Hz & \[
\begin{gathered}
50-52 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] & 51,5Hz & \[
\begin{gathered}
50-52 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] \\
\hline 23 & Reactivation after underfrequency
\(\mathrm{f}<\mathrm{On}\) & \[
\begin{gathered}
47,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 47,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
47,5 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
\hline 47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
49,9 \\
\mathrm{~Hz}
\end{gathered}
\] & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz} \\
\hline
\end{gathered}
\] & 47,0Hz & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz} \\
\hline
\end{gathered}
\] & 47,5Hz & \[
\begin{gathered}
47-50 \mathrm{~Hz} \\
\text { Step } 0,05 \mathrm{~Hz}
\end{gathered}
\] \\
\hline 24 & Time delay for reactivation t On & 60s & 1-600s
Step 1s
Random
\(60 \ldots 600 \mathrm{~s}\) & 60s & 1-600s Step 1s Random 60...600s & 1s & 1-600s Step 1s Random 60...600s & 300s & 1-600s
Step 1s
Random
\(60 \ldots 600 \mathrm{~s}\) & 30s & \begin{tabular}{l}
1-600s \\
Step 1s
\end{tabular} & 20s & 1-600s Step 1s \\
\hline 25 & Short time interruption
tOnSh & off & on / off & on & on / off & off & on / off & off & on / off & on & on / off & on & on / off \\
\hline \multicolumn{14}{|l|}{RoCoF/Vector shift:} \\
\hline 26 & Rate of Change of Freqency RoCoF & off & \[
\begin{array}{|l|}
\hline 0,10-5 \mathrm{~Hz} / \mathrm{s} / \mathrm{off} \\
\text { Step } 0,01 \mathrm{~Hz} / \mathrm{s}
\end{array}
\] & off & \[
\begin{aligned}
& 0,10-5 \mathrm{~Hz} / \mathrm{s} / \text { off } \\
& \text { Step } 0,01 \mathrm{~Hz} / \mathrm{s}
\end{aligned}
\] & off & \[
\begin{aligned}
& 0,10-5 \mathrm{~Hz} / \mathrm{s} / \mathrm{off} \\
& \text { Step } 0,01 \mathrm{~Hz} / \mathrm{s}
\end{aligned}
\] & off & \[
\left.\begin{array}{|l|}
\hline 0,10-5 \mathrm{~Hz} / \mathrm{s} / \mathrm{off} \\
\text { Step } 0,01 \mathrm{~Hz} / \mathrm{s}
\end{array} \right\rvert\,
\] & off & \[
\begin{array}{|l|}
\hline 0,10-5 \mathrm{~Hz} / \mathrm{s} / \text { off } \\
\text { Step } 0,01 \mathrm{~Hz} / \mathrm{s}
\end{array}
\] & off & \[
\begin{array}{|l|}
\hline 0,10-5 \mathrm{~Hz} / \mathrm{s} / \mathrm{off} \\
\text { Step } 0,01 \mathrm{~Hz} / \mathrm{s}
\end{array}
\] \\
\hline 27 & Time delay RoCoF t RCF & off & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step } 0,05 \mathrm{~s}
\end{gathered}
\] & off & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step } 0,05 \mathrm{~s}
\end{gathered}
\] & off & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step } 0,05 \mathrm{~s}
\end{gathered}
\] & off & \[
\begin{array}{|c|}
\hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
\text { Step } 0,05 \mathrm{~s} \\
\hline
\end{array}
\] & off & \[
\begin{aligned}
& 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step 0,05s }
\end{aligned}
\] & off & \[
\begin{aligned}
& \hline 0,05-10 \mathrm{~s} / \mathrm{off} \\
& \text { Step 0,05s }
\end{aligned}
\] \\
\hline 28 & Number of periods RoCoF Perio & 10 & \[
\begin{array}{r}
4-50 \\
\text { Step } 1 \\
\hline
\end{array}
\] & 10 & \[
\begin{array}{r}
4-50 \\
\text { Step } 1 \\
\hline
\end{array}
\] & 10 & \[
\begin{array}{r}
4-50 \\
\text { Step } 1 \\
\hline
\end{array}
\] & 10 & \[
\begin{array}{r}
4-50 \\
\text { Step } 1
\end{array}
\] & 10 & \[
\begin{array}{r}
4-50 \\
\text { Step } 1 \\
\hline
\end{array}
\] & 10 & \[
\begin{array}{r}
4-50 \\
\text { Step } 1
\end{array}
\] \\
\hline 29 & Vector shift VecSh & off & \[
\begin{gathered}
2-20^{\circ} / \mathrm{off} \\
\text { Step } 1^{\circ} \\
\hline
\end{gathered}
\] & off & \[
\begin{gathered}
\hline 2-20^{\circ} / \text { off } \\
\text { Step } 1^{\circ}
\end{gathered}
\] & off & \[
\begin{gathered}
2-20^{\circ} / \text { off } \\
\text { Step 10 }
\end{gathered}
\] & off & \[
\begin{gathered}
2-20^{\circ} / \text { off } \\
\text { Step } 1^{\circ} \\
\hline
\end{gathered}
\] & off & \[
\begin{gathered}
2-20^{\circ} / \text { off } \\
\text { Step 10 }
\end{gathered}
\] & off & \[
\begin{aligned}
& 2-20^{\circ} / \text { off } \\
& \text { Step 10 }
\end{aligned}
\] \\
\hline 30 & Number of phases vector shift Phase & 1 & \(1 / 3\) & 1 & \(1 / 3\) & 1 & \(1 / 3\) & 1 & \(1 / 3\) & 1 & \(1 / 3\) & 1 & \(1 / 3\) \\
\hline \multicolumn{14}{|l|}{General parameters:} \\
\hline 31 & Monitoring delay section switches tv KS & 0,25s & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} \\
\text { Step } 0,05 \mathrm{~s}
\end{gathered}
\] & 0,25s & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} \\
\text { Step } 0,05 \mathrm{~s}
\end{gathered}
\] & 0,25s & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} \\
\text { Step 0,05s }
\end{gathered}
\] & 0,25s & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} \\
\text { Step 0,05s }
\end{gathered}
\] & 0,25s & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} \\
\text { Step 0,05s }
\end{gathered}
\] & 0,25s & \[
\begin{gathered}
\hline 0,05-10 \mathrm{~s} \\
\text { Step 0,05s }
\end{gathered}
\] \\
\hline 32 & Mode
(only at CEIO-21 Italy) & --- & --- & --- & --- & --- & --- & Mode0 & \begin{tabular}{l}
Mode0: Transitori \\
Mode1: Definit
\end{tabular} & --- & --- & --- & --- \\
\hline 33 & Switching mode of output relays & RL no & RL no: normally open \\
\hline 34 & Number of section switch (only at CEIO-21 Italy) & KS 2 & \[
\begin{aligned}
& \hline \text { KS 0: }{ }^{11} \\
& \text { KS 1: } \\
& \text { KS 2: } \\
& \text { Sync: }{ }^{3} \\
& \hline
\end{aligned}
\] & KS 2 & \[
\begin{aligned}
& \text { KS 0: }{ }^{11} \\
& \text { KS 1: } \\
& \text { KS 2: } \\
& \text { Sync: }{ }^{31} \\
& \hline
\end{aligned}
\] & KS 2 & \[
\begin{aligned}
& \text { KS 0: }{ }^{11} \\
& \text { KS 1: } \\
& \text { KS 2: } \\
& \text { Sync: }{ }^{31} \\
& \hline
\end{aligned}
\] & KS 2 & \[
\begin{aligned}
& \hline \text { KS 0: }{ }^{11} \\
& \text { KS 1: } \\
& \text { KS 2: } \\
& \text { Sync: }{ }^{3} \\
& \hline
\end{aligned}
\] & KS 2 & \[
\begin{aligned}
& \hline \text { KS O: }{ }^{11} \\
& \text { KS 1: } \\
& \text { KS 2: } \\
& \text { Sync: }{ }^{34} \\
& \hline
\end{aligned}
\] & KS 2 & \[
\begin{aligned}
& \hline \text { KS O: } \\
& \text { KS 1: } \\
& \text { KS 2: } \\
& \text { Sync: } \\
& \text { Sy) } \\
& \hline
\end{aligned}
\] \\
\hline 35 & Password Pwd & 0000 & \[
\begin{gathered}
0000-9999 \\
\text { Step } 1
\end{gathered}
\] & 0000 & \[
\begin{gathered}
\text { 0000-9999 } \\
\text { Step } 1
\end{gathered}
\] & 0000 & \[
\begin{gathered}
\text { 0000-9999 } \\
\text { Step } 1
\end{gathered}
\] & 0000 & \[
\begin{gathered}
0000-9999 \\
\text { Step } 1
\end{gathered}
\] & 0000 & \[
\begin{gathered}
0000-9999 \\
\text { Step } 1
\end{gathered}
\] & 0000 & \[
\begin{gathered}
0000-9999 \\
\text { Step } 1
\end{gathered}
\] \\
\hline
\end{tabular}

KS 0: No section switch \({ }^{2}{ }^{2)}\) KS 1:1 section switch \({ }^{3)}\) KS 2:2 section switches \({ }^{4)}\) Sync: Mains synchronization
Comment on parameter no. 31
The scan delay of the section switches (tv KS) must be greater than the actual time of the section switches. The adjustable delay is active when the section switches close.
(Motor driven sector switches have longer connection times). The monitoring delay when disconnecting is fixed at 250 ms .

\section*{Running chart parametrisation}

\section*{CRC16-value (Test value of parameter setting)}

Below, the CRC16 values for the different positions of the two rotary switches are listed for standard and system configuration. The CRC16 values listed are obtained from the standard set, the system configuration and the associated default values of the parameter setting. If different parameters are selected than the default settings, different CRC16 values are obtained. They are not listed here.
\begin{tabular}{|l|l|l|}
\hline Standard & Mains form & CRC16- value *) \\
\hline VDE 0126 & \(\mathrm{Y} \& \Delta / \mathrm{N}\) & ddcA \\
\hline VDE 0126 & \(\mathrm{Y} / \mathrm{N}\) & d85F \\
\hline VDE 4105 & \(\mathrm{Y} \& \Delta / \mathrm{N}\) & 3 b 56 \\
\hline BDEW & \(\mathrm{Y} \& \Delta / \mathrm{N}\) & 18 b 5 \\
\hline BDEW & \(\mathrm{Y} / \mathrm{N}\) & 1 d 20 \\
\hline BDEW & \(\Delta\) & 1E53 \\
\hline CEI 0-21 & \(\mathrm{Y} \& \Delta / \mathrm{N}\) & 3 bc 4 \\
\hline CEI 0-21 & \(\mathrm{Y} / \mathrm{N}\) & 3E51 \\
\hline ÖVE/ÖNORM & \(\mathrm{Y} \& \Delta / \mathrm{N}\) & cb04 \\
\hline G59/3 LV & \(\mathrm{Y} \& \Delta / \mathrm{N}\) & \(5 \mathrm{dE8}\) \\
\hline G59/3 LV & \(\mathrm{Y} / \mathrm{N}\) & 587 d \\
\hline G59/3 HV 110V & \(\Delta\) & 47d3 \\
\hline
\end{tabular}
*) Firmware-Version \(\geq 04.00\)

\section*{Set parameters}

\section*{Display mode}

All parameters currently set to "active" are sown in the display mode. Scrolling between the different "active" parameters is possible with the RUN/SET button.

\section*{Set parameters}

\section*{Input-Mode}

Via rotary switch the default settings for 6 standards can be adjusted quikkly:

1:VDE 0126
1.VDE 0126 3: BDEW
2: VDE-AR-N 4105 4: CEI O-21
3: BDEW-Mittelspannung 5: ÖVE/ÖNORM
4: Italien CEIO-21
5: ÖVE/ÖNORM
7: 8 : Reserved
6: G59/3
7: Reserved
8: Reserved
The default settings can be selected via the rotary switch thereby accepting the default settings of the parameter table.
The individual parameters can be changed manually if needed.

To change the parameters manually, the RUN/SET button must be pressed longer than two seconds. The display mode is accessed. The input mode is accessed when subsequently pressing " \(\boldsymbol{\nabla} \boldsymbol{\Delta}\) ". The input mode is also accessed by turning one of the two rotary switches.

Before the values of a parameter can be modified, the password has to be entered correctly, or the default password (factory set) has to be acknowledged by pressing the RUN/SET button 4 times. The display then shows OK!

The password consists of four numbers from 0000-9999

Change of password:
To avoid unintended modifications the following sequence has to be followed:
1. Use RUN/SET button to select parameter no. 35 select "Password PWD"
2. Enter password with buttons \(\boldsymbol{\nabla}\)
3. Acknowledge password by pressing RUN/SET button, the display now shows "Pwd 2"
4. Repeat step 2. And 3.until display changes to parameter no. 1
5. Other parameter changes can be made. By pressing RUN/SET button for longer than 2 sec the changes are stored. The device changes to RUN mode display.

\section*{Set parameters}

If the password is correct, the different parameters can be changed or parameters can be set to "active" or "inactive". Changing the different parameters is done analogue to the display mode by using the RUN/SET button.

The default values set in the parameters (see parameter table) can be individually adjusted with the \(\boldsymbol{\nabla} \boldsymbol{\Delta}\) buttons; however, they must be within the respective setting ranges. The next parameter can be selected with the RUN/SET button and also be adjusted with the \(\boldsymbol{\nabla} \boldsymbol{\Delta}\) buttons.

\section*{Set parameters}

Jumping back to the display mode is possible at any time by pressing the ESC/TEST button without saving the changed parameters.

Wrong or contradictory entries of parameter values are recognised and displayed by the device as errors (setup errors). The error status can be exited by pressing the RUN/SET button longer than two seconds. The faulty parameters can be corrected back in the input mode.

After the desired changes have been made, the new values are saved by pressing the RUN/SET button (> 2 s).

\section*{Error Indication}

The failure status of the unit is indicated by a red backlight. If a failure is detected the unit automatically changes to failure memory display. The last 9 failures are stored, where failure 1 is the newest and failure 9 the oldest. The failures are displayed as follows
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Failure indication; Failure cause} \\
\hline Parameter Nr. & Display & Failure \\
\hline 2 & V> & overvoltage \\
\hline 4 & \(\overline{\mathrm{V}}>\) & overvoltage, 10 min mean value \\
\hline 6 & \(V \gg\) & overvoltage 2 \\
\hline 8 & \(\mathrm{V}<\) & undervoltage \\
\hline 10 & \(\mathrm{V} \ll\) & undervoltage 2 \\
\hline 12 & f1> & overfrequency \\
\hline 14 & f1>> & overfrequency 2 \\
\hline 16 & f1< & underfrequency \\
\hline 18 & f1<< & underfrequency 2 \\
\hline 26 & RoCoF & Frequency change df/dt (Rate of Change of Frequency) \\
\hline \multirow[t]{5}{*}{29} & VecSh & Vector shift detected (Vector Shift) \\
\hline & \[
\begin{aligned}
& \mathrm{KS} 1, \\
& \mathrm{KS} 2 \\
& \hline
\end{aligned}
\] & failure section switch (broken wire in feedback circuit or section switch contacts welded) \\
\hline & Sys. 5 & \begin{tabular}{l}
Measured value deviation between channel 1 and channel 2 too large; locks the memory, cancelling the lock: \\
Switch off auxiliary voltage longer than 30 s.
\end{tabular} \\
\hline & Int. 8 & Failure during system test KS1 and KS2 have not been disconnected from grid \\
\hline & Setup & The setting of the two potentiometers (standard and mains) is not correct, set values are not plausible (e.g. connection and disconnection value). \\
\hline
\end{tabular}

When leaving the failure state, the backlight changes from red to yellow in the first step. Only when the failures are acknowledged, either by deleting the failure memory or by changes to the actual value in the display mode, the backlight changes to green. The entries in the failure memory stay valid when resetting a failure message (pressing the pushbutton "Mode" for \(>2 \mathrm{~s}\)).

The failure memory is deleted by pressing the buttons "Mode" and "Test" simultaneously for more than 2 seconds in display mode failure or by disconnecting the supply L1/L2/L3/N for a longer period.

\section*{Fault Signalling Relay}

A third output relay K3 indicates the disconnection of the generator system in the case of a failure (contact 33-34).

\section*{Isolated Grid Detection}

The RP 9811 includes a passive procedure to detect an isolated network according to chapter 6.5.3 and annex D2 of VDE-AR-N 4105 and chapter A.3.5.3 of ÖVE/ÖNORM E8001-4-712. The 3-phase voltage monitoring allows an isolated network to be detected.

\section*{Random Switch Off at Overfrequency}

In VDE-AR-N 4105 a frequency range between 50.2 Hz and 51.5 Hz was defined. In this range a step less reduction of the generated power can be made if the generator is controllable.

Non controllable generator systems can alternatively disconnect themselves from the mains in the frequency range of 50.2 Hz and 51.5 Hz . In this case a symmetric distribution within this range of the disconnection frequency for each plant has to be observed. The RP 9811 has a random setting facility within this range, by turning both related switches into position "random". With this setting the connection and reconnection time is automatically selected within a range of \(1 \ldots 10\) minutes.

\section*{Random Controlled Connection \(\mathrm{T}_{\text {on }}\)}

The device offers the possibility to use a random control for connection with a delay between 60 and 600 s. Parameter Ton: "random"

\section*{System Test}

When operating the pushbutton "Test" the states of the section switch can be tested for correct function. Pressing the test button disconnects the generator system from the mains.

\section*{Evaluation of disconnection time:}

When the test function is operated the release time of the section switch is monitored via the feedback circuit. The measured time is shown on the LCD display.
To determine the full disconnection time the measuring and evaluation time is added to the release time of the section switch.

\section*{Control inputs B1, B2, B3}

\section*{Power up conditions (release)}

The distributed power generation system is connected to the grid when the following conditions are met at the control inputs B1, B2, B3.
1. Inputs \(B A-B 1\) and \(B A-B 2\) are bridged
2. Input BA-B3 is open (operates inverted)
3. Both section switches are switched off. KA-K1 and KA-K2 are closed.

KA-K1 and KA-K2 are open after the connection.
If this is not the case, error KS1 or KS2 is indicated on the display.
If both section switches fail, KS1 and KS2 are entered in the error memory.
The error message relay K3 releases in case of error.
Function control input B2 at adjustablle standard CEI 0-21

\section*{Mode Transitori (default):}

BA-B2 closed

BA-B2 open

\section*{Mode Definit}

BA-B2 no function:
: monitoring of tight frequency window [\(\mathrm{f}>, \mathrm{f}<\)]
_ : monitoring of wide frequency window [\(\mathrm{f} \gg, \mathrm{f} \ll\)]
monitoring of wide frequency window [\(\mathrm{f} \gg, \mathrm{f} \ll\)]

Required parameter setting for Mode Definit:
Parameter No. 15 [t f>>]: 1 s
Parameter No. \(19[\mathrm{t} \mathrm{f} \ll]\) : 4 s

\section*{Monitoring of Section Switches at mains synchronization}

Via the 2 contacts \(13-14\) and \(23-24\) the 2 section switches are controlled. The monitoring of the section switches is made by the feedback circuit (terminals KA-K1, KA-K2), to which the NC contacts of the section switches are connected (see connection diagrams).
The voltage and frequency monitor RP 9811 only connects the generator system to the mains when in disconnected state the feedback circuits KA-K1, KA-K2 are closed, i.e. the section switches are de-energised (NC contacts are closed). As long as the section switch is not energized the feedback circuits KA-K1, KA-K2 must be closed if not the failure "KS" is displayed.
The feedback loops KA-K1, KA-K2 must be open after the section switch is selected, otherwise device 2 performs additional connection attempts If the connection was not successful after the 3rd attempt, the error "KS" is reported and the error message relay switches to the normal position.

\section*{Parameter number of section switches \(=0\) :}

Only for simplifying the set-up procedure the monitoring of the feedback circuit can be disabled.
To fulfil the starting conditions, K ! and K 2 has to be bridged with KA. If only one section switch is installed, K1 and K2 are connected in parallel

\section*{Function Mains synchronization on generator operation:}

Parameter number of section switches = „Sync"
This function is available in units with firmware 02.00 and higher. See relevant application example.

The monitoring of the Feedback contacts can be disabled with the enabling input BA/B3.
BA/B3 closed \(=\) feedback contact section switch 2 is disabled
BA/B3 open = both feedback contacts channel 1 and channel 2 are monitored.
Starting condition: BA/B1-B2-B3 bridged, or with standard CEI 0-21 BA/B1-B3 bridged.

\section*{According to the Italian standard CEI 0-21 (< 20 kW)}

Using only one section switch is possible. This is permissible for systems \(<20 \mathrm{~kW}\).

Coupling switch K1 is connected to terminals 13/14. The feedback contacts terminal K1/K2 of the two section switches must be switched in parallel (bridge between terminal K1 and K2). Setting the number of section switches: Parameter [34] = KS 1 (1 section switch).

Even if only one section switch is connected, monitoring by the RP 9811.03 takes place via two channels.

\section*{Note:}

If the feedback contacts terminal K1/K2 are bridged. LED K2 indicates the status of channel 2 and is on corresponding to LED K1 of channel 1. The connection condition is identical with systems > 20 kW .

\section*{Safety notes}

Dangerous voltage.
Electric shock will result in death or serious injury.

Disconnect all power supplies before servicing equipment.
- Faults must only be removed when the relay is disconnected
- The user has to make sure that the device and corresponding components are installed and wired according to the local rules and law (TUEV, VDE, Health and safety).
- Settings must only be changed by trained staff taking into account the safety regulations. Installation work must only be done when power is disconnected.

Observe proper grounding of all components

\section*{Set Up Procedure}

The connection has to be made according to the connection examples.

\section*{Technical Data}
\begin{tabular}{ll}
Reactivation: & \begin{tabular}{l}
see parameter table \\
"Connection parameters" \\
see parameter table
\end{tabular} \\
Disconnection: & "Monitoring-/ disconnection parameters"
\end{tabular}

Accuracy:
voltage measurement: \(\leq \pm 1 \% \quad \pm 1\) digit (at AC 230 V)
Frequency measurement: \(\leq \pm 0,02 \% \pm 1\) digit
Reaction time (Disconnection): < 100 ms
Disconnection by vector shift: < 50 ms

\section*{Auxiliary Voltage}
\begin{tabular}{|c|c|c|}
\hline Auxiliary Voltage & Voltage range & Frequency range \\
\hline \multirow{2}{*}{\(\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}\)} & \(\mathrm{AC} 18 \ldots 100 \mathrm{~V}\) & \(\left.45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}^{*}\right)\) \\
\cline { 2 - 3 } & \(\mathrm{DC} 18 \ldots 130 \mathrm{~V}\) & \(\mathrm{~W} \leq 5 \%\) \\
\hline \multirow{2}{*}{\(\mathrm{AC} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}\)} & \(\mathrm{AC} 60 \ldots 276 \mathrm{~V}\) & \(\left.45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}^{*}\right)\) \\
\cline { 2 - 3 } & \(\mathrm{DC} 50 \ldots 300 \mathrm{~V}\) & \(\mathrm{~W} \leq 5 \%\) \\
\hline
\end{tabular}
\({ }^{*}\)) \(\mathrm{W}=\) permitted residual ripple of auxiliary supply
\begin{tabular}{ll}
Nominal consumption & \\
DC \(24,48 \mathrm{~V}\) : & 1.5 W \\
AC 230 V : & 4.2 VA
\end{tabular}

Output
Relay K1 and K2:
1 NO contact each
Relay K3:

Thermal current \(\mathrm{It}_{\text {th }}\) :
Switching capacity
according to AC 15
NO contact:
NC contact:
Electrical life
to \(A C 15\) at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\)
NO contact:
Short circuit strength
max. fuse rating:
Mechanical life:
General Data
Measuring voltage range: AC \(15 \ldots 300 \mathrm{~V}\) (Phase-N) AC \(26 \ldots 520 \mathrm{~V}\) (Phase-Phase) \(46 \ldots . .54 \mathrm{~Hz}\)
Frequency range:
DC 12 V (Ground- and volt-free contact)
BA / B1, B2, B3:
Temperature range:
Operation:
\(-30 \ldots+60^{\circ} \mathrm{C}\)
Storage:
\(-40 \ldots+70^{\circ} \mathrm{C}\)
Altitude:
up to \(4,000 \mathrm{~m}\)
IEC 60 664-1
Clearance and creepage distance
Rated impulse voltage /
Pollution degree:
auxiliary circuit / measuring ciruit
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{contacts:
13-14 / 23-24:} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 5 \mathrm{kV} / 2 \\
& 4 \mathrm{kV} / 2
\end{aligned}
\]} & IEC 60 664-1 \\
\hline & & IEC 60 664-1 \\
\hline & \multicolumn{2}{|l|}{(at altitude > 2.000 m the contacts} \\
\hline & 13-14 / 23- same phas & must be connectet on the \\
\hline The measuring circuit includes: & \multicolumn{2}{|l|}{L1, L2, L3, N, KA, K1, K2, BA, B1, B2, B3} \\
\hline \multicolumn{3}{|l|}{EMC} \\
\hline Electrostatic discharge (ESD): & 8 kV (air) & IEC/EN 61 000-4-2 \\
\hline HF irradiation: & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline Fast transients: & 2 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{3}{|l|}{Surge} \\
\hline \multicolumn{3}{|l|}{between} \\
\hline wires for power supply: & 2 kV & IEC/EN 61 000-4-5 \\
\hline between wire and ground: & 4 kV & IEC/EN 61 000-4-5 \\
\hline HF wire guided: & 20 V & IEC/EN 61 000-4-6 \\
\hline Interference suppression: & Limit & EN 5501 \\
\hline
\end{tabular}

The 3 Output relays are de-energized on trip, after disconnection or failure
5 A

3 A / AC 230 V IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
\(3 \times 10^{5}\) switch. cycles IEC/EN 60 947-5-1
6 A gL
IEC/EN 60 947-5-1
\(>50 \times 10^{6}\) switching cycles
- 60

\section*{Technical Data}

Degree of protection

Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:

\section*{Wire connection}

Cross section:
Flexible with plastic sleeve:
Multi-wire connection:
Stripping length:
max. fixing torque:
Wire fixing:
\begin{tabular}{ll}
Mounting: & DIN-rail \\
Weight: & 215 g \\
Recommended fuse &
\end{tabular}

Recommended fuse
for measuring inputs:

\section*{Dimensions}

Width x height x depth: \(\quad 70 \times 90 \times 71 \mathrm{~mm}\)

\section*{Standard Types}

RP 9811.03 3/N AC 400 / 230 V
Article number: 0065562
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : AC/DC \(80 \ldots 230 \mathrm{~V}\)

RP 9811.03 3/N AC 400 / 230 V
Article number: 0065698
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : AC/DC 24... 80 V

IEC/EN 60529
IP 20
IEC/EN 60529
thermoplastic with VO behaviour according to UL subject 94 Amplitude \(0,35 \mathrm{~mm}\)
frequency \(10 \ldots . .55 \mathrm{~Hz}\), IEC/EN 60 068-2-6
30 / 060 / 04
IEC/EN 60 068-1
EN 50005
solid, stranded 0.5 ... \(4 \mathrm{~mm}^{2}\)
\(0.5 \ldots 4 \mathrm{~mm}^{2}\)
\(0.5 \ldots 1.5 \mathrm{~mm}^{2}\) (2 wires with the same diameter)
6.5 mm
0.5 Nm

Plus-minus terminal screws / M3 box terminals

DIN-rail
215 g
gG/gL 6A
-
\(\qquad\)
教

Application example according to DIN VDE-AR-N 4105 (from 30 kW); CEI 0-21 (from 20 kW); BDEW-directive; DIN V VDE V 0126-1-1 2 section switches

Application example according to CEI 0-21 (<20 kW) 1 section switch

Generator operation with mains synchronisation

VARIMETER

Function Diagram

\section*{Circuit Diagram}

IK 9076.11, SK 9076.11
- According to IEC/EN 60 255, DIN VDE 0435-303
- Current monitor
- Detection of wire breakage
- Fixed switching points
- For DC 24 V
- Energized on trip
- Green LED display for operating voltage
- Red LED display for contact position
- Devices available in 2 enclosure versions:

IK 9076: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SK 9076: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 17.5 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Application}

For monitoring valves.

\section*{Indicators:}

Upper LED:
Lower LED:
on, when operating voltage is supplied on, when the output relay is activated

\section*{Note}

IK/SK 9076 has no polarity safeguard!

\section*{Technical Data}

Input
\begin{tabular}{ll}
Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & DC 24 V \\
Voltage range: & \(0.85 \ldots 1.2 \mathrm{U}_{\mathrm{N}}\) \\
Nominal consumption: & 0.35 W \\
Switching points (fixed): & Setting value max. continous current \\
& \(0.3 \ldots 0.7 \mathrm{~A}\) * 1.5 A \\
& \(0 . \ldots 0.4 \mathrm{~A} \quad 0.9 \mathrm{~A}\) \\
& \(0.15 \ldots 0.3 \mathrm{~A} \quad 0.5 \mathrm{~A}\) \\
& \(0.05 \ldots 0.1 \mathrm{~A} \quad 0.25 \mathrm{~A}\) \\
& \({ }^{*}\) Suitable e.g. for \(24 \mathrm{~W} / 1 \mathrm{~A}\) valves \\
& \\
Permissible & 1.5 A at an ambient \\
measuring current: & temperature of \(55^{\circ} \mathrm{C}\) \\
& 2.2 A at an ambient temperature of \(35^{\circ} \mathrm{C}\) \\
& 8 A, up to 3 s
\end{tabular}

\section*{Output}

\section*{Contacts}

IK 9076.11, SK 9076.11: 1 changeover contact
Operate/release time:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :

\section*{Switching capacity}
to AC 15
NO contact: \(\quad 3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1
NC contact: \(\quad 1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1

Electrical life:
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:
\(100 \mathrm{~ms} / 20 \mathrm{~ms}\)
4 A
\(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\)
IEC/EN 60 947-5-1
\(1.5 \times 10^{5}\) switching cycles
4 A gL
IEC/EN 60 947-5-1
\(\geq 10^{8}\) switching cycles

\section*{Technical Data}

\section*{General Data}

Operating mode: Temperature range: Clearance and creepage

\section*{distances}
rated impulse voltage/
pollution degree:
EMC
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Wire connection:

Wire fixing:
Mounting:
Weight
\begin{tabular}{ll}
IK 9076: & 56 g \\
SK 9076: & 75 g
\end{tabular}

SK 9076:

\section*{Dimensions}

Width x height x depth
IK 9076:
SK 9076:
75 g

Continuous operation
\(-20 \ldots+55^{\circ} \mathrm{C}\)

4 kV / 2
6 kV (contact)
10 V / m
4 kV

1 kV
4 kV
10 V
Limit value class B
EC/EN 61 000-4-5
IEC/EN 61 000-4-5 IEC/EN 61 000-4-6

EN 55011
IP \(40 \quad\) IEC/EN 60529

IP 20 IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm ,
frequency 10 ... \(55 \mathrm{HzIEC/EN} 60\) 068-2-6 20 / 055 / 04 IEC/EN 60 068-1
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1
DIN rail IEC/EN 60715
\(17.5 \times 90 \times 59 \mathrm{~mm}\)
\(17.5 \times 90 \times 98 \mathrm{~mm}\)

\section*{Standard Types}
\begin{tabular}{ll}
IK 9076.11 DC \(24 \mathrm{~V}<0.3 \mathrm{~A}\) & \\
Article number: & 0051708 \\
- Output: & 1 changeover contact \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & DC 24 V \\
- Operate time: & \(<0.3 \mathrm{~A}\) \\
- Width: & 17.5 mm \\
- & \\
SK 9076.11 DC \(24 \mathrm{~V}<0.3 \mathrm{~A}\) \\
Article number: & 0054742 \\
- Output: & 1 changeover contact \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & DC 24 V \\
- Operate time: & \(<0.3 \mathrm{~A}\) \\
- Width: & 17.5 mm
\end{tabular}

\section*{Connection Example}

\section*{Product Description}

The BD 5936 detecting standstills of 3- and 1-phase asynchronous motors. At 2 terminals of the stator winding the BD 5936 measures the voltage of the slowing motor which has been induced.. If the induction voltage approaches 0 this indicates that the device is at a standstill and the output relay is activated.
Additional the monitor detects strand breaks between measurement inputs \(\mathrm{Z1} / \mathrm{Z2}\).. If a line breakage is detected, the output relay goes into the normal position (as when the motor is running). This state ist saved and can only be cleared by (briefly) switching off the auxiliary voltage.

\section*{Your Advantage}
- Standstill monitoring without sensor

\section*{Features}
- According to IEC/EN 60255-1, IEC/EN 60255-26
- For standstill monitoring of 3- and 1-phase asynchronous motors
- Line breakage detection in the measurement circuit
- Forcibly guided output contacts:

2 NO, 2 NC contacts for 250 V AC
- LED indicators for motor standstill, line breakage, and operating voltage
- Wire connection: also \(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated), DIN 46 228/-1/-2/-3/-4 or
\(2 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled DIN 46 228-1/-2/-3
- Width 45 mm

\section*{Applications}

For detecting standstills of 3- and 1-phase asynchronous motors, for example, for releasing protective door interlocks of machine tools or for activationg stopping brakes.

\section*{Notes}

In the case on the motor wires the Z1 / Z2 connection wire should be installed separately from the motor supply and connected directly to the motor terminals. For longer distances please use twisted pair wires.

\section*{Indicators}

1st green LED:
2nd green LED:
Red LED:
comes on when operating voltage present comes on when motor at a standstill comes on in event of line breakage between Z1 and Z2

\section*{Circuit Diagram}

Connection Terminals
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage \(U_{H}\) \\
\hline Z1, Z2 & \begin{tabular}{l}
Measuring input \\
(connection on motor)
\end{tabular} \\
\hline \(11,12,21,22\) & Forcibly guided NC contacts \\
\hline \(33,34,43,44\) & Forcibly guided NO contacts \\
\hline
\end{tabular}

\section*{Technical Data}

Input
Auxiliary voltage \(U_{H}: \quad \quad A C 24,48,110,120,230 \mathrm{~V}\),
AC/DC 24 ... \(60 \mathrm{~V}, 110 \ldots 230 \mathrm{~V}\)
(other voltages on request)
Voltage range:
Nominal consumption:
Nominal frequency:
\(0.8 \ldots 1.1 U_{N}\)
approx. 3 VA, 3 W
解 690 V
Response value: approx. 20 mV
Release value: approx. 40 mV
Output

\section*{Contacts}

BD 5936.17:
Contact type:
Output rated voltage:
Thermal current \(I_{\text {th }}\) :
Switching capacity
to AC 15:
NO contact:
NC contact:
Electrical life
to AC 15 at 2 A, AC 230 V :
Short circuit strength
max. fuse rating:
Mechanical life:

\section*{General Data}

Operating mode:
Temperature range:
Clearance and creepage distances
rated impulse voltage /
pollution degree,
Terminals Z1/Z2:
IEC 60 664-1
at AC-Auxiliary voltage \(U_{H}\) : \(\quad 6 \mathrm{kV} / 2\) (Overvoltage category III) at AC/DC-Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}: 4 \mathrm{kV} / 2\) (Overvoltage category II)

\section*{EMC}
\(\begin{array}{lll}\text { Electrostatic discharge: } & 8 \mathrm{kV} \text { (air) } & \text { IEC/EN 61 000-4-2 } \\ \text { HF irradiation: } & 10 \mathrm{~V} / \mathrm{m} & \text { IEC/EN 61 000-4-3 }\end{array}\)

Continuous operation
\(-15 \ldots+55^{\circ} \mathrm{C}\)
at max. \(90 \%\) air humidity

IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

Fast transients:
2 kV
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided
Interference suppression:
Degree of protection:
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
2 kV
4 kV
10 V

IP 20

EN 50005

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
Limit value class B
EN 55011
IP \(40 \quad\) IEC/EN 60529
IEC/EN 60529
Thermoplastic with V0 behaviour
to UL Subj. 94
Amplitude \(0,35 \mathrm{~mm}\)
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
15/055/04 IEC/EN 60 068-1
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)
or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled (isolated)
DIN 46 228-1/-2/-3/-4 or
\(2 \times 2.5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3
Line attachment:
Mounting:
Weigth:
Plus-minus terminal screws M 3,5 box terminal with wire protection
DIN rail
325 g

Dimensions
Width x height x depth: \(\quad 45 \times 74 \times 121 \mathrm{~mm}\)
\begin{tabular}{ll}
\hline UL-Data & \\
\hline Switching capacity: & \\
NO contacts: & \begin{tabular}{l}
Pilot duty A300 \\
\\
\\
\\
\\
10A 250Vac G.P. \\
10A 24Vdc
\end{tabular} \\
NC contacts: & 10A 250Vac G.P. \\
& 10A 24Vdc
\end{tabular}

Technical data that is not stated in the UL-Data, can be found in the technical data section.

\section*{CCC-Data}

Thermal current \(\mathrm{I}_{\mathrm{th}}\) : 5 A
Switching capacity
to AC 15:
2 A / AC 230 V
IEC/EN 60 947-5-1
to DC 13:
1 A / DC 24 V
IEC/EN 60 947-5-1

n 0
Technical data that is not stated in the CCC-Data, can be found in the technical data section.

\section*{Standard Type}

BD 5936.17/001 AC 230 V \(50 / 60 \mathrm{~Hz}\)
Article number: 0049069
- Output: 2 NO, 2 NC contacts
- Auxiliary voltage \(U_{H}\) : AC 230 V
- With automatic reset for broken wire detection
- Width:

45 mm

\section*{Variants}

BD 5936.17:
BD 5936.17/61:
BD 5936:
without automatic reset for broken wire detection
with UL-approval (Canada/USA)
with CCC-approval on request

\section*{Ordering example for variants}

\section*{Connection Example}

\section*{VARIMETER}

Standstill Monitor

Function Diagram

\section*{Circuit Diagrams}

IK 9144, SK 9144

IL 9144, SL 9144
- According to IEC/EN 60 255, DIN VDE 0435-303
- Detection of standstill of rotating machine parts and cyclic pulses
- Detection of blocking or missing pulses
- Monitoring time adjustable between 0.1 ... 20 s (others on request)
- Energized or de-energized on trip
- For input frequency up to \(5 \mathrm{kHz}(\cong 300000 \mathrm{ipm})\)
- Universal input, suitable for a variety of sensors (PNP,NPN,2-wire, contact, voltage)
- Input also suitable for SKF sensor bearings
- As option for Namur sensors
- On request with manual reset
- IK 9144 and SK 9144: compact version for DC 24 V auxiliary supply
- IL 9144 and SL 9144: for auxiliary supply up to AC 400 V with galvanic separation to sensor input
- LED indicators for auxiliary supply, sensor pulses and contact position
- 1 changeover contact (2 changeover on request)
- Devices available in 2 enclosure versions:

IK/IL 9144: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SK/SL 9144: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- IK 9144, SK 9144: width 17.5 mm
- IL 9144, SL 9144: width 35 mm

\section*{Approvals and Markings}

\section*{Applications}

Speed monitoring on rotating machine parts, monitoring of cyclic movements, general monitoring of pulse sequences (transportation, conveyors production systems), monitoring of pulse frequency (e.g. flow sensors, anemometers), watchdog function for controllers and PLCs.

\section*{Function}

The frequency to be monitored is connected to the input terminal IN.
If the time between 2 pulses exeeds the adjusted monitoring time \(t_{v}\) the output relay changes state.

In energized on trip mode (slide switch in position A), the output relay is deenergized when connecting the supply (contacts 11-14 open). It energises (contacts 11-14 closed) when during the monitoring time \(t_{v}\) no pulses are detected on input IN . With a new pulse the relay de-energises immediately and the monitoring time \(t_{v}\) is started again.

In de-energized on trip mode (slide switch in position R), the output relay is energized when connecting the supply (contacts \(11-14\) closed). It deenergized (contacts 11-14 open), when during the monitoring time \(t_{v}\) no pulses are detected on input \(\mathbb{I N}\). With a new pulse the relay energized immediately and the monitoring time \(\mathrm{t}_{\mathrm{v}}\) is started again.

\section*{Indicators}

Green LED:

Yellow LED:

On, when only auxiliary voltage connected to A1-A2, intermittent red/ green flashing when pulses are on the input IN
On, when the output relay is energized (contacts 11-14 closed)

\section*{Notes}

To the universal input of the speed monitor (terminals \(+\mathrm{U}, \mathrm{X} 1, \mathrm{IN}, \mathrm{OV}\)) a wide range of different sensors can be connected (capacitive, inductive, ultrasonic, hall effect, optical, reed, etc.) The input is suitable for proximity sensors according to IEC/EN 60 947-5-2 (VDE 0660 part 208)
Depending on the type of sensor (3-wire PNP or NPN, 2-wire, contact, voltage) the connection is made to different terminals (see Connection Examples).
The models IL and SL 9144 have a galvanic separation between Input Circuit (+U, X1, IN, OV) and auxiliary supply (A1, A2 e.g. 230VAC). 24V DC with up to 20 mA is provided on the terminals \(\mathrm{U}+/ 0 \mathrm{~V}\) for the supply of the sensor. If sensors with higher power consumption are used, the model IK and SK 9144 is suitable, where the sensors and the speed monitor is supplied by DC 24 V from an external power supply.
The speed monitors can be operated with SKF sensor bearings. Sensor bearings include ball bearing and speed sensor in a compact way. The actual sensors are hall effect sensors with NPN output. The connection is made as with NPN proximity sensors.
The model /200 is optimised for Namur proximity sensors according to IEC/ EN 60 947-5-6 (VDE 0660 part 212). Namur sensors are 2-wire sensors with defined current in on and off state.

\section*{Monitoring indicator of sensor input}

The upper 2-coloured LED shows indicates the connected supply voltage and the status of the sensor:
Green: input IN on LOW level
Red:
Green/Red:
input IN on HIGH level pulses on input IN

\section*{Several devices on one sensor}

A parallel connection of several monitors to one sensor is possible without problems on the universal input, when several tripping values are required or a range between to limits should be monitored. The corresponding terminals are connected in parallel.

\section*{Reaction time}

The reaction time is equal to the adjusted monitoring time \(t_{v}\). To shorten the reaction time the number of incoming pulses should be increased, e. g. by adding sensing points to a rotating part. The monitoring time then can be adjusted shorter.

\section*{Maximum input frequency, minimum pulse and space time}

Every frequency measuring device detects input pulses only up to a certain maximum input frequency. (This is also a result of a proper interference suppression). If the input frequency is higher then the maximum value, the input pulses are not longer detected, i.e. the monitor detects frequency 0. The maximum frequency is always much higher then the maximum setting value of the highest setting range
Also the maximum switching frequency of the sensors must be observed. In addition every frequency input needs a certain minimum pulse and space duration of the connected sensor to react properly. This is very important with high frequency and a low or high pulse/space ratio (e. g. a small active area on big diameter or a small gap on big diameter at high rotation speed). The minimum pulse or space times are very short on these modules, so that most applications are uncritical (see technical data).

\section*{Technical Data}

\section*{Input Circuit}

Universal input:

IK 9144, SK 9144:
IL 9144, SL 9144:
Max. residual current
of 2-wire sensors:
Max. voltage drop
of 2-wire sensors:
Voltage drive
input resistance:
Threshold Low
IK 9055, SK 9055:
IL 9055, SL 9055:
Threshold High
IK 9055, SK 9055:
IL 9055, SL 9055:
NAMUR Input
IK 9144/200, SK 9144/200,
IL 9144/200, SL 9144/200:

No-load operation voltage:
Input resistance:
Short circuit current:
Switching thresholds:
Low:
High:
Response value:
Max. input frequency:
Minimum pulse and
space time:

\section*{Auxiliary Circuit}

IK 9144, SK 9144
(terminal connection \(+\mathrm{U} / 0 \mathrm{~V}\)):
Nominal voltage \(\mathrm{U}_{\mathrm{H}}\) :
Voltage range:
Nominal consumption:
IL 9144, SL 9144
(terminal connection A1/A2):
Nominal voltage \(\mathbf{U}_{\mathrm{H}}\) :
Voltage range:
Nominal consumption:
Frequency range:
for PNP-, NPN-, 2-wire sensors, contacts and voltage
suitable for proximity sensors
according to IEC/EN 60 947-5-2
(VDE 0660 part 208)
sensor supply by external auxiliary voltage DC 24 V
built in power supply approx. DC 24 V , max. 20 mA

2 mA (OFF)
8 V (ON)
approx. \(17 \mathrm{k} \Omega\)
approx. 9.2 V
approx. 8.4 V
approx. 11 V
approx. 10.3 V
für NAMUR-sensors according to IEC/EN 60 947-5-6 (VDE 0660 part 212)
(previously EN 50227/DIN 19234)
approx. 8.2 V
\(1 \mathrm{k} \Omega\)
approx. 8 mA
approx. 1.5 mA
approx. 1.8 mA
Monitoring time tv adjustable
0.1 ... 20 s (others on request)

5 kHz
\(100 \mu \mathrm{~s}\)

Output

\section*{Contacts:}

Thermical current \(I_{t h}\) :
Switching capacity
to AC 15
NO contacts:
NC contacts:
Switching capacity
to DC 13
NO/NC contacts:
Electrical life
to AC 15 at \(1 \mathrm{~A} / 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:

DC 24 V
19.2 ... 30 V
max. approx. 0.8 W

AC \(24 \mathrm{~V}, 42 \mathrm{~V}, 115 \mathrm{~V}, 127 \mathrm{~V}, 230 \mathrm{~V}, 400 \mathrm{~V}\)
\(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{H}}\)
approx. 4 VA
\(45 . .400 \mathrm{~Hz}\)

\section*{1 changeover contact}

4 A

3 A / AC 230 V
IEC/EN 60 947-5-1
1 A/AC 230 V IEC/EN 60 047-5
IEC/EN 60 947-5

1 A / DC 24 V IEC/EN 60 947-5-1
\(1.5 \times 10^{5}\) switching cycles
IEC/EN 60 947-5-1

4 AgL
IEC/EN 60 941-5-1
\(\geq 30 \times 10^{6}\) switching cycles

\section*{Technical Data}

\section*{General Data}

Operating mode: Temperature range (operation):
Clearance and creepage distances

EMC
Electrostatic discharge:
Fast transients:
Surge voltages: HF-wire guided: Interference suppression:

\section*{Degree of protection}

Housing:
Terminals:
Housing:
Vibration resistance:

Climate resistance:
Terminal designation:
Wire connection:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
rated impulse voltage/ pollution degree \(4 \mathrm{kV} / 2\)

8 kV (air)
1 kV
1 kV
10 V
Limit value class B
IEN 61 000-4-2
IEC/EN 61 000-4-4
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6

IP 40
IP 20
IEC/EN 60529
Thermoplastic with Vo behaviour according to UL subject 94
Amplitude 0.35 mm ,
frequency \(10 \ldots . .55 \mathrm{~Hz}\), IEC/EN \(60068-2-6\)
20 / 060 / 04
DIN EN 50005
\(2 \times 2.5 \mathrm{~mm}^{5}\) solid or
IEC/EN 60 068-1
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire
with sleeve DIN 46 228-1/-2/-3
Flat terminals with self-lifting
clamping piece IEC/EN 60999 DIN rail IEC/EN 60715
approx. 65 g
approx. 85 g
approx. 140 g
approx. 160 g

\section*{Accessoires}

\section*{Flush mounting kit}

Order reference: KU 4087-150/0056598

\section*{Mounting kit for surface mounting}

KU 4087-100

\section*{Dimensions}
width x height x depth

IK 9144:
SK 9144:
IL 9144:
SL 9144:
\(17.5 \times 90 \times 59 \mathrm{~mm}\)
\(17.5 \times 90 \times 98 \mathrm{~mm}\)
\(35 \times 90 \times 59 \mathrm{~mm}\)
\(35 \times 90 \times 98 \mathrm{~mm}\)

\section*{Standard types}

IK \(9144.11 \quad 0.1 \ldots 20 \mathrm{~s} \mathrm{U}_{\mathrm{H}} \mathrm{DC} 24 \mathrm{~V}\)
Article number: 0057162
- Universal input, suitable for a variety of sensors (PNP,NPN,2-wire, contact, voltage)
- Energized or de-energized on trip
- Monitoring time adjustable between 0.1 ... 20 s
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : \(\quad \mathrm{DC} 24 \mathrm{~V}\)
- Output: 1 changeover contact

IL \(9144.110 .1 \ldots 20 \mathrm{~s} \mathrm{U}_{\mathrm{H}} \mathrm{AC} 230 \mathrm{~V}\)
Article number: 0057161
- Universal input, suitable for a variety of sensors
(PNP,NPN, 2-wire, contact, voltage)
- Energized or de-energized on trip
- Monitoring time adjustable between \(0.1 \ldots 20\) s
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}: \quad \mathrm{AC} 230 \mathrm{~V}\)
- Output: 1 changeover contact

\section*{Variants}

IK 9144.11/200,
SK 9144.11/200,
IL 9144.11/200,
SL 9144.11/200:
Input for NAMUR sensors
Mounting:
IK 9144:
SK 9144:
IL 9144:
SL 9144:

Application Example Universal Input

PNP-sensor
(\(\mathrm{I}_{\mathrm{C}} \approx 1 \mathrm{~mA}\))

contact
(\(\approx 1 \mathrm{~mA}\))

NPN-sensor
\((1 \mathrm{I} \approx 7 \mathrm{~mA})\)
\(\left(\mathrm{I}_{\mathrm{C}} \approx 7 \mathrm{~mA}\right)\)

2-wire-sensor

contact (\(\approx 7 \mathrm{~mA}\))

Voltage
(thresholds
ca. 10,5/8,5V)

Note: For IK-models the auxiliary voltage (DC 24 V) must be additionally connected to terminals \(+\mathrm{U} / 0 \mathrm{~V}\)

BA 9055, AA 9050
- According to IEC/EN 60 255-1
- Detection of
- underspeed
- overspeed
- standstill
- Adjustable response value
- BA 9055 with adjustable start-up delay
- AA 9050 with adjustable hysteresis
- Width 45 mm

AA9050
BA9055
AA9050/100
BA9055/100
AA9050/110
BA9055/110 BA9055/140

\[
t_{v}[s]=\frac{60}{n \cdot z} \quad \begin{aligned}
& n=\text { speed in rpm } \\
& z=\text { sensing points } \\
& t_{v}=\text { switching delay }
\end{aligned}
\]

\section*{Circuit Diagram}

BA 9055.11, AA 9050.11
\begin{tabular}{l}
\hline \multicolumn{1}{l|}{ Connection Terminals } \\
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal description \\
\hline A1 & L / + \\
\hline A2 & \(\mathrm{N} /-\) \\
\hline,+ 0 & Current supply proximity sensors \\
\hline n & Measuring input \\
\hline X3, X4 & Programming terminals \\
\hline \(11,12,14\) & Speed indicator relay (two-way contact) \\
\hline
\end{tabular}
\end{tabular}

\section*{Approvals and Markings}

\section*{}
* see variants

\section*{Applications}

Speed monitors are used in case where it is necessary not to exceed certain speed limits in order to protect people plants and products against damage. The Speed monitors are used on escalators, conveyors, transfer lines, elevators as well as plants where several drives with a certain speed have to work together.

\section*{Function}

The measuring principle is to compare frequencies. With a proximity sensor the speed is converted to a speed proportional frequency. This frequency is compared to an internal adjustable frequency reference. If the measured frequency is higher then the reference the output relay is energized on an underspeed monitor or de-energized on an overspeed monitor. The output relay deenergises on an underspeed monitor if the speed goes under the setted hysteresis value. On the overspeed monitor the relay is energized. The reaction time is rather short, as the unit has no intergrating function. To calculate refer to formula in Function Diagram. The power supply for the proximity sensor is built into the unit. The input is designed for pnp sensors. The speed monitor has an integrated start-up delay. The unit is delivered with a bridge between terminals \(\mathrm{X} 3-\mathrm{X} 4\). The start-up delay is activated when the power supply is connected to A1-A2.
For the start- up time the output relay is energized. If no start-up delay is required, the bridge must be removed. The start-up delay can be activated also by external contacts connected to X3-X4.
The start-up delay normally is not required with overspeed monitoring. An LED indicates the connected power supply. A second LED indicates the state of the output relay.

\section*{Technical Data}

Input Circuit
Input:
Setting range:

Min. pulse length:
Max. frequency:
Setting:
Setting accuracy:
Response value:
Hysteresis:
BA 9055:
AA 9050:
Accuracy:
Temperature influence:
Influence of auxiliary supply:
Start up delay
BA 9055:
AA 9050:
for proximity sensors, built in power
supply DC 24 V , max. 40 mA
\(0.05 \ldots 0.5 \mathrm{lpm} \quad 10 \quad \ldots \quad 100 \mathrm{lpm}\) 0.1 ... 1 lpm 50 ... 500 lpm 0.5 ... \(5 \mathrm{lpm} \quad 100\)... 1000 lpm 1 ... 10 lpm 500 ... 5000 lpm 5 ... 50 lpm 1000 ... 10000 lpm \(\mathrm{Ipm}=\) Impuls per minute
1 ms
30000 lpm
infinite on relative scale
\(\leq \pm 3 \%\)
0.1 ... 1 of end of scale value
\(2 \%\) of response value
\(2 . . .30 \%\) of response value
\(\leq \pm 1 \%\)
\(\leq \pm 0.1 \% /{ }^{\circ} \mathrm{C}\)
\(< \pm 0.5 \%\) at \(0.9 \ldots 1.1 U_{N}\)
1 ... 20 s
10 s (up to 60 min . available)

\section*{Auxiliary Circuit}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :
AC 24, 42, 110, 127, 230, 240 V
DC 24 V
Voltage range of \(\mathrm{U}_{\mathrm{H}}\) :
AC:
DC:
Nominal consumption:
Nominal frequency of \(\mathrm{U}_{\mathrm{H}}\) :
\(0.8 \ldots 1.1 U_{H}\)
0.9 ... \(1.2 \mathrm{U}_{\mathrm{H}}\)
\(<4\) VA
\(50 / 60 \mathrm{~Hz}\)
Output Circuit

Contacts:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) :
Switching capacity
to AC 15:
Permissible switching
frequency:
Short circuit strength
max. fuse rating:
Mechanical life:
General Data

\section*{Operating mode:}

Temperature range:
Clearance and creepage

\section*{distances}
rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge:
HF-irradiation:
80 MHz ... 1 GHz :
\(1 \mathrm{GHz} \ldots 2,5 \mathrm{GHz}\) :
2,5 GHz ... 2,7 GHz:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-irradiation:
Interference suppression:
Degree of protection Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
\(4 \mathrm{kV} / 2\)
8 kV (air)
\(10 \mathrm{~V} / \mathrm{m}\)
\(3 \mathrm{~V} / \mathrm{m}\)
\(3 \mathrm{~V} / \mathrm{m}\)
2 kV

2 kV
4 kV
10 V
Limit value class B
IP 40
IEC 60 664-1
IEC/EN 61 000-4-2
IEC/EN 61 000-4-3 IEC/EN 61 000-4-3 IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

IEC/EN 60529
Thermoplastic wiht V0 behaviour according to UL subject 94 Amplitude 0.35 mm ,
frequency \(10 \ldots 55 \mathrm{~Hz}\), IEC/EN 60 068-2-6 20/060 / 04 IEC/EN 60 068-1 EN 50005

\section*{Technical Data}
\begin{tabular}{|c|c|}
\hline Wire connection: & \(2 \times 2.5 \mathrm{~mm}^{2}\) solid or \\
\hline & \(2 \times 1,5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4 \\
\hline Wire fixing: & \begin{tabular}{l}
Flat terminals with self-lifting clamping piece \\
IEC/EN 60 999-1
\end{tabular} \\
\hline Screw mounting & \\
\hline AA 9050: & \[
35 \times 50 \mathrm{~mm} \text { and }
\] \\
\hline Mounting: & DIN rail IEC/EN 60715 \\
\hline BA 9055: & 410 g \\
\hline AA 9050: & 400 g \\
\hline
\end{tabular}

Dimensions
Width x height x depth
\begin{tabular}{ll}
BA 9055: & \(45 \times 74 \times 124 \mathrm{~mm}\) \\
AA 9050: & \(45 \times 77 \times 127 \mathrm{~mm}\)
\end{tabular}

\section*{Standard Type}

BA 9055 AC \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 10 \ldots 100 \mathrm{lpm} 1 \ldots 20 \mathrm{~s}\)
Article number: 0030731
- Output: 1 changeover contact
- Nominal voltage \(U_{N}: \quad\) AC 230 V
- Setting range: 10 ... 100 lpm
- Width:

45 mm

\section*{Classification to DIN EN 50155 for BA 9055}

Vibration and
shock resistance: Category 1, Class
IEC/EN 61373
Protective coating of the PCB: No

\section*{Variants}

BA 9055, AA 9050: Standstill and underspeed monitoring with start up delay, closed circuit operation overspeed monitoring with start up delay, open circuit operation
BA 9055/61:
BA 9055/100,
AA 9050/100:
Standstill and underspeed monitoring without start up delay, closed circuit operation overspeed monitoring without start up delay, open circuit operation
BA 9055/110,
AA 9050/110:
Standstill and underspeed monitoring without start up delay, open circuit operation overspeed monitoring without start up delay, closed circuit operation
BA 9055/140: Standstill and underspeed monitoring with start up delay, open circuit operation overspeed monitoring with start up delay, closed circuit operation

Ordering example for variants

\section*{Accessories}

K 70-34:
Cover for AA 9050
Article number: 0011790

\section*{Initiators (proximity sensors), induktive}
\begin{tabular}{|c|c|c|c|c|}
\hline Type & NA 5001.01.10 pnp NA 5001.01.20 npn & \[
\begin{gathered}
\text { NA } 5002.01 .34 \\
\text { pnp/npn }
\end{gathered}
\] & NA 5005.01.34 pnp/npn & NA 5010.01.10 pnp NA 5010.01.20 npn \\
\hline Dimensions & & & & \\
\hline Enclosure & Metal & Metal & Metal & Metal \\
\hline Switching distance \(\mathrm{S}_{n}\) & 1 mm & 2 mm & 5 mm & 10 mm \\
\hline Switching frequency & 5000 Hz & 1000 Hz & 300 Hz & 200 Hz \\
\hline Hysteresis & \multicolumn{4}{|c|}{2 ... 10 \%} \\
\hline Repeat accuracy & \multicolumn{4}{|c|}{5 \%} \\
\hline Voltage range & \multicolumn{4}{|c|}{\(10 \ldots 30 \mathrm{~V}\)} \\
\hline Residual ripple & \multicolumn{4}{|c|}{< 10 \%} \\
\hline Continuous current & \(\leq 200 \mathrm{~mA}\) & \(\leq 100 \mathrm{~mA}\) & \(\leq 100 \mathrm{~mA}\) & \(\leq 400 \mathrm{~mA}\) \\
\hline Output & \[
\begin{aligned}
& .10 \mathrm{pnp} \mathrm{NO} \\
& 20 \mathrm{npn} \mathrm{NO}
\end{aligned}
\] & \[
\begin{gathered}
.34 \\
\text { pnp NO + npn NO }
\end{gathered}
\] & \[
\begin{gathered}
.34 \\
\text { pnp NO + npn NO }
\end{gathered}
\] & \[
\begin{aligned}
& .10 \mathrm{pnp} \mathrm{NO} \\
& .20 \mathrm{npn} \mathrm{NO}
\end{aligned}
\] \\
\hline Indication of output state & \multicolumn{4}{|c|}{LED} \\
\hline Ambient temperature & \multicolumn{4}{|c|}{\(-25 \ldots 70^{\circ} \mathrm{C}\)} \\
\hline Temperature influence & \multicolumn{4}{|c|}{10 \%} \\
\hline Degree of protection & \multicolumn{4}{|c|}{IP 67} \\
\hline Connection wire & \multicolumn{4}{|c|}{2 m} \\
\hline Fixing torque & 4 Nm & 15 Nm & 40 Nm & 100 Nm \\
\hline Weight & 45 g & 70 g & 120 g & 270 g \\
\hline
\end{tabular}

\section*{Connection Table BA 9055, AA 9050}
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Type } & Wire & \begin{tabular}{c}
Terminal on \\
AA \(9050 / \mathrm{BA} 9055\)
\end{tabular} \\
\hline \multirow{3}{*}{ NA 5001.01.10 } & brown + & + \\
\cline { 2 - 3 } & blue - & 0 \\
\cline { 2 - 3 } & black NO & n \\
\hline \multirow{3}{*}{ NA 5002.01.34 } & brown + & + \\
\cline { 2 - 3 } NA 5005.01.34 & white + & + \\
\cline { 2 - 3 } & blue - & black NO \\
\hline \multirow{3}{*}{ NA 5010.01.10 } & brown + & n \\
\cline { 2 - 3 } & blue - & + \\
\cline { 2 - 3 } & black NO & 0 \\
\hline
\end{tabular}

Connection Table BA 9055 / __5
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Type } & Wire & \begin{tabular}{c}
Terminal on \\
BA 9055
\end{tabular} \\
\hline \multirow{3}{*}{ NA 5001.01.10 } & brown + & + \\
\cline { 2 - 3 } & blue - & 0 \\
\cline { 2 - 3 } & black NO & n \\
\hline \multirow{3}{*}{ NA 5002.01.34 } & brown + & + \\
\cline { 2 - 3 } NA 5005.01.34 & white NO & n \\
\cline { 2 - 3 } & blue - & black - \\
\hline \multirow{2}{*}{ NA 5010.01.10 } & brown + & 0 \\
\cline { 2 - 3 } & blue - & 0 \\
\cline { 2 - 3 } & black NO & + \\
\hline
\end{tabular}

\footnotetext{
Initiatoren NA 5002.01.34 and NA 5005.01.34 only usable for units without initiator-detection!
}

Function Diagram

\section*{Your Advantage}
- Protection of persons, machines and products
- Easy setting
- Universal input, for configuration of different sensors (PNP, NPN, 2-wire, contact, voltage)

\section*{Features}
- According to IEC/EN 60 255-1
- Detection of over- or underspeed or frequency, function selectable
- 3 selectable ranges for frequency or speed, adjustable tripping value
- Ranges up to 10 kHz (\(\hat{=} 600.000 \mathrm{ipm}\)) available,therefore suitable for turbines, centrifuges and similar applications
- Adjustable hysteresis
- Input also suitable for SKF sensor bearings
- As option for Namur sensors
- As option for permanent magnet sensors
- As option with adjustable switching delay/start up delay
- On request with manual reset
- IK 9055 and SK 9055: compact version for DC 24 V auxiliary supply
- IL 9055 and SL 9055: for auxiliary supply up to AC 400 V with galvanic separation to sensor input
- De-energized on trip (Energized on trip on request)
- LED indicators for auxiliary supply, sensor pulses and contact position
- 1 changeover contact (2 changeover on request)
- Devices available in 2 enclosure versions:
- IK/IL 9055: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
- SK/SL 9055: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- DIN rail or screw mounting
- IK 9055, SK 9055: width 17.5 mm

IL 9055, SL 9055: width 35 mm
Approvals and Markings

* see variants

\section*{Applications}

Speed monitoring on rotating machine parts, monitoring of cyclic movements, general monitoring of pulse sequences (transpor-tation, conveyors production systems), monitoring of pulse frequency (e.g. flow sensors, anemometers), pulse monitoring on railway rolling stock

\section*{Function}

The frequency to be monitored is connected to the input terminal IN. It is compared to the adjusted tripping value.

In overfrequency mode, the output relay switches into alarm position when the preset response value is exceeded. When the system frequency once more falls below the response value minus the preset hysteresis, the output relay will switch back into normal position.
In underfrequecy mode, the output relay switches into alarm position when the actual value falls below the preset response value. When the system frequency once mor exceeds the response value plus hysteresis, the output relay will switch back into normal position.
If de-energized on trip is selected, the output relay is energized (11-14 closed) in normal status. If energized on trip is selected, the output relay is energized (11-14 closed) in alarm status.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Circuit Diagrams} \\
\hline +u ov & \\
\hline \({ }_{10} \mathrm{xx}^{\text {- }}\) & \\
\hline \(!\) ! & i i \\
\hline +U \(\square_{\text {0V }}\) & i \({ }^{\text {A1 }} \square^{\text {A2 }}\) \\
\hline +U \({ }^{1+}\) & + +U OV \\
\hline \(\stackrel{1 N}{ }{ }^{\text {N }}\) & \(!1 \times \quad\) X1 \\
\hline & \(!\) ! \\
\hline - 12 & 1 i \\
\hline 11.1 & +12 \\
\hline 4 & \(\underline{14}\) \\
\hline & \\
\hline 12 & i \({ }^{12}\) - \\
\hline 1411 & 1411 \\
\hline m8765 & M8766 \\
\hline IK 9055, SK 9055 & IL 9055, SL 9055 \\
\hline \multicolumn{2}{|l|}{Connection Terminals} \\
\hline Terminal designation & Signal designation \\
\hline U+, OV & Supply voltage device and sensor \\
\hline A1, A2 (only at IL/SL) & Auxiliary voltage input \\
\hline X1, IN & Connection sensor (see application example) \\
\hline 11, 12, 14 & Changeover contact \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Indicators & \begin{tabular}{l}
On, when only auxiliary voltage \\
connected to A1-A2, intermittent red/ \\
green flashing when pulses are on the
\end{tabular} \\
input IN & \begin{tabular}{l}
On, when the output relay is energized \\
(contacts 11-14 closed)
\end{tabular}
\end{tabular}

\section*{Notes}

To the universal input of the speed monitor (terminals \(+\mathrm{U}, \mathrm{X} 1, \mathrm{IN}, \mathrm{OV}\)) a wide range of different sensors can be connected (capacitive, inductive, ultrasonic, hall effect, optical, reed, etc.) The input is suitable for proximity sensors according to IEC/EN 60 947-5-2 (VDE 0660, part 208).
Depending on the type of sensor (3 -wire PNP or NPN, 2-wire, contact, voltage) the connection is made to different terminals (see Connection Examples). The models IL and SL 9055 have a galvanic separation between Input Circuit (\(+\mathrm{U}, \mathrm{X} 1, \mathrm{IN}, 0 \mathrm{~V}\)) and auxiliary supply (\(\mathrm{A} 1, \mathrm{~A} 2\) e.g. 230 V AC). 24 V DC with up to 20 mA is provided on the terminals \(\mathrm{U}+/ 0 \mathrm{~V}\) for the supply of the sensor.
If sensors with higher power consumption are used, the model IK and SK 9055 is suitable, where the sensors and the speed monitor are supplied by DC 24 V from an external power supply.
The speed monitors can be operated with SKF sensor bearings. Sensor bearings include ball bearing and speed sensor in a compact way. The actual sensors are hall effect sensors with NPN output. The connection is made as with NPN proximity sensors.
The model / 200 is optimised for Namur proximity sensors according to IEC 60 947-5-6 (VDE 0660 part 212, previously EN 50 227/ DIN 19 234). Namur sensors are 2 -wire sensors with defined current in on and off state. The model \(/ 300\) is designed to connect permanent magnet sensors. Permanent sensors are simple, robust 2 -wire sensors without voltage supply and electronic circuits. They generate an induced voltage while the permanent magnet passes. They are very cost effective and can be used also with high temperature and hard ambient conditions.

\section*{Monitoring indicator of sensor input}

The upper 2 -coloure LED shows the connected supply voltage and the status of the sensor:
Green: input IN on LOW level
Red:
Green/Red: input IN on HIGH level
pulses on input \(\operatorname{IN}\)

\section*{Several devices on one sensor}

A parallel connection of several monitors to one sensor is possible without problems on the universal input, when several tripping values are required or a range between two limits should be monitored. The corresponding terminals are connected in parallel.

\section*{Monitoring function over- or underfrequency}

The function can be changed by a slide switch on the front of the unit. Energized on trip or de-energized on trip remains the same when changing the function, also the tripping value remains unchanged. No calculations with hysteresis are necessary.

\section*{Hysteresis setting}

When the setting value is very low in the lowest range, the hysteresis should not be adjusted to the minimum in order to avoid cycling of the output relay.
In the operating mode underfrequency (<f) at setting values near to the end of the rage the hysteresis can only be set to \(4 \ldots 10 \%\) due to the internal circuit. When there are problems, the next higher range should be selected.

\section*{Reaction time}

The unit work with an integrating measuring principle, where the mean value of several input pulse periods is calculated. This avoids problems with interference pulses, but the reaction time gets longer. The reaction time relates to the lowest adjustable frequency on the actual unit.

An approximate calculationis: Time constant \((\tau) \approx \frac{2.5}{f_{\text {min }}}\)

\section*{Notes}

The time constant (\(\tau\)) is the time after which a change of the input frequency with \(63 \%\) influences the calculation. If the input frequency before the change is near to the switching value or the change of the frequency is very low, the reaction time can be shorter then the time constant. The technical data will show always the time constant.
Special models with shorter time constant (limited frequency range) on request.

Maximum input frequency, minimum pulse and space time
Every frequency measuring device detects input pulses only up to a certain maximum input frequency. (This is also a result of a proper interference suppression.) If the input frequency is higher then the maximum value, the input pulses are not longer detected. The monitor detects frequency 0.

The maximum frequency is always much higher then the maximum setting value of the highest setting range (see technical data).
Also the maximum switching frequency of the sensors must be observed. In addition every frequency input needs a certain minimum pulse and space duration of the connected sensor to react properly. This is very important with high frequency and a low or high pulse/space ratio (e.g. a small active area on big diameter or a small gap on big diameter at high rotation speed). If a frequency near to the maximum speed should be detected a pulse/space ratio of \(1: 1\) should be provided by designing the rotating part accordingly. Pulse time is the time the high signal is present at te IN terminal, space time is the time the low signal is present on the IN terminal.
When using PNP sensors or contacts connected to \(+U\) the pulse time is identically with the on time of the sensor or contact.
The minimum pulse or space time are very short on these modules, so that most applications are uncritical (see technical data).

\section*{Variants with delay or start up delay}

Devices with adjustable switching delay or start up delay can be made. The start up delay is started when connecting the auxiliary supply, during this time no frequency mesurement is done. This may be useful in application for underspeed monitoring when the speed monitor is started up with the motor which needs some time to get on operation speed. Without start up delay there would be an alarm when before the motor is on speed. Compared with the standard switching delay a start up delay has the advantage that is only work one time on start up, but after that a change is detected immediately. If the start up delay is not required, (e.g. on function overspeed), the potentiometer " \(\mathrm{t} / \mathrm{s}\) " is set to left end (minimum).

\section*{Setting}

\begin{tabular}{|c|c|}
\hline Technical Data & \\
\hline \multicolumn{2}{|l|}{Input Circuit} \\
\hline Universal input: & for PNP-, NPN-, 2-wire sensors, contacts and voltage suitable for proximity sensors according to IEC/EN 60 947-5-2 (VDE 0660 part 208) \\
\hline IK 9055, SK 9055: & sensor supply by external auxiliary voltage DC 24 V \\
\hline IL 9055, SL 9055: max. 20 mA & built in power supply approx. DC 24 V , \\
\hline Max. residual current of 2-wire sensors: & 2 mA (OFF) \\
\hline Max. voltage drop of 2-wire sensors: & 8 V (ON) \\
\hline Voltage drive input resistance: & approx. \(17 \mathrm{k} \Omega\) \\
\hline Threshold Low & \\
\hline IK 9055, SK 9055: & approx. 9.2 V \\
\hline IL 9055, SL 9055: & approx. 8.4 V \\
\hline Threshold High & \\
\hline IK 9055, SK 9055: & approx. 11 V \\
\hline IL 9055, SL 9055: & approx. 10.2 V \\
\hline \multicolumn{2}{|l|}{NAMUR Input} \\
\hline \multicolumn{2}{|l|}{IK 9055/200, SK 9055/200,} \\
\hline IL 9055/200, SL 9055/200: & für NAMUR-sensors according to IEC/EN 60 947-5-6 (VDE 0660 part 212) (previously EN 50227/DIN 19234) \\
\hline No-load operation voltage: & approx. 8.2 V \\
\hline Input resistance: & \(1 \mathrm{k} \Omega\) \\
\hline Short circuit current: & approx. 8 mA \\
\hline Switching thresholds: & Low approx. 1.5 mA \\
\hline & High approx. 1.8 mA \\
\hline \multicolumn{2}{|l|}{Input} \\
\hline IK 9055/300, SK 9055/300, & \\
\hline IL 9055/300, SL 9055/300: & for permanent magnet sensors \\
\hline Input resistance & \\
\hline at \(\mathrm{f}<100 \mathrm{~Hz}\) : & approx. \(50 \mathrm{k} \Omega\) \\
\hline at \(\mathrm{f}=2 \mathrm{kHz}\) : & approx.k \(\Omega\) \\
\hline \multicolumn{2}{|l|}{Input sensitivity} \\
\hline standard: & approx. \(50 \mathrm{mV}_{\text {eff. }}\) (at \(\mathrm{f}<500 \mathrm{~Hz}\)) \\
\hline high: & approx. 20 mV eff. eff (at f < 250 Hz) \\
\hline Max. input voltage: & \(80 \mathrm{Veff}\). \\
\hline Monitoring mode: & overfrequency (,\(>\) 「 \(^{\prime \prime}\)) or underfrequency (,,\(\left.<\mathrm{C}^{4}\right)\) selectable via slide switch \\
\hline Response value: & frequency ranges each 3 -fold, selectable via rotary switch \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Technical Data} \\
\hline \multicolumn{4}{|l|}{Frequency range:} \\
\hline 100 ... 500 & 50 ... 500 & 2 ... 20 & \(10 . . .100\) \\
\hline 500 ... 2500 & 500 ... 5000 & 20 ... 200 & 100 ... 1000 \\
\hline 2000 ... 10000 & 5000 ... 50000 & 200 ... 2000 & 1000 ... 10000 \\
\hline Impulse/min & Impulse/min & Hz & Hz \\
\hline \multicolumn{4}{|l|}{Fineadjustment range:} \\
\hline \multicolumn{4}{|l|}{Max. Input frequency} \\
\hline \multicolumn{4}{|l|}{(Pulse: break = 1:1):} \\
\hline 5 kHz & 5 kHz & 5 kHz & 15 kHz \\
\hline \multicolumn{4}{|l|}{Min. pulse- and breaktime:} \\
\hline \(150 \mu \mathrm{~s}\) & \(150 \mu \mathrm{~s}\) & \(150 \mu \mathrm{~s}\) & \(50 \mu \mathrm{~s}\) \\
\hline \multicolumn{4}{|l|}{Time constant \(\tau\) measuring circuit:} \\
\hline
\end{tabular}

\section*{Hysteresis}
adjustable infinitely: \(\quad 1 . .20 \%\) of the adjusted response

Start up delay
IK 9055/004, SK 9055/004,
IL 9055/004, SL 9055/004
adjustable logarithmically: \(\quad 0.1\)... 20 s

\section*{Auxiliary Circuit}

IK 9055, SK 9055
(terminal connection \(+\mathrm{U} / \mathrm{OV}\)):
Nominal voltage \(\mathrm{U}_{\mathrm{H}}\) : \(\quad \mathrm{DC} 24 \mathrm{~V}\)
Voltage range: \(\quad 19.2 \ldots 30 \mathrm{~V}\)
Nominal consumption: max. approx. 0.5 W
IL 9055, SL 9055
(terminal connection A1/A2):
Nominal voltage \(\mathrm{U}_{\mathrm{H}}\) : \(\quad \mathrm{AC} 24 \mathrm{~V}, 48 \mathrm{~V}, 230 \mathrm{~V}\) (others on request)
Voltage range:
Nominal consumption: approx. 4 VA
Frequency range: \(\quad 45 \ldots 400 \mathrm{~Hz}\)

\section*{Output}

Contacts:
Thermical current \(\mathrm{t}_{\mathrm{th}}\) :
Switching capacity
to AC 15
NO contacts: \(\quad 3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
NC contacts: \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1
ach DC 13
NO contacts: \(\quad 1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
NC contacts:
Electrical life
to AC 15 at \(1 \mathrm{~A} / 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:

General Data

Operating mode:

\section*{Temperature range}

Operation:
Storage:
Altitude:
Clearance and creepage

\section*{distances}
rated impulse voltage/
pollution degree:
EMC
Electrostatic discharge:
HF irradiation
\(80 \mathrm{MHz} . . .1 \mathrm{GHz}\) :
1 GHz ... 2 GHz:
2 GHz ... 2.7 GHz :
Fast transients:
Surge voltage
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression:

4 kV / 2
8 kV (air)
\(20 \mathrm{~V} / \mathrm{m}\)
\(10 \mathrm{~V} / \mathrm{m}\)
\(1 \mathrm{~V} / \mathrm{m}\)
4 kV

1 kV
kV
2 kV
10 V
Limit value class B

IEC 60 664-1
IEC/EN 61 000-4-2
IEC/EN 61000-4-3
IEC/EN 61000-4-3
IEC/EN 61000-4-3
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
EN 55011

\section*{Technical Data}

Degree of protection
\begin{tabular}{|c|c|}
\hline Housing: & IP 40 \\
\hline Terminals: & IP 20 IEC/EN 60529 \\
\hline Housing: & Thermoplastic with Vo behaviour according to UL subject 94 \\
\hline Vibration resistance: & Amplitude 0.35 mm , \\
\hline & Frequency 10...55Hz, IEC/EN 60 068-2-6 \\
\hline Climate resistance: & 20 / 060 / 04 IEC/EN 60 068-1 \\
\hline Terminal designation: & DIN EN 50005 \\
\hline Wire connection: & DIN 46 228-1/-2/-3/-4 \\
\hline Cross section: & \(2 \times 0.6 \ldots 2.5 \mathrm{~mm}^{2}\) solid or \(2 \times 0.28 \ldots 1,5 \mathrm{~mm}^{2}\) stranded wire with and without ferrules \\
\hline Stripping length: & 10 mm \\
\hline Wire fixing: & Plus-Minus-terminal screws M3,5 with self-lifting clamping piece \\
\hline Fixing torque: & 0.8 Nm \\
\hline Mounting: & DIN rail mounting (IEC/EN60715) or screw mounting M4, 90 mm hole pattern, with additional clip available as accessory \\
\hline Weight & \\
\hline IK 9055: & approx. 65 g \\
\hline SK 9055: & approx. 85 g \\
\hline IL 9055: & approx. 140 g \\
\hline SL 9055: & approx. 160 g \\
\hline
\end{tabular}

\section*{Dimensions}

\section*{Width x height x depth}

IK 9055:
SK 9055:
IL 9055:
SL 9055:
\[
17.5 \times 90 \times 59 \mathrm{~mm}
\]
\(17.5 \times 90 \times 98 \mathrm{~mm}\)
\(35 \times 90 \times 59 \mathrm{~mm}\)

\section*{CSA-Data}

Nominal voltage \(U_{N}\) :
IK 9055, SK 9055:
DC 24 V
IL 9055, SL 9055:
AC 24 V , AC 48 V , AC 230 V
Ambient temperature:
\(-20 \ldots+60^{\circ} \mathrm{C}\)

\section*{Switching capacity:}

Wire connection:

\section*{3 A 240 Vac}
\(60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}\) copper conductors only AWG 20-14 Sol Torque 0.6 Nm AWG 20-16 Str Torque 0.6 Nm

\section*{Standard Types}

IK 9055.11/60 \(50 \ldots 50000 \mathrm{lpm} U_{H}\) DC 24 V Hysteresis \(1 \ldots 20 \%\) Article number: 0059786
- Universal input for PNP-, NPN-, 2-wire sensors, contacts, voltage
- Selectable function: over- or underfrequency
- 3-fold selectable ranges 50 ... 500 lpm , 500 ... 5000 lpm ,

5000 ... 50000 lpm
- Response value unfinitely adjustable 1:10
- Hysteresis adjustable: 1 ... \(20 \%\)
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : \(\quad\) DC 24 V
- De-energized on trip
- Output: 1 changeover contact

IL 9055.11/60 \(2 \ldots 2000 \mathrm{~Hz}\) U \(\mathrm{H}_{\mathrm{H}}\) AC 230 V Hysteresis 1 ... \(20 \%\)
Article number: 0057157
- Universal input for PNP-, NPN-, 2-wire sensors, contacts, voltage
- Selectable function: over- or underfrequency
- 3-fold selectable ranges 2 ... \(20 \mathrm{~Hz}, 20\)... \(200 \mathrm{~Hz}, 200\)... 2000 Hz
- Response value unfinitely adjustable 1:10
- Hysteresis adjustable: 1 ... \(20 \%\)
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : \(\quad\) AC 230 V
- De-energized on trip
- Output:

1 changeover contact

\section*{Variants}

IK 9055.__/60,
SK 9055._-/60,
IL 9055._-160,
SL 9055._- /60: with CSA-approval
IK 9055.11/004,
SK 9055.11/004,
IL 9055.11/004,
SL 9055.11/004:
IK 9055.11/200,
SK 9055.11/200,
IL 9055.11/200,
SL 9055.11/200:
input for NAMUR sensors
IK 9055.11/300,
SK 9055.11/300,
IL 9055.11/300,
SL 9055.11/300: input for permanent magnet sensors

Technical data that is not stated in the CSA-Data, can be found in the technical data section.

Classification to DIN EN 50155 for IK 9055

\section*{Vibration and}
shock resistance:
Ambient temperature:
Category 1, Class B IEC/EN 61373
T1 compliant
T2, T3 and TX with operational limitations

\section*{Protective coating of the PCB: No}

\section*{Application Example Universal Input}

PNP-sensor
(\(\mathrm{I}_{\mathrm{C}} \approx 1 \mathrm{~mA}\))

contact
(\(\approx 1 \mathrm{~mA}\))

NPN-sensor
(\(\mathrm{I}_{\mathrm{C}} \approx 7 \mathrm{~mA}\))

2-wire-sensor

contact
(\(\approx 7 \mathrm{~mA}\))

Voltage
(thresholds
ca. 10,5/8,5V)

Note: For IK-models the auxiliary voltage (DC 24 V) must be additionally connected to terminals \(+\mathrm{U} / 0 \mathrm{~V}\)

Circuit Diagram

\section*{Your Advantage}
- Protection of persons, machines and products
- Easy setting
- Universal input, for configuration of different sensors (PNP, NPN, 2-wire, contact, voltage)
- with fast reaction at low speed

\section*{Features}
- According to IEC/EN 60 255-1, VDE 0435 part 303
- Detection of high or low-rpm / stand still (adjustable function)
- Large setting range 1 ... 120.000 IPM or \(0.15 \ldots 20.000 \mathrm{~Hz}\) (10 ranges each)
- As option with input for NAMUR-sensors with sensor and wire protection against interruption and short circuit
- Adjustable hysteresis 0.5 ... 50 \%
- Adjustable start up time delay \(0 \ldots 50 \mathrm{~s}\), control with external contact
- Adjustable monitoring time for missing input signal at function overfrequency; additional using as standstill level
- Programmable via termminals:
- Alarm delay of \(0 \ldots 100 \mathrm{~s}\)
- with manual reset or auto reset
- LED-indication for auxiliary voltage, measuring input and output relay; additional LED for indication of wire- / sensor failure at NAMUR-input
- Auxiliary voltages AC 230 V and DC 24 V in one unit
- 2 changeover contacts, closed circuit operation
- Open circuit operation on request
- As option with analogue output, proportionally to speed
- Device available with 2 response values and seperately controlled output relays for under- and overfrequency see MK 9055N/5 _ _
- MH 9055 with wide input range for auxiliary voltage (AC/DC \(24 \ldots 60 \mathrm{~V}\) or AC/DC \(110 \ldots 230 \mathrm{~V}\))
- 2 possible compact designs MK 9055N: Width 22,5 mm MH 9055: Width 45 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Application}
- Speed monitoring on rotating machine parts
- monitoring of cyclic movements
- general monitoring of pulse sequences (transportation, conveyors, production systems),
- monitoring of pulse frequency (e.g. flow sensors, anemometers)

\section*{Function}

The auxiliary supply is connected to terminals A1-A2. An operation with alternatively DC 24 V is possible via terminals \(+\mathrm{U} / 0 \mathrm{~V}\).
Different sensors can be connected to the measuring input that detects the speed pulses.
The input frequency is compared to the setting value (response value \(=\) fine tunig \(\times\) range).
As the device measures the periods duration the fastest frequency measurement is possible.
In overfrequency mode (switch on front in pos. " \(>f\) ") the output relays switches to alarm state if the input frequency rises above the response value for a longer time then selected on the terminals. If the measuring frequency drops again under the hysteresis value, the output relay switches back to good state without delay.
In underfrequency mode (switch on front in pos. " \(<\) ") the output relays switches to alarm state, if the input frequency drops below the response value for a longer time then selected on the terminals. If the measuring frequency rises again above the hysteresis value, the output relay switches back to good state without delay.
If manual reset is chosen, the output relay stays in tripped position, even if the frequency is back to normal. The reset is made by bridging terminals X2-M or by disconnecting the auxiliary supply.
In alarm state the yellow LEDs "R1" / „R2" are continuously on, during time delay they flash with short pulse.
In de-energized on trip mode the output relay is energized in good state (contacts 11-14, 21-24 etc. closed).
In energized on trip mode the output relay is energized in alarm state (contacts 11-14, 21-24 etc. closed).
If start up delay is selected a timer is started after connection of auxiliary supply that disables the measuring circuit for the adjusted time on terminal X3. During this time the frequency measurement is disabled, the yellow LEDs "R1" and "R2" flash symmetrically and the output relays remain in "good" position.
This start up delay avoids an alarm e.g. when starting a generator or motor.
Iln overfrequency mode missing input signal can be monitored as option: If the signal is missing longer then the selected monitoring time, relay 2 (contacts 21-22-24) and LED "R2" indicate alarm
The variant /010 (NAMUR sensor input) includes broken wire and short circuit monitoring of the sensor and connection wire. A red LED indicates this failure and the output relays switch off.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Indicators} \\
\hline Upper LED "UH/E": & \begin{tabular}{ll}
- green: & \begin{tabular}{l}
Auxiliary supply is present, \\
measuring input is Low
\end{tabular} \\
- yellow: & \begin{tabular}{l}
Auxiliary supply is present, \\
measuring input is High
\end{tabular} \\
- & lintermittent red/green flashing if \(U_{H}\) and \\
impuls sequence present
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Red LED "Sen.Err": \\
(only at NAMUR input) - on, when broken wire or interruptio at sensor ciruit detected
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Lower LED „R1" (yellow):- on, when alarm state (under- / overfrequency) flashes (with short pulse) when time delay is active} \\
\hline Lower LED „R2" (yellow) & \begin{tabular}{l}
- on, when alarm state (under- / overfrequency) flashes (with short pulse) when time delay is active \\
- additional flashes at signal monitoring alarm LEDs "R1" and "R2" flash together during start up delay
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes}

\section*{Universal measuring input}

The universal input of the speed monitor (terminals \(+\mathrm{U}, \mathrm{P}, \mathrm{E}, \mathrm{OV}\)) can handle a large variety of sensors (inductive or capacitve proximity sensors, ultra sonic, halleffect, optical sensors, light barriers, reed contacts etc.). The input is suitable for all sensors according to IEC / EN 60947-5-2 (VDE 0660 part 208).
Depending on the sensor that is used (3-wire PNP or NPN, 2-wire, contact) the connection to the input terminals could be different (see Connection Examples).
As the speed monitor is suitable for a very high maximum frequency, RCelements need to be installed to suppress bouncing of contact sensors (see Connection Examples). It is possible to use standard RC-elements suitable for contact protection or RF interference protection.

\section*{NAMUR input}

The Variant M_9055N/010 is optimzed for the connection of NAMUR sensors according to IEC / EN 60947-5-6 (VDE 0660 Teil 212; former EN 50227 / DIN 19234). These 2-wire-sensors are connedted to terminals IN+ / IN(see application example).
Namur sensors have a defined current in ON as well as in OFF state. This allows to detect short circuits and broken wire on sensor and connection wires with this variant. Together with the upper green/yellow LED the type of failure is indicated:
Red LED "Sen..Err" ON and upper LED "UH/E" lights up green:
Broken wire at input circuit
Red LED "Sen..Err" ON and upper LED "UH/E" lights up yellow:
Short circuit at input circuit
Instead of a NAMUR sensor also a contact sensor with correspondent resistor circuit can be used (see Connection Examples). The suggested resistors are necessary to avoid broken wire or short circuit detection alarm. If the resistors are connected directly on the sensor side, the wiring still is monitored. Because of contact bouncing of mechanical contacts a capacitor has to be connected on the measuring input terminals.

\section*{Sensor supply, 24V DC auxiliary supply as alternative}

The input circuit (+U, P, E, OV) is galvanic separated to the auxiliary supply A1, A2 (eg. AC 230 V). By connecting AC 230 V auxiliary voltage on terminals A1-A2 the unit provides a voltage of approx. 24 V max 20 mA to supply external sensors. If the auxiliary supply is DC 24 V or sensors with higher power consumption are used, the DC 24 V auxiliary supply is connected to terminals \(+\mathrm{U} / \mathrm{OV}\). The sensors are also supplied from this source. (In this case there is no galvanic separation between auxiliary supply and measuring input).

\section*{Monitoring indicator of sensor input}

The upper 2-coloure LED shows the connected supply voltage and the electrical state of the measuring input:
Green: input \(E\) ist on LOW level
Yellow: input E ion HIGH level
Depending on the type of sensor (PNP, NPN, 2-wire, NO or NC contact) the actual state (active or inactive) is indicated.
Green / yellow: input pulses from sensor present

\section*{Several speed monitors on one sensor}

Parallel operation of several speed monitors on one sensor is possible the universal input e.g. to monitor several speed levels. The corresponding terminals are all connected in parallel.

\section*{Start up delay / monitoring of measuring signal.}

The start up time delay (\(\mathrm{t}_{\mathrm{A}}\)) can be adjusted with the lowest potentiometer on the front side of the unit and is activated when connecting the auxiliary supply. If no start-up delay is required the potentiometer is turned fully antic-clockwise (\(\mathrm{t}=0\)).
In underfrequency mode (" \(<f\) ") the start up delay can be extended/restarted at any time with a control contact between terminals X3-M. As long as X3-M is bridged the start up delay is continuously on and the frequency is not measured. When the link on X3-M is opened the start up delay time restarts.
In overfrequency mode (" \(>f\) ") with a bridge on X3-M, the lowest potentiometer sets the measuring signal monitoring time \(\left(\mathrm{t}_{\mathrm{s}}\right)\) (The adjusted time values \(t_{A} / t_{S}\) are identically).

When signal monitoring in mode " \(>\mathrm{f}\) " is selected by bridging X3-M the measuring input is monitored as follows:
If during the adjusted monitoring time interval no measuring signal is detected, measuring signal alarm is indicated. As soon as the measuring signal returns the alarm status is reset (auto reset selected) and the monitoring interval \(t_{s}\) starts again.
The alarm status is indicated on relay 2 (contacts 21-22-24) and LED "R2" and can be easily differentiated from under/over frequency alarm where

\section*{Notes}
both relays (contacts 11-12-14 and 21-22-24) and LEDs "R1"and "R2") are active.
The detection of missing measuring signal can increase the safety in critical applications on overfrequency. It detects if the measuring signal is connected to the input of the device and works correctly: It can be checked if the frequency input still delivers pulses. If a Namur sensor is used with variant / 010 higher safety can be achieved by the integrated short circuit and broken wire detection.

\section*{Second speed level / detection of overspeed and standstill}

The signal monitoring time setting in the overfrequency mode can also be used as second speed level, e.g. to detect standstill in addition to overspeed. To achieve this, the monitoring time is adjusted on the lower potentiometer to the reverse value of the pulse frequency that indicates standstill.

\section*{Programming terminals (M-X1-X2-X3):}

Attention! The terminals \(\mathrm{M}-\mathrm{X} 1-\mathrm{X} 2-\mathrm{X} 3\) have no galvanic separation to the measuring circuit (+U / P/E/OV) e.g. auxiliary voltage DC 24 V

M: Common connection (Ground) of the programming terminals (identically with OV)

X1: A response delay of \(0 . . .100\) s after connection of auxiliary supply is achieved by connecting a X 1 to M with a potentiometer or fixed resistor (0.25 W) see technical data. The delay can be stopped by bridging X 1 to M at any time. If no start up delay is required the terminals \(\mathrm{X} 1-\mathrm{M}\) must be linked.

X2: Manual reset with NO contact push button on X2-M, auto reset with terminals X2-M bridged.

X3: When X3-M is bridged in mode "underfrequency" the start up delay is continuously active or the time is restarted. In mode overfrequency the monitoring of the measuring signal is switched on by bridging X3-M.

\section*{Adjustment aid for start up delay and alarm delay}

During the elapse of start up delay and alarm delay the yellow LED „R1" and „R2" is flashing with a frequency of 2 Hz . To set a specific time value in seconds the number of flash pulses can be used to check the setting: Number of flash pulses divided by 2 = time delay in seconds.

\section*{Variants with Analogue Output Indicating the Actual Speed / Frequency}

With this variant the programming terminal X3 is replaced by terminal UA or IA, that provides an analogue signal proportional to the speed with reference to terminal 0 V . This signal is either \(0 \ldots 10 \mathrm{~V}\) or \(0 \ldots 20 \mathrm{~mA}\) or \(4 \ldots 20 \mathrm{~mA}\). As the X3 terminal is not available, these variants do not offer indication of missing speed signal in overfrequency mode and the start up delay can only be initiated when the auxiliary supply is switched on.
With the variant \(/ 017\) (NAMUR sensor input with analogue output \(4 \ldots 20 \mathrm{~mA}\)) the analogue output also indicates a sensor or wiring failure by switching the output to 0 mA .
The analogue output has no galvanic separation to measuring input and the alternative auxiliary supply on terminals \(+\mathrm{U} / 0 \mathrm{~V}\)

\section*{Technical Data}

Frequency Measuring Input

\section*{Universal Input (+U / P / E OV)}
for PNP-, NPN-, 2-wire sensors, contacts and voltages, connection see application examples;
suitable for all proximity sensors according to IEC / EN 60947-5-2 (VDE 0660 part 208)
built in power supply approx. DC \(24 \mathrm{~V} /\) max. 20 mA on terminals +U / 0V; Alternatively external auxiliary voltage supply DC 24 V via terminals +U / 0V Max. residual current
at 2-wire sensors: 2 mA (OFF state)
Max. voltage drops
at 2-wire sensors: \(\quad 8 \mathrm{~V}\) (ON state)
Voltage control
Input resistance: approx. \(17 \mathrm{k} \Omega\)
Low-capability: \(\leq 8 \mathrm{~V}\)
High-capability: \(\quad \geq 11 \mathrm{~V}\)
NAMUR Input (Variant /010) IN+ / IN-
for NAMUR sensors according to IEC/EN 60947-5-6 (VDE 0660 part 212)
No-load voltage:
Input resistance:
Short circuit current:
response value
Low:
High:
typ. 1.75 mA
Brok wir
short circuit threshold:

Alternatively external auxiliary voltage supply DC 24 V via terminals +U / 0V

\section*{Common Data for Inputs}

\section*{response value}

10 ranges: 1 ... 120.000 IPM
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline range & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & 1 & 3 & 10 & 30 & 100 & 300 & 1.000 & 3.000 & 10.000 & 30.000 \\
Imp. / & to \\
min & 4 & 12 & 40 & 120 & 400 & 1.200 & 4.000 & 12.000 & 40.000 & 120.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{c|}{ or \(0.15 \ldots 20.000 \mathrm{~Hz}\)} \\
\hline range & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & 0.15 & 0,5 & 1,5 & 5 & 15 & 50 & 150 & 500 & 1.500 & 5.000 \\
Hz & to \\
& 0.6 & 2 & 6 & 20 & 60 & 200 & 600 & 2.000 & 6.000 & 20.000 \\
\hline
\end{tabular}

Fine adjustment:
Max. input frequency
(Impuls : Pause =1:1)
Range 1 ... \(4: \quad 1.5 \mathrm{kHz}\)
Range \(5 \ldots 7: \quad 5 \mathrm{kHz}\)
Range 8 ... 10:
Min. pulse- and breaktime
Range 1 ... 4: \(350 \mu \mathrm{~s}\)
Range \(5 \ldots 7: \quad 100 \mu \mathrm{~s}\)
Range 8 ... 10: \(20 \mu s\)
Stability of the setting
threshold at variation of
auxiliary voltage and
temperature: 2 \%
Hysteresis:
Reaction time of
Frequency monitoring: (Alarm delay set to 0)
Duration of 1 cycle (inverse value of adjusted frequency) +10 ms (at over frequency: inverse value of signal frequency +10 ms)
Response delay: adjustable 0 ... 100 s with resitor/potentiometer across terminals X1-M:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{R} / \mathrm{k} \Omega:\) & 0 & 15 & 22 & 33 & 47 & 68 & 100 & 150 & 220 & 470 & \(\infty\) \\
\hline \(\mathrm{t}_{\mathrm{v}} / \mathrm{s}:\) & 0 & 0.3 & 0.7 & 1.3 & 2.3 & 5 & 9 & 15 & 25 & 50 & 100 \\
\hline
\end{tabular}

\section*{Technical Data}

Time between connection
of auxiliary supply and ready to mesure:
Start up time delay /
signal monitoring time:
approx. 0.4 s (with start up delay is 0)
continously variable on logarithmic scale; \(\mathrm{t}_{\mathrm{A}}: 0 \ldots 50 \mathrm{~s}, \quad \mathrm{t}_{\mathrm{s}}: 0,1 \ldots 50 \mathrm{~s}\)

Auxiliary Voltage (A1-A2; e.g. +U / 0V)

\section*{Auxiliary voltage \(U_{H}\) :}

AC 115, 230, \(400 \mathrm{~V}+\mathrm{DC} 24 \mathrm{~V}\) each (via terminals \(+\mathrm{U} / 0 \mathrm{O}\)) (Terminals \(+\mathrm{U} / 0 \mathrm{~V}\) has no galvanic separation to measuring input)

AC/DC 24 ... 60, 110 ... 230 V (only for MH -version possible)
Voltage range
AC:
DC:
AC/DC:
Frequency range
AC:
Nominal consumption:
AC:
DC:
\(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{H}}\)
\(0.85 \ldots 1.2 U_{H}\)
\(0.75 \ldots 1.2 U_{H}\)
45 ... 440 Hz
approx. 4 VA
approx. 2 W

Contact Output (11-12-14, 21-22-24)

Analogue Voltage Output (variant /0_5, terminal "UA" against "OV")
Nominal output voltage: \(\quad 0 \ldots 10 \mathrm{~V}\), linear proportional to the speed / frequency, without galvanic separation to measuring input and
DC 24 V-supply
Load:
Scale:

Accuracy:
max. 10 mA
0 V at \(0 \mathrm{IPM} / \mathrm{Hz}\)
5 V at setting end of scale value of speed / frequency
10 V at input frequency \(=2 x\) end of scale value \(3 \%\)

Analogue Output (variant /0_6, e.g. 0_7; terminal "IA" against "OV")

\section*{Output:}

Max. burden:
Scale:

Fault signal at
NAMUR input:
Accuracy:

0 ... 20 mA bzw. \(4 \ldots 20 \mathrm{~mA}\), linear proportional to the speed / frequency, without galvanic separation to measuring input and DC 24 V-supply \(500 \Omega\)
0 mA e.g. 4 mA at 0 IPM / Hz
10 mA e.g. 12 mA at setting end of scale value
20 mA at input frequency \(=2 x\) end of scale value
at output \(4 \ldots 20 \mathrm{~mA}\) (variant /017) on sensor failure currentt drops tp 0 3 \%

\section*{Technical Data}

\section*{General Data}

Nominal operating mode: continuous operation
Temperature range: \(-20 \ldots+60^{\circ} \mathrm{C}\)
Clearance and creepage distance
rated impulse voltage /
pollution degree:
Contact to measuring input:
Contact to auxiliary circuit:
Contact to Contact:
Auxiliary circuit A1-A2 to
measuring input:
Programming terminals
M-X1-X2-X3:
Auxiliary voltage DC 24 V
(an \(+\mathrm{U} / 0 \mathrm{~V}\)):
Analogue output, optional
(UA / IA):
EMC
Electrostatic discharge:
Fast transients:
Surge voltage
between
wires for power supply:
HF-wire guided
Interference suppression:
Degree of protection:
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Fixing torque:
Mounting:
Weight:
\(4 \mathrm{kV} / 2\)
\(4 \mathrm{kV} / 2\)
\(4 \mathrm{kV} / 2\)
\(4 \mathrm{kV} / 2\)

2 kV

1 kV
10 V
Limit value class B
IP 40
IP 20
thermoplastic with VO behaviour
acc. to UL subject 94
Amplitude 0.35 mm
20/060/04
EN 50005
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or

DIN 46 228-1/-2/-3/-4 oder
DIN 46 228-1/-2/-3/ terminals with wire protection
0.8 Nm

DIN-rail

IEC 60 664-1
IEC 60 664-1
IEC 60 664-1
IEC 60 664-1
without galv. separat. to measuring input without galv. separat. to measuring input without galv. separat. to measuring input

8 kV (air) IEC/EN 61 000-4-2
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
EN 55011

IEC/EN 60529
IEC/EN 60529
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
IEC/EN 60 068-1
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
Plus-minus terminal screws M3,5 box

IEC/EN 60715

\section*{Dimensions}

\section*{Width x height x depth:}

MK 9055N:
MH 9055:
\(22.5 \times 90 \times 97 \mathrm{~mm}\)
\(45 \times 90 \times 97 \mathrm{~mm}\)

\section*{Standard Type}

MK 9055N. 12 1... 120.000 IPM \(U_{H}\) AC 230 V
Article number: 0058715
- Universal input for PNP-, NPN-, 2-wire-sensors, contacts, voltage
- Selectable function: over- or underfrequency
- Selectable signal monitoring at overfrequency mode
- 10 -fold selectable ranges: 1 ... 120.000 IPM
- Response value unfinitely adjustable 1:4
- Hysteresis: adjustable from 0.5... \(50 \%\)
- Start up time delay /
signal monitoring time: adjustable from \(0 \ldots 50\) s
- Response delay: settalbe with external resitor to \(0 . . .100 \mathrm{~s}\)
- Alarm storing or auto-reset selectable
- Auxiliary voltage \(U_{H}\) : AC \(230 \mathrm{~V}+\mathrm{DC} 24 \mathrm{~V}\)
- Closed circuit operation
- Output: 2 changeover contacts
- Width: 22.5 mm

\section*{Standard Type}

MK 9055N. \(120,15 \ldots 20.000 \mathrm{~Hz} \mathrm{U}_{\mathrm{H}}\) AC 230 V
Article number: 0058716
- Universal input for PNP-, NPN-, 2-wire-sensors, contacts, voltage
- Selectable function: over- or underfrequency
- Selectable signal monitoring at overfrequency mode
- 10-fold selectable ranges: 0,15 ... 20.000 Hz
- Response value unfinitely adjustable 1:4
- Hysteresis:
adjustable from 0.5... 50 \%
- Start up time delay / signal monitoring time:
- Response delay: adjustable from 0 ... 50 s
- Alarm storing or auto-reset selectable
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :

AC \(230 \mathrm{~V}+\mathrm{DC} 24 \mathrm{~V}\)
- Closed circuit operation
- Output:

2 changeover contacts
22.5 mm

\section*{Variants}

M_ 9055_.12/0

5 Analogue output 0 ... 10 V (instead of terminal X3)
6 Analogue output 0 ... 20 mA (instead of terminal X3)
7 Analogue output 4 ... 20 mA (instead of terminal X3)
0 Universal input (standard)
1 NAMUR input with sensor monitoring

\section*{Ordering example for variants}

\section*{Application Examples}

Universal input

NAMUR input only at M_9055.12/01_

\section*{VARIMETER \\ Level Sensing Relay}

IL 9151, SL 9151, MK 9151N

Function Diagrams

common control of output relays

- According to IEC/EN 60 255-1
- 3 probe connections for 2-point and 1-point level control
- Also for use as moisture detector
- High interference resistance of the Measuring Circuit, which is isolated from the mains
- Max. wire length to the probes: 1500 m
- Large setting range: \(2 \ldots 450 \mathrm{k} \Omega\)
this permits differentiation between fluid and foam
- Separately adjustable response and release time delay \(0.2 \ldots 20\) s for MIN- and MAX-level
- Programmable for:
- 2 separate controllable output relays for MIN and MAX level
- common controlled output relays for 2-point hysteresis level control
- open circuit operation
- closed circuit operation
- Measuring Circuit for probes works with internally generated AC voltage (approx. 30 Hz), electrolytic behaviour does not occur in the liquid
- For auxiliary voltages of 24 ... 415 V AC or 24 V DC
- LEDs for operation and state of contact
- 2 changeover relays with 1 changeover contact each
- IL 9151 and SL 9151 with safe separation according to IEC/EN 61 140, IEC/EN 60 947-1
- Devices available in 3 enclosure versions:

IL 9151: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SL 9151,
MK 9151N: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- IL/SL 9151: 35 mm width

MK 9151N: 22.5 mm width
Approvals and Markings

A025518

\author{
1) only IL 9151, MK 9151N
}

\section*{Application}
- Level monitoring and control for conductive liquids and powders, e.g. maximum and minimum filling levels, overfilling and protection against dry running
- Monitoring and control of the mixing ratio of conductive liquids
- General resistance monitoring tasks, e.g. limit temperature detection with PTC
- Contact protection relay with time delay

IL 9151.12, SL 9151.12

MK 9151N. 12
\begin{tabular}{l}
\hline Connection Terminals \\
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage AC oder DC \\
\hline MIN, MAX, COM & Electrode connection \\
\hline X1 - COM & Selection operating mode via bridge \\
\hline X2 - COM & Selection de-energized or energized via bridge \\
\hline \(11,12,14\) & Contacts Rel. 1 \\
\hline \(21,22,24\) & Contacts Rel. 2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Indicators}

\section*{IL/SL 9151} green LED: yellow LED: red LED:
on, when auxiliary supply connected
on, when relay MAX active

MK 9151N
green LED: yellow LED "MIN": red LED "MAX":
on, when auxiliary supply connected on, when relay MIN active
on, when relay MAX active

\section*{Notes}

All commercially available probes are suitable.
The reference probe for level measurement is generally located at the lowest point of the container and must always be connected to the "COM" terminal. The container itself can be used as a reference probe if it consists of conductive material.

On the level "MIN" and "MAX" the other probes are installed and connected to the corresponding inputs of IL 9151. It is also possible to connect only one probe.

\section*{2-point level control}

The 2-point control is selected when a liquid should be kept between "MIN" and "MAX" level. 2 operation modes can be selected:
without bridge \(\mathrm{X} 1-\mathrm{COM}\) : separate control of output relays for "MIN" and "MAX" level
with bridge \(\mathrm{X} 1-\mathrm{COM}: \quad\) common control of both output relays
When the relays are separately controlled each output relay is operated by the corresponding probe circuit. For each level the time delay can be set separately (\(\mathrm{tv}_{\text {MIN }}\) and \(\mathrm{tv} \mathrm{v}_{\text {MAX }}\)).

When the relays are controlled together, these work like a relay with 2 changeover contacts as follows:

If the liquid rises above the "MAX" level the output relays switch over after the delay time of \(\mathrm{tv}_{\text {max }}\) and start e.g. a pumpt to sink the liquid. If the level goes under the "MAX" level the output relays remain activated until the "MIN" level is reached. Now the output relays switch back after the time delay of \(\mathrm{tv}_{\text {MIN }}\) and stop the pump. The whole process starts again when the level reaches the "MAX" probe.

\section*{Notes}

\section*{1-point level control}

1-point level control (see Figure) is especially suitable for protection against overfilling and dry running on containers with a free inlet/outlet. In this configuration, all that is required besides the reference probe "COM" is the "MAX", which must be located at the desired limit level. The output relay switches over after the set delay time if the fluid level exceeds or falls below the limit level, which permits fluid to be pumped out or added.

Without bridge X1-COM only relay "MAX" (contacts 21-22-24) switch, with bridge X1 - COM both relays switch together. If for each output relay a separate time delay is necessary, the unit has to be set to separate control of the outputs and the "MIN" and "MAX" inputs are connected to the same probe. Please note that the resistance of the liquid is divided up on both input circuits. Therefore the response value must be setted to the double value.

If separate output control is selected with 1-point control for each output relay the time delay can be setted separately.

Because of the settable time delay of 0.2 to 20 sec for each probe circuit, it is possible to suppress early switching caused by waves on the liquid. Also time depending level control can be realised. The delay works integrating and is active when the liquid goes over as well as under the probe level.

The wide setting range allows easily an optimum setting so that the unit can differentiate between foam and liquid. The response value must be set to a value high enough, that the unit reacts when the liquid, but not when the foam reaches the probe (for setting procedure the time delay is set to min. value).
\begin{tabular}{|c|c|}
\hline Technical Data & \\
\hline \multicolumn{2}{|l|}{Input} \\
\hline \multicolumn{2}{|l|}{Setting range of the} \\
\hline Setting: & on logarithmically divided absolute scale \\
\hline Switching point hysteresis: & \begin{tabular}{l}
approx. \(4 \%\) (at \(450 \mathrm{k} \Omega\)) \\
... \(15 \%\) (at \(2 \mathrm{k} \Omega\)) of the set value
\end{tabular} \\
\hline \multirow[t]{7}{*}{Voltage and temperature influence: Max. cable length to the probes:} & \(<2 \%\) of the set value \\
\hline & \(\begin{array}{ll}\text { Set value } & \begin{array}{l}\text { Cable length } \\ \text { (at } 100 \mathrm{nF} / \mathrm{km})\end{array}\end{array}\) \\
\hline & \(450 \mathrm{k} \Omega \quad 50 \mathrm{~m}\) \\
\hline & \(100 \mathrm{k} \Omega \quad 200 \mathrm{~m}\) \\
\hline & \(35 \mathrm{k} \Omega \quad 500 \mathrm{~m}\) \\
\hline & \(10 \mathrm{k} \Omega \quad 1500 \mathrm{~m}\) \\
\hline & \(5 \mathrm{k} \Omega \quad 3000 \mathrm{~m}\) \\
\hline Max. sensing voltage: & approx. AC 10 V (internally generated) \\
\hline Max. sensing current: & approx. AC 1.5 mA (internally generated) \\
\hline \multicolumn{2}{|l|}{Response and release times} \\
\hline \(\mathrm{tv}_{\text {Min }}, \mathrm{tv}_{\text {MAX }}\) : & \(0.2 \ldots 20 \mathrm{~s}\) for both output relays separate settable Setting on logarithmically-divided absolute scale \\
\hline \multicolumn{2}{|l|}{Auxiliary Circuit} \\
\hline Auxiliary voltage \(\mathrm{U}_{\mathbf{H}}\) : & AC 24, 42, 110, 230 V DC 24 V \\
\hline \multicolumn{2}{|l|}{Voltage range of \(\mathrm{U}_{\mathrm{H}}\)} \\
\hline & \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
\hline DC: & \(0.85 \ldots 1.25 \mathrm{U}_{\mathrm{N}}\) \\
\hline \multicolumn{2}{|l|}{Nominal power consumption} \\
\hline AC: & approx. 2 VA \\
\hline DC: & approx. 1 W \\
\hline Frequency range: & \(45 \ldots 400 \mathrm{~Hz}\) \\
\hline \multicolumn{2}{|l|}{Output} \\
\hline \multicolumn{2}{|l|}{Contacts} \\
\hline IL/SL 9151.12, MK 9151N.12: & \(2 \times 1\) changeover contact \\
\hline Thermal current \(\mathrm{I}_{\text {th }}\) : & 4 A \\
\hline Switching capacity & \\
\hline IL/SL 9151: & \\
\hline \multicolumn{2}{|l|}{to AC 15} \\
\hline NO contact: & \(5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline NC contact: & \(2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline to DC 13: & \(2 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline \multicolumn{2}{|l|}{MK 9151N:} \\
\hline to AC 15 & \\
\hline NO contact: & \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline NC contact: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline to DC 13: & \(1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) IEC/EN 60 947-5-1 \\
\hline \multicolumn{2}{|l|}{Electrical life} \\
\hline \multirow[t]{2}{*}{IL/SL 9151:
to AC 15at 1 A, AC 230 V :} & IEC/EN 60 947-5-1 \\
\hline & \(2 \times 10^{5}\) switching cycles \\
\hline \multirow[t]{2}{*}{MK 9151N:} & IEC/EN 60 947-5-1 \\
\hline & \(1.5 \times 10^{5}\) switching cycles \\
\hline \multicolumn{2}{|l|}{Short circuit strength} \\
\hline Mechanical life: & \(\geq 30 \times 10^{6}\) switching cycles \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{General Data}

Operating mode:
Temperature range:
Operation: \(-20 \ldots+60^{\circ} \mathrm{C}\)
Storage: \(\quad-25 \ldots+70^{\circ} \mathrm{C}\)
Altitude: \(\quad<2.000 \mathrm{~m}\)
Clearance and creepage
distances
rated rated impulse voltage voltage /
pollution degree
IEC 60 664-1
IL/SL 9151:
input / Auxiliary Circuit: \(\quad 6 \mathrm{kV} / 2\) (at \(\mathrm{U}_{\mathrm{H}}=\mathrm{DC} 24 \mathrm{~V}: 1 \mathrm{kV}\))
input / output circuit:
MK 9151N:
input / Auxiliary Circuit: \(\quad 4 \mathrm{kV} / 2\) (at \(\mathrm{U}_{\mathrm{H}}=\mathrm{DC} 24 \mathrm{~V}: 1 \mathrm{kV}\))
input / output circuit:
auxiliary / output circuit
A1-A2 (AC):
EMC
Electrostatic discharge
HF irradiation
\(80 \mathrm{MHz} . .1 \mathrm{GHz} \quad-\quad 10 \mathrm{~V} / \mathrm{m}\)
1 GHz 27 GHz
Fast transients:
Surge voltages
between
\begin{tabular}{llr}
wires for power supply: & 1 kV & IEC/EN 61 000-4-5 \\
between wire and ground: & 2 kV & IEC/EN 61 000-4-5 \\
HF wire gided: & 10 V & IEC/EN 61 000-4-6 \\
Interference suppression: & Limit value class B & EN 55 011 \\
\begin{tabular}{ll}
Degree of protection & \\
Housing: & IP 40 \\
Terminals: & IP 20
\end{tabular} & IEC/EN 60 529 \\
IEC/EN 60 529
\end{tabular}

Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
IL/SL 9151:

Min. cross section:
Insulation of wires
or sleeve length:
MK 9151N:

Min. cross section:
Abisolierlänge der Leiter:
Wire fixing:
IL/SL 9151:
MK 9151:
Fixing torque:
Mounting:
Weight
IL 9151:
SL 9151:
MK 9151N:
Dimensions
Width x height x depth
IL 9151:
SL 9151:
MK 9151N:
\(35 \times 90 \times 59 \mathrm{~mm}\)
\(35 \times 90 \times 98 \mathrm{~mm}\)
\(22.5 \times 90 \times 98 \mathrm{~mm}\)

\section*{CCC-Data}

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :
MK 9151N:
AC 24, 42, 110, 230 V
DC 24 V
Switching capacity
to AC 15
NO contact:
1.5 A / AC 230 V

IEC/EN 60 947-5-1

\section*{Standard Type}

IL \(9151.122 \ldots 450 \mathrm{k} \Omega\) AC \(230 \mathrm{~V} 0.2 \ldots 20 \mathrm{~s}\)

Article number:
0049135
- Settable response value: 2 ... \(450 \mathrm{k} \Omega\)
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : AC 230 V
- Response and release delay: \(0.2 \ldots 20 \mathrm{~s}\)
- 2 output relays with 1 changeover contact each
- With safe separation
- Width: 35 mm

SL 9151.122 ... \(450 \mathrm{k} \Omega\) AC 230 V 0.2 ... 20 s
Article number:
0051552
- Settable response value: 2 ... \(450 \mathrm{k} \Omega\)
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : \(\quad\) AC 230 V
- Response and release delay: \(0.2 \ldots 20 \mathrm{~s}\)
- 2 output relays with 1 changeover contact each
- With safe separation
- Width: 35 mm

MK 9151N. \(122 \ldots 450 \mathrm{k} \Omega\) AC \(230 \mathrm{~V} \quad 0.2 \ldots 20 \mathrm{~s}\)
Article number:
- Settable response value: \(\quad 2 \ldots 450 \mathrm{k} \Omega\)
- Auxiliary voltage \(U_{H}\) :

AC 230 V
- Response and release delay: \(0.2 \ldots 20 \mathrm{~s}\)
- 2 output relays with 1 changeover contact each
- Width: 22.5 mm

\section*{Variants}

MK 9151N.12/001:
MK 9151N.12/002:
time delay, when level drops under setting value time delay, when level rises over setting value

\section*{Ordering example for variants}

\section*{Accessories}

\section*{OA 5640:}

Standard probe
Article number: 0016045

Probe made of stainless steel,
Cable entry PG 9,
Temperature range \(0 \ldots+60^{\circ} \mathrm{C}\),
Weight approx. 0.1 kg
Wire connection \(2.5 \mathrm{~mm}^{2}\) stranded wire with sleeve

\section*{Application Example}

IL 9151, SL 9151 with safe separation according to IEC/EN 61 140, IEC/EN 60 947-1

Application as contact protection relay, e.g. for two reed contact switches (K1, K2).

Function Diagrams

BA 9094.28, BA 9094.28/100

BA 9094.20
- According to IEC/EN 60 255, VDE 0435
- 2 PT 100 inputs with separate outputs or alternatively common output
- Optionally 1 PT 100 input with 2 separate outputs for 2 different response values
- Separate adjustable response and release values for each input
- Optionally with fixed response and release values
- Broken wire detection in sensor circuit
- Closed circuit operation
- 2 wire connection
- Width 45 mm

\section*{Approvals and Markings}

\section*{C}

\section*{Applications}

Monitoring of temperature e.g. Motors, ball bearings, etc.

\section*{Function}

On overtemperature and broken wire the output relay deenergises

\section*{Indicator}
green LED:
on, when auxiliary supply connected red LED P1, P2:

\section*{Notes}

An input which is not used must be bridged

\section*{Circuit Diagrams}

BA 9094.28

BA 9094.28/100
\begin{tabular}{|c|c|}
\hline Technical Data & \\
\hline \multicolumn{2}{|l|}{Input} \\
\hline Inputs: & 2 PT 100 inputs \\
\hline Setting range response value: & \(20^{\circ} \mathrm{C} . . .100^{\circ} \mathrm{C}\) \\
\hline & other ranges on request \\
\hline Hysteresis: & \(85 \%\)... \(95 \%\) of response value \\
\hline \multicolumn{2}{|l|}{Auxiliary Circuit} \\
\hline Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : & AC 24, 42, 110, 127, 230 V DC 24 V \\
\hline Voltage range: & \(0,8 \ldots 1,1 U_{\text {H }}\) \\
\hline Nominal consumption: & 3,4 VA \\
\hline Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
\hline Output & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Contacts:} \\
\hline BA 9094.28: & \multicolumn{2}{|l|}{\begin{tabular}{l}
1 changeover contact for P1 \\
1 NO contact for P2
\end{tabular}} \\
\hline BA 9094.20: & \multicolumn{2}{|l|}{1 changeover, 1 NO contact for P1, P2} \\
\hline Thermal current \(\mathrm{t}_{\mathrm{th}}\) : & \multicolumn{2}{|l|}{} \\
\hline Switching capacity to AC15: & & \\
\hline BA 9094.28: & \(5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline BA 9094.20: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline Electrical life & & IEC/EN 60 947-5-1 \\
\hline BA 9094.28: & & \\
\hline to AC 15 at \(5 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) : BA 9094 . & > \(0,1 \times 10^{6}\) swit & cycles \\
\hline to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) : & > \(0,1 \times 10^{6}\) swit & cycles \\
\hline Short-circuit strength max. fuse rating: & 4 AgL & IEC/EN 60 947-5-1 \\
\hline Mechanical life: & > \(30 \times 10^{6}\) switc & cycles \\
\hline General Data & & \\
\hline
\end{tabular}

General Data
Operating mode:
Temperature range:
Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
Clearance and creepage

\section*{distances}
rated impulse voltage /
pollution degree:

\section*{EMC}

Electrostatic discharge:
HF irradiation:
Fast transients:
4 kV / 2
IEC 60 664-1
8 kV (air) IEC/EN 61 000-4-2
between
wires for power supply:
between wire and ground:
Interference suppressions:

Degree of protection: Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation: Wire connection:

Wire fixing:
Mounting:
Weight:
Dimensions
\begin{tabular}{ll}
Standard Type & \\
BA 9094.28 AC 230 V & \(50 / 60 \mathrm{~Hz} 2 \times 20 \ldots 100^{\circ} \mathrm{C}\) \\
Article number: & 0048194 \\
- Output: & 1 changeover contact for P1 \\
& 1 NO contact for P2 \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & AC 230 V \\
- Response value: & \(2 \times 20 \ldots 100^{\circ} \mathrm{C}\) \\
- Width: & 45 mm
\end{tabular}

\section*{Variants}

BA 9094. _ _ \(001: \quad\) with fixed response and release value Response value:
\(135^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\)
other values on request
Release value:
\(125^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\)
other values on request
only 1 PT 100 input
with 2 seperate outputs for
2 different response values

\section*{Ordering example for variants}

Function Diagram

- According to IEC/EN 60 255-1
- 1 PT100 input, 2-wire connection
- 3 temperature ranges
- Adjustable response value
- Adjustable Hysteresis with wide range \(3 \ldots 30^{\circ} \mathrm{C}\) or \(1 \ldots 15^{\circ} \mathrm{C}\)
- Broken wire detection in sensor circuit
- Programmable hysteresis or latching function via terminal X1
- IK 9094 no galvanic separation between measuring and Auxiliary Circuit
- Closed circuit operation
- LED indicator for operation and state of output relay
- 1 changeover contact
- As option with response value up to \(-50^{\circ} \mathrm{C}\), e.g. for refrigeration plants
- As option with galvanic separation between measuring and Auxiliary Circuit
- Devices available in 2 enclosure versions:

I-model: depth 59 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
S-model: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- DIN rail or screw mounting
- IK 9094, SK 9094: 17.5 mm width

IL 9094, SL 9094: 35 mm width

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Applications}
- Monitoring of temperature e.g. Motors, ball bearings, rooms, refrigeration plants, etc.
- Temperature control
- Monitoring of humidity, see relay workshop no. 19
- For industrial and railway applications

\section*{Function}

On terminals P0-P1 the resistance of the PT 100 is measured.
On overtemperature and broken wire the output relay deenergises
\begin{tabular}{ll}
\hline Indicators & \\
LED: & green, when auxiliary supply connected \\
LED: & red, when overtemperature
\end{tabular}

IK 9094.11, SK 9094.11
Connection Terminal
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1, A2 & Auxiliary voltage \\
\hline P0, P1 & \begin{tabular}{l}
Connection for resistance thermometer \\
PT100
\end{tabular} \\
\hline X1, P0 & \begin{tabular}{l}
Control input (manual reset / hysteresis \\
function) \\
X1/P0 nicht gebrückt: manual reset \\
X1/P0 gebrückt: Hysteresis function
\end{tabular} \\
\hline \(11,12,14\) & Changeover contact \\
\hline
\end{tabular}

\section*{Notes}

\section*{Setting}

Easy to set the temperature in \({ }^{\circ} \mathrm{C}\) :

Release value:

To operate the unit as temperature controller it has to be set to hysteresis function and to a small hysteresis (e.g. \(3^{\circ} \mathrm{C}\)).

With link X1-P0:
Without link X1-P0:

The latching can be reset by bridging X1-P0 for a short time (Push button) or by disconnecting the auxiliary supply.

The IK/SK 9094 is designed to operate 2 wire PT 100 sensors. Therefore the setting must be corrected when using longer wires with about \(2.6^{\circ} \mathrm{C}\) per \(\Omega\) of the connection wires (e.g. 2 pole cable \(2 \times 1.5 \mathrm{~mm}^{2}\) of 40 m length has about \(1 \Omega\)).

A temperature sensor with insulation must be used (AC 300 V).

IL 9094.11, SL 9094.11

Upper switch sets range (3 positions)
+ Middle potentiometer sets response value in \({ }^{\circ} \mathrm{C}\)

Hysteresis function
Latching function (the relay stays in off postion even if the temperature is correct again.

\section*{Technical Data}

Input
Inputs:
- with bridge \(\mathrm{X} 1-\mathrm{P} 0\) :
- without bridge X1-P0:

Setting range of response value:

IL/SL 9094.11/010:
Release value:
IL/SL 9094.11/010:

Voltage and temperature influence:
Measuring current:
Dissipation of PT 100: Voltage on open terminals P0-P1:
Broken wire detection:

Lower potentiometer sets Hysteresis in \({ }^{\circ} \mathrm{C}\)

Auxiliary Circuit (A1-A2)

\section*{Auxiliary voltage \(\mathbf{U}_{\mathrm{H}}\)}

IK/SK 9094:
IL/SL 9094:

\section*{Voltage range}
at AC:
at DC:
Nominal consumption
IK/SK 9094.11
at AC:
at DC:
IK/SK 9094.11/001
at AC:
at DC:
IL/SL 9094.11:
Nominal frequency (AC):
Galvanic isolation between
measuring and auxiliary

\section*{inputs}

IK/SK 9094.11/001
IL/SL 9094.11:

\section*{Output}

\section*{Contacts}

IK/SK 9094.11, IL/SL 9094.11: 1 changeover contact

\section*{Thermal current \(\mathrm{I}_{\text {th }}\) :}

Switching capacity
to AC 15
NO contact: 3 A, AC \(230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
NC contact:
to DC 13 at 0.1 Hz :
Electrical life
to AC 15 at 1 A, AC 230 V :
Short circuit strength
max. fuse rating:
Mechanical life:

P0 and P1 for PT100 sensors according to DIN 43760 / DIN IEC 751
X1 to set hysteresis or latching function: hysteresis function
latching function (Fault signal remains stored when temperature goes over set point)
\(0 \ldots 150^{\circ} \mathrm{C}\) in 3 ranges
(\(0 \ldots 50^{\circ} \mathrm{C}, 50 \ldots 100^{\circ} \mathrm{C}, 100 \ldots 150^{\circ} \mathrm{C}\)) (on request \(100 \ldots 250^{\circ} \mathrm{C}\) in 3 ranges of \(50^{\circ} \mathrm{C}\))
\(-50 \ldots+25^{\circ} \mathrm{C}\) in 3 ranges
\(\left(-50 \ldots-25^{\circ} \mathrm{C},-25 \ldots 0^{\circ} \mathrm{C}, 0 \ldots+25^{\circ} \mathrm{C}\right.\))
Adjustable hysteresis on absolute scale \(3 \ldots 30^{\circ} \mathrm{C}\),
Hysteresis 1 ... \(15^{\circ} \mathrm{C}\) adjustable (Release value = response value minus hysteresis)
\(<1 \%\) of setting value
approx. 2.5 mA
approx 0.6 mW
approx. 6 V
A broken wire in the PT 100 sensor wires is detected as fault (overtemperatur)

\section*{Technical Data}

\section*{General Data}

Operating mode:
Continuous operation
Temperature range
Operation
\[
-20 \ldots+60^{\circ} \mathrm{C}
\]

Storage:
\[
-25 \ldots+60^{\circ} \mathrm{C}
\]

Relative air humidity:
Altitude:
Clearance and creepage
distances
rated impulse voltage /
pollution degree
IK/SK 9094.11:
Between A1-A2 auxiliary supply:0.5 kV / 2
EC 60 664-1
IK/SK 9094.11/001:
Between measuring input P0-P1
(-X1) and auxiliary supply:
IL/SL 9094.11:
Between input and output contacts:
Airgap:
Creepage distance on PCB:
Inside enclosure:
Outside enclosure:
Overvoltage category:

\section*{EMC}

Electrostatic discharge:
HF-irradiation
\(80 \mathrm{MHz} . . .1 \mathrm{GHz}:\)
\(1 \mathrm{GHz} . .2 \mathrm{GHz}:\)
2 GHz ... 2.7 GHz:
Fast transients:
\(1 \mathrm{kV} / 2\)
\(4 \mathrm{kV} / 2\)
IEC 60 664-1
IEC 60 664-1
4 kV / 2 (basis insulation) IEC 60 664-1
\(\geq 3 \mathrm{~mm}\)
\(\geq 3 \mathrm{~mm}\),
\(\geq 5.5 \mathrm{~mm}\)
\(\geq 5.5 \mathrm{~mm}\)
III
8 kV (air)
IEC/EN 61 000-4-2
\(10 \mathrm{~V} / \mathrm{m}\)
\(10 \mathrm{~V} / \mathrm{m}\)
\(10 \mathrm{~V} / \mathrm{m}\)
4 kV
IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4
Surge voltages
between
wires for power supply
IK/SK 9094: 0.5 kV

2 kV
10 V
Limit value class \(B\)
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
EN 55011
Interference suppression:
Degree of protection
Housing:
IP \(40 \quad\) IEC/EN 60529

Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
Cross section:

Stripping length:
Wire connection:
Fixing torque:
Mounting:

Weight
IK 9094:
SK 9094:
IL 9094:
SL 9094:

\section*{P 20}

IEC/EN 60529
Thermoplastic with Vo behaviour according to UL subject 94
Amplitude 0.35 mm ,
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20/060/04
IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46 228-1/-2/-3/-4
10 mm
Flat terminals with self-lifting clamping pieceIEC/EN 60 999-1 0.8 Nm

DIN rail mounting (IEC/EN 60715) or screw mounting M4, 90 mm hole pattern, with additional clip available as accessory
\[
\begin{aligned}
& 65 \mathrm{~g} \\
& 83 \mathrm{~g} \\
& 137 \mathrm{~g} \\
& 164 \mathrm{~g}
\end{aligned}
\]

Classification to DIN EN 50155 for IK 9094
Vibration and
shock resistance:
Ambient temperature:
Category 1, Class B
IEC/EN 61373
T1 compliant
T2, T3 and TX with operational limitations
Protective coating of the PCB: No

\section*{Standard Types}

IK 9094.11 AC/DC \(24 \mathrm{~V} \quad 0 \ldots 150^{\circ} \mathrm{C}\)
Article number: 0051642
SK 9094.11 AC/DC \(24 \mathrm{~V} \quad 0 \ldots 150^{\circ} \mathrm{C}\)
Article number: 0054753
- Output: 1 changeover contact
- Auxiliary voltage \(U_{H}\) : \(\quad\) AC/DC 24 V
- Response value: \(\quad 0 \ldots 150^{\circ} \mathrm{C}\)
- Width:
17.5 mm

IL 9094.11 AC 230 V \(0 \ldots 150^{\circ} \mathrm{C}\)
Article number: 0056024
SL 9094.11 AC \(230 \mathrm{~V} \quad 0 \ldots 150^{\circ} \mathrm{C}\)
Article number: 0056100
- Output: 1 changeover contact
- Auxiliary voltage \(U_{H}\) : AC 230 V
- Response value: \(0 \ldots 150^{\circ} \mathrm{C}\)
- Width: 35 mm

\section*{Variants}

IK 9094.11/001:
with galvanic isolation between measuring and Auxiliary Circuit for refrigeration plants
Art.-no.: 0056080
Ordering example for variants

\section*{Accessories}

ET 4086-0-2:
Additional clip for screw mounting Article number: 0046578

\section*{Application Examples}

Monitoring Technique
VARIMETER
Thermistor Motor Protection Relay
BA 9038, Al 938

BA 9038.12, AI 938.002,
- According to DIN VDE 0660 part 302 (pr EN 60 947-8) and part 303
- 1 input for PTC-resistors or bimetal contacts
- Broken wire detection in sensor circuit
- Optionally with no voltage reclosing interlock
- Closed circuit operation
- 1 or 2 changeover contacts
- Width 45 mm

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Applications}

To protect against thermal overload of motors caused by high switching frequency, heavy duty starting, phase failure on one phase, bad cooling, high ambient temperature.

\section*{Function}

As sensors special PTC-resistors are use, which are normally built into the motor windings. Up to 6 PTC resistors can be connected in series. When the resistance reaches a certain value, the output relay deenergizes. An LED comes on. The thermistor motor protection relay works with closed circuit operation and also detects broken wire on the sensor circuit. Please note, that contact 11-12 and 21-22 may be closed for a short moment while the voltage is switched on.
The models AI 938.001/03 and BA 9038.11/003 include a thermal reclosing interlock. When the response temperature is reached the output relay deenergizes and the push button on the relay front comes out after approx. 1 s . This unit has no indicator LED.
The model BA 9038.__/100 includes an electromagnetic reclosing interlock. When the response temperature is reached the output relay deenergizes and the push button on the relay front comes out immediately. This model has 2 LEDs. One indicates connected auxiliary supply, the other one overtemperature.
The output relay of the units with reclosing interlock remains deenergized, also when the temperature goes back to normal. The interlock is no voltage safe, so also on loss of voltage its actual state is stored (VDE 0113 § 5.4.2). By pressing the button on the front the module can be reset again.

\section*{Notes}

The wires of the sensor circuit must not be influenced by other voltages therefore they should be routed separately or screened and earthed at one end only. The total resistance of the wiring should not exceed \(100 \Omega\).

\section*{Technical Data}

\section*{Input Circuit}
\begin{tabular}{ll}
Response value: & \(\geq 3 \mathrm{k} \Omega\) \\
Release value: & \(\leq 1.8 \mathrm{k} \Omega\) \\
Number of sensors: & \(1 \ldots 6 \mathrm{pcs}\) \\
Operate delay: & \(\leq 20 \mathrm{~ms}\) \\
Release delay: & \(\leq 15 \mathrm{~ms}\)
\end{tabular}

\section*{Auxiliary Circuit}

Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : Voltage range of \(U_{H}\) :
Nominal consumption:
Nominal frequency of \(U_{H}\) :

AC 24, 42, 110, 127, 230, 240 V
\(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\)
2.2 VA
\(50 / 60 \mathrm{~Hz}\)

\section*{Output}

\section*{Contacts}

BA 9038.11:
AI 938.001:
BA 9038.12:
Al 938.002:
Thermal current \(I_{t h}\) :
Switching capacity
to AC 15
NO contact:
NC contact:
Electrical life
to AC 15 at 3 A, AC 230 V 2 changeover contacts: 1 changeover contact: at 0.05 A :
2 changeover contacts: 1 changeover contact: Short-circuit strength max. fuse rating: Mechanical life:

General Data
Operating mode:
Temperature range:
Clearance and creepage

\section*{distances}
rated impulse voltage / pollution degree:
EMC
Electrostatic discharge:
Fast transients:
Surge voltages
between
wires for power supply: between wired and ground: Interference suppressions:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance: Terminal designation: Wire connection:

Wire fixing:
Screw fixing:
Al 938:
Mounting:
Weight:
BA 9038:
Al 938:
1 changeover contact
1 changeover contact
2 changeover contacts
2 changeover contacts
5 A

3 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V
IEC/EN 60 947-5-1 IEC/EN 60 947-5-1
\(0.5 \times 10^{5}\) switching cycles
\(2.5 \times 10^{5}\) switching cycles
\(10 \times 10^{6}\) switching cycles \(30 \times 10^{6}\) switching cycles

4 AgL
IEC/EN 60 947-5-1
\(>30 \times 10^{6}\) switching cycles

Continuous operation
\(-20 . . .+60^{\circ} \mathrm{C}\)

4 kV / 2
IEC 60 664-1
6 kV (air) IEC/EN 61 000-4-2
2 kV
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
2 kV
IEC/EN 61 000-4-5 Limit value class B EN 55011
\begin{tabular}{ll}
IP 40 & IEC/EN 60529 \\
IP 20 & IEC/EN 60529
\end{tabular}

IP 20 IEC/EN 60529
Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm , IEC/EN 60 068-2-6 frequency \(10 \ldots 55 \mathrm{~Hz}\)
20 / 060 / 04
IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting
clamping piece
IEC/EN 60 999-1
\(35 \times 50 \mathrm{~mm}\) and
\(35 \times 60 \mathrm{~mm}\)
DIN rail
IEC/EN 60715
250 g
240 g

\section*{Standard Types}

BA 9038.11/003 AC \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz}\)
Article number: 0028829
- Output: 1 changeover contact
- Auxiliary voltage \(U_{H}\) : AC 230 V
- with thermal reclosing interlock (manual reset)
- Width: 45 mm
Variants

BA 9038.11:
BA 9038. __/100:
Al 938.001:
without thermal reclosing interlock (manual reset function) with electro magnetic reclosing interlock (manual reset function) without thermal reclosing interlock (manual reset function)

\section*{Ordering example for variants}

\section*{Dimensions}

Width x height x depth:

BA 9038:
Al 938:
\(45 \times 74 \times 124 \mathrm{~mm}\)
\(45 \times 77 \times 127 \mathrm{~mm}\)

\section*{Function Diagram}

\section*{Circuit Diagram}

IL 9163.12,
SL 9163.12

IL 9163.12/100,
SL 9163.12/100
- According to IEC/EN 60 255-1
- Monitoring of:
- overtemperature
- broken wire detection in sensor circuit
- 1 input for 1 to 6 PTC-resistors
- With manual reset variant /100
- Optionally with button for reset and test function
- Remote reset on A1/A2 (NC contact) or X1/X2 (NO contact)
- Closed circuit operation
- LED indicator for
- auxiliary supply
- state of contact
- 2 changover contacts
- Devices available in 2 enclosure versions:

IL 9163: depth 58 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SL 9163: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct
- Width 35 mm

\section*{Approvals and Markings}

\section*{C}

\section*{Applications}

To protect against thermal overload of motors caused by high switching frequency, heavy duty starting, phase failure on one phase, bad cooling, high ambient temperature.

\section*{Function}

If one of the sensors in the Measuring Circuit reaches the response temperature (or broken wire is detected), the device indicates failure. This failure is stored in the device /100 even if the temperature goes back to normal. The unit can be resetted by pressing the Test/Reset button, by bridging \(\mathrm{X} 1 / \mathrm{X} 2\) for a short moment or by disconnecting the auxiliary supply for a short time.
Test/Reset button:
Besides the reset function this button provides in normal operation a test facility. The unit indicates fault as long as the button is activated.

\section*{Indicators}
green LED: red LED:
on, when auxiliary supply connected on, when overtemperature or broken wire is detected

\section*{Notes}

The unit with AC/DC 24 V has no galvanic separation between auxiliary supply (A1/A2) and measuring input (P1, P2), and therefore it should only be used for battery powerd systems or with safety transformers according to IEC/EN 60742.

Function Diagram

\section*{Your advantages}
- Reliable temperature monitoring of motors
- Rapid fault location

\section*{Features}
- According to DIN EN 60947-5-1, DIN EN 60947-8, DIN EN 60079-14, DIN EN 61508, DIN EN 50495, DIN EN 13849
- Monitioring of
- overtemperature
- broken wire detection in sensor circuit
- short circuit detection in sensor circuit
- 1 input for 1 to 6 PTC-resistors
- De-energized on trip
- LED-indicator for
- auxiliary supply
- state of contact
- Output with 2 changeover contacts
- As option with manual reset, internal reset button and external remote reset X1/X2
- Wire connection: also \(2 \times 1.5 \mathrm{~mm}^{2}\) stranded ferruled, or \(2 \times 2.5 \mathrm{~mm}^{2}\) solid DIN 46 228-1/-2/-3/-4
- As option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- Width 22.5 mm

\section*{Approvals and Markings}

\({ }^{1)}\) For devices with ATEX-approval Directive 94/9/EG
EU-Test certificate no.
03 ATEX 3117 \&x \(\begin{array}{lll}\text { II (2) } \mathrm{G} \text { [Ex e] [Ex d] [Ex px] [Ex n] } \\ \text { II (2) } D[E x ~ t b][E x ~ t c] ~\end{array}\)
\({ }^{2)}\) Approval not for all variants; on request

\section*{Applications}
- To protect against thermal overload of motors caused by high switching frequency, havy duty starting, phase failure on one phase, bad cooling, high ambient temperature
- Temperature monitoring of bearings, transmissions, oil and cooling liquids.

\section*{Devices with ATEX-approval:}

Temperature monitoring of explosion protected Motors by „extended safety" EX e DIN EN 60079-7, „pressure proof enclosure" EX d DIN EN 60079-1 or "overpressure enclosure" Ex px in gas containing atmosphere as well as „protection by enclosures" Ex t DIN EN 60079-31 in dust containing atmosphere. The thermistor Motor protection relay protects Standard and Explosion proof Motor against overheating due to overload accoding to DIN EN 60079-14 and DIN EN 60079-0.

\section*{Function}

If one of the sensors in the measuring circuit reaches the response temperature (or broken wire is detected), the device indicates failure. This failure is stored in the device with manual reset, even if the temperature goes back to normal. The unit can be reset by pressing the Test/Reset button, by bridging X1/X2 for a short moment or by disconnecting the auxiliary supply for a short time.
Test/Reset button:
Besides the reset function this button provides in normal operation a test facility. The unit indicates fault as long as the button is activated (see also under "Variants").

MK 9163N.12,
MK 9163N.12/010-ATEX

\section*{Indicators}
green LED: red LED:
on, when auxiliary supply connected on, when overtemperature or broken wire, short circuit is detected

\section*{Technical Data}

Input Circuit
\begin{tabular}{|c|c|}
\hline Response value: & \(3.2 \ldots 3.8 \mathrm{k} \Omega\) \\
\hline Release value: & \(1.5 \ldots 1.8 \mathrm{k} \Omega\) \\
\hline Broken wire detection: & \(>3.8 \mathrm{k} \Omega\) \\
\hline Short circuit on measuring circuit: & \(<20 \Omega\) \\
\hline Loading of measuring circuit: & \(<5 \mathrm{~mW}\) (bei R \(=1.5 \mathrm{k} \Omega\)) \\
\hline Measuring voltage: & \(\leq 2 \mathrm{~V}\) (bei \(\mathrm{R}=1.5 \mathrm{k} \Omega\)) \\
\hline
\end{tabular}

Auxiliary Circuit
\begin{tabular}{lll}
Auxiliary voltage \(U_{H}:\) & \(A C / D C 24 \mathrm{~V}\) & \\
& AC \(110,230,400 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}\) \\
Voltage range: & AC \(0.8 \ldots 1.1 \mathrm{U}_{H}\) & \\
at \(10 \%\) residual ripple: & DC \(0.9 \ldots 1.25 \mathrm{U}_{\mathrm{H}}\) \\
at 48\% residual ripple: & DC \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{H}}\) \\
Nominal consumption: & AC: 1.5 VA \\
& DC: 0.85 W \\
Nominal frequency: & \(50 / 60 \mathrm{~Hz}\) \\
\begin{tabular}{l}
Frequency range: \\
Max. bridging time on \\
failure of aux. supply:
\end{tabular} & \(45 \ldots 65 \mathrm{~Hz}\) \\
\begin{tabular}{l}
Operate delay: \\
Release delay:
\end{tabular} & 20 ms \\
& \(<40 \mathrm{~ms}\) \\
& \(<100 \mathrm{~ms}\)
\end{tabular}

\section*{External Remote Reset X1/X2}

Function:
Remark:
External remote reset X1/X2 with NO contact (voltage free)
This input is not galvanic separated from measuring input P1/P2

Output
Contacts:
MK 9163N, MK 9163N-ATEX: 2 changeover contacts
Thermal current \(\mathrm{t}_{\mathrm{th}}\) : 5 A

\section*{Switching capacity MK 9163N}
to AC 15
\begin{tabular}{|c|c|c|}
\hline NO contacts: & \(2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline NC contacts: & \(1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline to DC 13: & \(1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline \multicolumn{3}{|l|}{Switching capacity MK 9163N-ATEX} \\
\hline to AC 15: & \(3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline to DC 13: & \(2 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}\) & IEC/EN 60 947-5-1 \\
\hline \multicolumn{3}{|l|}{Electrical life} \\
\hline at \(4 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}, \cos \varphi=0.6\) : & \multicolumn{2}{|l|}{\(1.5 \times 10^{6}\) switching cycles} \\
\hline \multicolumn{3}{|l|}{Short-circuit strength} \\
\hline max. line circuit breaker: & C 16 A & DIN EN 60 947-5-1 \\
\hline Mechanical life: & \(\geq 30 \times 10^{6}\) switc & cycles \\
\hline
\end{tabular}

\section*{Technical Data}

\section*{Safety Related Data}

\section*{Values according to EN 61508 / EN 50495}

SIL:
\(\mathrm{T}_{1}\) (Proof Test Intervall):
HFT:
SFF
PFD:
\(\lambda_{\mathrm{du}}\) [FIT]:
\(\lambda_{\text {dd }}\) [FIT]:
\(\lambda_{\text {su }}\) [FIT]:
\(\lambda_{\text {sd }}\) [FIT]:
Mode of operation: low demand mode
Architecture
1 (Typ B)
2 a
0
36,6 \%
\(7,83 \times 10^{-3}\)
894
0
516
0

Values according to EN 13849:
Category:
1
PL: C

MTBF: 81
MTTF:
\(\mathrm{DC}_{\text {avg }}\) :
a
63,8 a
0 \%

The a.m. data for functional safety is valid for an ambient temperature of \(40^{\circ} \mathrm{C}\) respecting also selfheating.
Data for other ambient temperatures are available on request.

\section*{CCC-Data}

Thermal current \(\mathrm{I}_{\mathrm{th}}\) : 4 A

\section*{Switching capacity}
to AC 15:
1,5 A / AC 230 V
IEC/EN 60 947-5-1
to DC 13:
1 A / DC 24 V
IEC/EN 60 947-5-1
Technical data that is not stated in the CCC-Data, can be found
in the technical data section.
Standard Type
\begin{tabular}{ll}
MK 9163N.12/110-ATEX & AC \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz}\) \\
Article number: & 0056453 \\
- with Test/Reset button & 2 changeover contacts \\
- Output: & AC 230 V \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & 22.5 mm \\
- Width: &
\end{tabular}

\section*{Variant}

MK 9163N. 12

ATEX with approval
0 free
0 without short circuit detection
1 with short circuit detection (ATEX)

0 without RESET
1 with RESET and test function via built in button and X1/X2
2 with RESET and test function via built in button, at X1/X2 RESET function only

\section*{Ordering example for variants}

MK 9163N. 12

Variant, if required
Type of terminals without indication:
terminal blocks fixed, with screw terminals
PC (plug in cage clamp): pluggable terminal blocks with cage clamp terminals
PS (plug in screw): pluggable terminal blocks with screw terminals Contacts
Type

\section*{Options with Pluggable Terminal Blocks}

Screw terminal Cage clamp terminal (PS/plugin screw) (PC/plugin cage clamp)

\section*{Notes}

Removing the terminal blocks with cage clamp terminals
1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Available variants
MK 9163N. 12
MK 9163N.12/100
MK 9163N.12/200
MK 9163N.12/010 ATEX
MK 9163N.12/110 ATEX
MK 9163N. \(12 / 210\) ATEX

\section*{Manufacturing Data}

Each unit is marked with the manufacturing date e.g. "Bj. KW 49/02". The unit had been produced in week 49-2002.

\section*{Additional Remarks and Safety Instructions}

\section*{Use on motors in explosion hazardous areas}

Thermal protection on motors that are equipped with PTC sensors according to DIN 44081 or DIN 44082 or DIN EN 60034-11 type A (DIN EN 60947-8). When used on motors of protection degree EX and EX d only the sonsor wire leads through the Ex-area. The motor proteciton relay has to be mounted outside the Ex-area, but monitors devices operated in the Ex-area.

\section*{Safety integrity level SIL 1}

To fulfil SIL 1 a cyclic function test of the protection device has to be provided. This can be done manually during manintenance (see below).

\section*{The function test must be carried out all 2 years.}

\section*{Test facilities for set-up and manintenance}

A test of the unit can be made by simulating the resistance oon the sonsor input. During maintenance these tests can also be made.
- Test of short circuit detection:
- Test of broken wire detection:
- Test of overtemperature function:

Bridge sensor input (this test is possible without disconnection of the sensor).
Disconnect sensor wire.
Change restistance on input from low \(50 \ldots 1500 \Omega\) to \(4 \mathrm{k} \Omega\).

The RESET button can also be used for test purpose (see Function Diagram)

\section*{Installation}

The DC 24 V version has no galvianic separation between auxiliary supply (A1, A2) and the sensor circuit (\(\mathrm{P}_{1}, \mathrm{P}_{2}\)). These units are only allowed to be connected to transformers according to DIN EN 61558 or to battery supply.

\section*{Wiring}

The sensor and control wires have to be installed separately from the motor wires. When strong inductive or capacitve influence is expected from parallel installed high courrent wires, screened wire should be used.

\section*{Wire length}

The max. wire length of the sensor circuit is:
\begin{tabular}{lcccc}
Diameter \(\left(\mathrm{mm}^{2}\right):\) & 4 & 2.5 & 1.5 & 0.5 \\
max. wire length \((\mathrm{m}):\) & \(2 \times 550\) & \(2 \times 250\) & \(2 \times 150\) & \(2 \times 50\)
\end{tabular}

\section*{Safety instructions}
- Installation, test and replacement may only be carried out by qualified specialist staff and the applicable safety rules must be observed. The data for functional safety in explosion hazardous areas have to be respected.
- Details of the motor supplier and the details about the explosion protection from the EC-type examination certificates for explosion proof motors have to be respected.
- For the test and the maintenance of motor protection devices for explosion proof machines, the EN 60079-17 and the safety rules that result from the motor application and the corresponding type of protection have to be respected (EC ATEX Directive 94/9/EC and DIN EN 60079-14).
- The motor protection relay has to switch off the motor immediately also when it is controlled by an inverter. The control circuit must allow this. In this case the sensor wires must be lead separately. The use of wires inside the motor connection cable is not allowed.
- If variants are used that have no no-voltage safe reset function additional measures have to be applied in order to disable safely the restart of the motor until the fault is removed if this leads to a dangerous situation.
- The relay must only be opened by the manufacturer.
- The relay must only be replaced by equivalent devices marked according to the relevant safety rules.
- The permitted ambient conditions must be observed.
- Devices that show obvious transportation damage must not be used in safety relevant applications.

\section*{Application Example}

\section*{Circuit Diagrams}

MK 9003.12/0

MK 9003.12/1

\section*{Your advantages}
- Reliable temperature monitoring of motors
- Rapid fault location

\section*{Features}
- According to pr EN 60 947-8, EN 60 079-14
- Detection of
- overtemperature
- broken wire in sensor circuit
- short circuit in sensor circuit
- 1 input for 1 to 6 PTC-reistors
- Functions as options or settable with DIP-switches:
- automatic reset (fault is not stored)
- manual reset (fault is stored)
- manual reset only on start-up
- manual reset on and also after start-up
- No voltage safe manual reset
- Closed circuit operation
- LED indicators for
- auxiliary supply
- contact position
- overtemperature, broken wire or short-circuit in sensor circuit
- 2 changeover contacts
- Button for reset function
- Remote reset via terminals X1 / X2 (NO contact)
- Optionally safe separation according to IEC/EN 61 140, IEC/EN 60 947-1, 6 kV/2 between:
- auxiliary voltage and measuring circuit
- auxiliary voltage and output contacts
- measuring circuit and output contacts
- the 2 changeover contacts (only with 2 changeover contacts)
- Width 22.5 mm

\section*{Approvals and Markings}

\({ }^{1)}\) Directive 94/9/EG
EG type test no.
02 ATEX 3057
II (2) G [Ex e] [Ex d] [Ex px] [Ex n] II (2) \(D\) [Ex tb] [Ex tc]

\section*{Application}

Temperature monitoring of explosion protected Motors by „extended safety" EX e DIN EN 60079-7, „pressure proof enclosure" EX d DIN EN 60079-1 or "overpressure enclosure" Ex px in gas containing atmosphere as well as „protection by enclosures" Ex t DIN EN 60079-31 in dust containing atmosphere. The thermistor Motor protection relay protects Standard and Explosion proof Motor against overheating due to overload accoding to DIN EN 60079-14 and DIN EN 60079-0.

\section*{Indicators}
green LED:
red LED:
yellow LED:
sensor circuit
on, when supply voltage connected on, when output contact de-energized on, when overtemperature of failure in

With manual reset, also after voltage failure (no start-up reset)
After the failure is gone manual reset must be made (reset button on unit or remote reset \(\mathrm{X} 1-\mathrm{X} 2\)) to bring the unit in operating mode (no voltage safe).
After voltage failure manual reset must always be made.

\section*{Activation after power on (start-up reset)}

After the failure is removed the contacts switch back automatically to active condition. After voltage failure manual reset must always be made.

\section*{With manual reset (fault is stored)}

After the failure is gone manual reset must be made (reset button on unit or remote reset \(\mathrm{X} 1-\mathrm{X} 2\)) to bring the unit in operating mode (no voltage safe).

\section*{Automatic reset}

After the failure is removed the contacts switch back automatically to active condition.

\section*{Technical Data}

\section*{Input}
\begin{tabular}{ll}
Response value: & \(2.7 \ldots 3.1 \mathrm{k} \Omega\) \\
Release value: & \(1.5 \ldots 1.65 \mathrm{k} \Omega\)
\end{tabular}

Broken wire on meas. circuit: \(>3.1 \mathrm{k} \Omega\)
Short circuit on meas. circuit: \(<20 \Omega\)
Loading of measuring circuit: \(<2.5 \mathrm{~mW}(\) at \(\mathrm{R}=1.5 \mathrm{k} \Omega\))
Voltage on measuring circuit: \(\leq 2 \mathrm{~V}\) (at \(\mathrm{R}=1.5 \mathrm{k} \Omega\))
Auxiliary Circuit
Auxiliary voltage \(\mathbf{U}_{\mathbf{H}}: \quad\) AC 24, 110, 230, \(400 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}\)
Voltage range:
Nominal consumption
AC:
Nominal frequency:
Frequency range:
Max. bridging time on
voltage failure:
Operate delay:
Release delay:
DC 24 V
\(0.85 \ldots 1.1 \mathrm{U}_{\mathrm{H}}\)
1.5 VA, \(\cos \varphi=0.95\)
\(50 / 60 \mathrm{~Hz}\)
\(45 \ldots 65 \mathrm{~Hz}\)

20 ms
approx. 18 ms
approx. 12 ms
Remote Reset on MK 9003/1

\section*{Function:}

Remark:

\section*{Output}

\section*{Contacts}

MK 9003.12.
Thermal current \(I_{\text {th }}\) :
Switching capacity
to AC 15:
NO contact:
NC contact:
to DC 13:
NO contact:
NC contact:
Electrical life
to AC 15 at \(5 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:
General Data
Operating mode:
Temperature range:
Storage temperature:
Clearance and creepage distances
rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge:
Fast transient:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistacne:
Climate resistance:
Terminal designation:
Wire connection
max. cross section
min. cross section:
Insulation of wires or
sleeve length:
Wire fixing:
Fixing torque:
Mounting:
Weight:

Continuous operation
\(-20 \ldots+55^{\circ} \mathrm{C}\)
\(-40 \ldots+85^{\circ} \mathrm{C}\)
\(6 \mathrm{kV} / 2\)
IEC 60 664-1
8 kV (air)
4 kV
Limit value class B
IEC/EN 61000-4-2
IEC/EN 61000-4-4

IP 40 IEC/EN 60529
IP 20 IEC/EN 60529
Thermoplastic with V0-behaviour
according to UL subject 94
amplitude 0.35 mm
frequency 10 ... 55 Hz , IEC/EN 60 068-2-6
20/055/04 IEC/EN 60 068-1
EN 50005
\(2 \times 2,5 \mathrm{~mm}^{2}\) solid or
\(2 \times 0,75 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46228-1/-2/-3/-4 or
\(2 \times 1,5 \mathrm{~mm}^{2}\) strand.wire w. sl. DIN 46228-4
\(0,5 \mathrm{~mm}^{2}\) solid or stranded wire with sleeve
8 mm
Plus-Minus-terminal screws M3,5 with self-lifting clamping pieceIEC/EN 60 999-1 0.8 Nm

DIN rail
162 g

IEC/EN 60715

Dimensions

\section*{Technical Data}

\section*{Safety Related Data}

Values according to EN 61508 / EN 50495:
SIL: 1 (Type B)
\(\mathrm{T}_{1}\) (Proof Test Intervall): 2
HFT: 0
SFF: \(\quad 45,67 \quad \%\)

PFD: \(\quad 9,94 \times 10^{-3}\)
\(\lambda_{\text {du }}: \quad 113\)
\begin{tabular}{lll}
\(\lambda_{\text {dd }}:\) & 0 & FIT \\
\(\lambda_{\text {su }}:\) & 945 & FIT \\
\(\lambda:\) & 0 & FIT
\end{tabular}
\(\lambda_{\text {sd }}\) : \(0 \quad\) FIT

Mode of operation:
Architecture:
low demand mode 1001

Values according to EN 13849:
Category: 1
PL: C
\begin{tabular}{lll}
MTBF: & 55 & a \\
MTTF \(_{\mathrm{d}}:\) & 50,5 & a \\
DC \(_{\text {avg }}:\) & 0 & \(\%\)
\end{tabular}

in
The a.m. data for functional safety is valid for an ambient temperature of \(40^{\circ} \mathrm{C}\) respecting also selfheating. Data for other ambient temperatures are available on request.

\section*{Standard Type}

MK 9003.12/11120 ATEX AC 230 V
Article number: 0055727 stock item
- Output: 2 changeover contacts
- Function programmable on S1 and S2
- With short circuit detection
- With safe separation according to IEC/EN 61 140, IEC/EN 60 947-1
- Auxiliary voltage \(U_{H}\) : AC 230 V
- Width: 22.5 mm

\section*{Variants}

MK 9003.12 /

available variants (others with short circuit detection on request)
MK 9003/00100 ATEX
MK 9003/01100 ATEX
MK 9003/10110 ATEX
MK 9003/11110 ATEX
MK 9003/11120 ATEX

\section*{Accessories}
ET 4752-143: \(\quad\)\begin{tabular}{l}
Marking plate \\
\\
\\
\end{tabular}

\section*{Characteristic}

Continuous current limit curve

Thermistor motor protection relay shown as variant MK 9003/_1 with safe separation according to IEC/EN 61 140, IEC/EN 60 947-1, \(6 \mathrm{kV} / 2\) between:
- Auxiliary voltage and measuring circuit
- Auxiliary voltage and output contacts
- Measuring circuit and output contacts
- the 2 changeover contacts (only with 2 changeover contacts) Note: See also Installation

\section*{Production Date}

Every unit is labelled with the production date e.g. "Bj. KW 49/02".
The device was produced in week 49, 2002.

\section*{Additional Information and Safety Instructions}

Use on motors in explosion hazardous areas
Thermal protection on motors that are equipped with PTC sensors according to DIN 44081 or DIN 44082 or DIN EN 60034-11 type A (DIN EN 60947-8) .In applications with motors of the explosion protection class Ex e and Ex d only the sensor with it's connection wire leads into the Ex area. The motor proteciton relay has to be mounted outside the Ex-area, but monitors devices operated in the Ex-area.

\section*{Safety integrity level SIL 1}

To fulfil SIL 1 a cyclic function test of the protection device has to be provided. This can be done manually during manintenance (see below).

\section*{The function test must be carried out all 2 years.}

\section*{Test facilities for set-up and manintenance}

A test of the unit can be made by simulating the resistance oon the sonsor input. During maintenance these tests can also be made.
- Test of short circuit detection: Bridge sensor input (this test is possible without disconnection of the sensor).
- Test of broken wire detection:
- Test of overtemperature function:

Disconnect sensor wire.
Change restistance on input from low \(50 \ldots 1500 \Omega\) to \(4 \mathrm{k} \Omega\).
The RESET button can also be used for test purpose (see Function Diagram)

\section*{Installation}

The DC 24 V version has no galvianic separation between auxiliary supply (A1, A2) and the sensor circuit (\(P_{1}, P_{2}\)). These units are only allowed to be connected to transformers according to DIN EN 61558 or to battery supply.

\section*{Wiring}

The sensor and control wires have to be installed separately from the motor wires. When strong inductive or capacitve influence is expected from parallel installed high courrent wires, screened wire should be used.

\section*{Wire length}

The max. wire length of the sensor circuit is:
\begin{tabular}{lcccc}
Diameter \(\left(\mathrm{mm}^{2}\right):\) & 4 & 2.5 & 1.5 & 0.5 \\
max. wire length \((\mathrm{m}):\) & \(2 \times 550\) & \(2 \times 250\) & \(2 \times 150\) & \(2 \times 50\)
\end{tabular}

\section*{Safety instructions}
- Installation, test and replacement may only be carried out by qualified specialist staff and the applicable safety rules must be observed. The data for functional safety in explosion hazardous areas have to be respected.
- Details of the motor supplier and the details about the explosion protection from the EC-type examination certificates for explosion proof motors have to be respected.
- For the test and the maintenance of motor protection devices for explosion proof machines, the EN 60079-17 and the safety rules that result from the motor application and the corresponding type of protection have to be respected (EC ATEX Directive 94/9/EC and DIN EN 60079-14).
- The motor protection relay has to switch off the motor immediately also when it is controlled by an inverter. The control circuit must allow this. In this case the sensor wires must be lead separately. The use of wires inside the motor connection cable is not allowed.
- If variants are used that have no no-voltage safe reset function additional measures have to be applied in order to disable safely the restart of the motor until the fault is removed if this leads to a dangerous situation.
- The relay must only be opened by the manufacturer.
- The relay must only be replaced by equivalent devices marked according to the relevant safety rules.
- The permitted ambient conditions must be observed.
- Devices that show obvious transportation damage must not be used in safety relevant applications.

\section*{Circuit Diagram}

\begin{tabular}{l}
\hline \multicolumn{1}{|c|}{ Connection Terminals } \\
\hline Terminal designation \\
\hline L1, L2, L3 \\
\hline L1', L2', L3' \\
\hline PE
\end{tabular} Input phase voltages \begin{tabular}{|l|}
\hline Output phase voltages \\
\hline
\end{tabular}

\section*{Notes}

The noise filter is connected with its input terminals L1/L2/L3 to the inverter output and the measuring relay or device to be protected to the filter outputs L1'/L2'/L3'.
It is not mandatory to connect the PE to the corresponding device terminals but it increases the filter effect.
The maximum current in each filter path is 50 mA . So this filter can also be used in the auxiliary supply of low consumption equipment.
If only one line should be filtered, the 3 paths could be connected in series increasing the filter effect, or in parallel increasing the current capacity to 150 mA .

\section*{Your Advantages}
- Reliable operation of measuring relays and other low consumption loads in systems with high frequency noise
- Protection of measuring inputs / measuring relays by reduction of noise
- More precise and constant measuring results
- Increasing the availability of plants

\section*{Features}
- 3-phsase noise filter for measuring relays
- Noise suppression of wire bound interference
- Broadband suppression of high frequencies
- For nominal voltages up to 3 AC 1000 V
- PE connection for increased suppression level
- 2 models available:

MK 5130N: depth 97 mm
LG 5130: depth 121 mm
- Width: 22.5 mm

\section*{Approvals and Markings}

\section*{Applications}
- Operation of measuring relays on inverters and equipment with high frequency noise voltage
- Noise suppression for circuits and loads up to 50 mA per phase
- Reduction of noise created by electric tools, contactors and luminescent lamps

\section*{Function}

Increased numbers of inverters create on their outputs steep commutation edges that create noise and high frequency leaking currents on direct connected equipment. Devices that are connected to inverters can be disturbed or damaged. The HF components can be conducted to other parts of the system e.g. via the DC 24 V supply.
This could happen on measuring relays that are connected to the inverter output. The auxiliary supply of the measuring relay has a galvanic separation from the measuring input, but coupling capacitances in the power supply can create a high frequency connection to the measuring input. Certain frequencies will then create leakage currents from inverter to auxiliary supply.
In principle all monitoring devices connected to inverter outputs may be subject to interference. It is also possible that these devices conduct the interference to other parts of the system.
The noise filter MK 5130N / LG 5130 have in each path for the 3 phases (input L1/L2/L3 - output L1'/L2'/L3') 4 inductances connected in series to provide broad band filtering up to very high frequencies. If also PE is connected, a Y-capacitor connected to PE gets active and provides increased filtering. (T-filter).
By connecting the MK 5130N / LG 5130 between inverter and measuring relay / device to be protected, the current flowing via coupling capacitances is extremely reduced, as the filter elements create a rising impedance with rising frequency. This avoids disturbance or damage on connected devices.

\section*{Technical Data}

\section*{Nominal voltage \(\mathrm{U}_{\mathrm{N}}\)}
without PE connection:
with PE connection:
Current carrying capacity
per path:
Ohmic resistance
per path:
max. 3 AC 1000 V
max. 3/N AC 860 / 500 V

Impedance per path (approximate values):
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{f} / \mathrm{Hz}\) & 10 k & 20 k & 50 k & 100 k & 200 k & 300 k & 500 k & 1 M & 2 M & 3 M & \begin{tabular}{c}
5 M \\
\(\ldots\)
\end{tabular} \\
30 M
\end{tabular}\(|\)

\section*{General Data}

\section*{Nominal operating mode:}

\section*{Temperature range}

Operation and storage
Relative air humidity:

\section*{Altitud}

Electrostatic discharge:
Fast transients:
Surge voltages
between
power supply L/N:
between wire and ground:

HF wire guided:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Wire connection:

Wire fixing:
Fixing torque:
Mounting:

\section*{Weight:}

MK 5130N:
LG 5130:

Continuous operation
\(-40 \ldots+70^{\circ} \mathrm{C}\)
\(93 \%\) at \(40^{\circ} \mathrm{C}\)
<2,000 m
8 kV (air)
4 kV

2 kV
4 kV
20 V
IP \(40 \quad\) IEC/EN 60529
IP 20
Thermoplastic with Vo behaviour according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz IEC/EN 60 068-2-6 40/070/04 IEC/EN 60 068-1
\(1 \times 4 \mathrm{~mm}^{2}\) solid or
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(1 \times 2.5 \mathrm{~mm}^{2}\) stranded wire with sleeve or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve
DIN 46 228-1/-2/-3/-4 or
\(2 \times 2.5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/
Plus-minus terminal screws M 3.5
box terminals with wire protection
0.4 Nm

DIN rail
IEC/EN 60715
approx. 130 g
approx. 140 g

Dimensions

\section*{Width x heigth x depth:}

MK 5130N:
LG 5130:
\(22.5 \times 90 \times 97 \mathrm{~mm}\)
\(22.5 \times 90 \times 121 \mathrm{~mm}\)

\section*{Standard Types}

MK 5130N
\begin{tabular}{lr}
Article number: & 0065014 \\
- Width: & 22.5 mm \\
- Depth: & 97 mm \\
& \\
LG 5130 & \\
Article number: & 0065015 \\
- Width: & \(22,5 \mathrm{~mm}\) \\
- Depth: & 121 mm
\end{tabular}

\section*{Connection Examples}

M11291
Noise filtering in a single wire with max. current capacity 150 mA

Noise filtering in a single wire with max. current capacity 50 mA

Noise filtering between the 3 phases of an inverter and a measuring relay

Inverter monitoring function, 3-phase with frequency monitor UH 6937

EH 9997.11
- Common alarm annunciator for 6 signals
- Optionally for up to 8 signals
- Closed circuit operation
- Optionally with open circuit operation
- With LED for each fault signal
- Inputs up to AC/DC 300 V
- With relay output for common signal
- Pushbutton for fault signal acknowledgement and function test
- Front surface \(96 \times 96 \mathrm{~mm}\)

\section*{Approvals and Markings}

\section*{C}

\section*{Application}

Monitoring of industrial plants and buildings

\section*{Indication}

LEDs for each fault signal
Continuous light when fault signal applied

\section*{Notes}

It must be observed, that the fault inputs are not seperated from the supply voltage (common terminal A2/N). In case of DC-signals the minus-pole always to be connected to A2.
By removing the bridges \(\mathrm{X} 1 / \mathrm{X} 3-\mathrm{X} 1 / \mathrm{X} 2\) on the backside, the function of the fault signal can be changed, so that the faults 5 and 6 will only be indicated optically and the output relay will not be influenced.

The EH 9997 will be supplied unlabled.
Individual lable on demand.

\section*{Technical Data}

Input
Inputs:

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :

\section*{Special voltage:}
external resistor
DC 60 V :
DC 110 V :
DC 220 V :
Voltage range:
Nominal consumption:

Nominal frequency:
between AC/DC 12 and 300 V in 3 sectors;
AC/DC 12 ... 70 V, AC/DC 70 ... 160 V,
AC/DC \(160 \ldots 300 \mathrm{~V}\)
AC/DC 24, 42, 48 V
AC 110 ... 127, 220 ... 240 V
\begin{tabular}{lrrr}
820 & \(\Omega\) & ZWS 8 SL \\
\(2.2 \mathrm{k} \Omega\) & ZWS 20 SL \\
\(4.7 \mathrm{k} \Omega\) & ZWS 20 SL \\
0.8 & \(\ldots\) & 1.1 & \(\mathrm{U}_{\mathrm{N}}\) \\
AC \(230 \mathrm{~V}, ~ 9 \mathrm{VA}\) & & \\
DC 24 & 60 & 110 & 220 V \\
1 & 2.5 & 5 & 10 W
\end{tabular}
\(50 / 60 \mathrm{~Hz}\)

\section*{Technical Data}

\section*{Output}

\section*{Contacts}

EH 9997.11:
Thermal current \(\mathrm{I}_{\mathrm{th}}\) : Switching capacity to AC 15
NO contact:
Electrical life
to AC 15 at \(3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength max. fuse rating: Mechanical life:

1 changeover contact
6 A
\(3 \mathrm{~A} / 230 \mathrm{~V}\)
\(1 \mathrm{~A} / 230 \mathrm{~V}\)
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1 IEC/EN 60 947-5-1
\(0.1 \times 10^{6}\) switching cycles
6 AgL
IEC/EN 60 947-5-1
\(>30 \times 10^{6}\) switching cycles

General Data

Operating mode:
Temperature range:
Clearance and creepage

\section*{distances
rated impulse voltage /} pollution degree:
EMC
Electrostatic discharge:
HF-irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground: Interference suppression:
Degree of protection
Housing:
Terminals:
Housing
Vibration resistance:
Climate resistance: Terminal designation: Wire connection:

Wire fixing:
Mounting:
Weight:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)
4 kV / 2

IEC 60 664-1
8 kV (air)
\(10 \mathrm{~V} / \mathrm{m}\)
4 kV

Limit value class B
IEC/EN 61 000-4-5
IP 40 IEC/EN 60529

P 20 IEC/EN 60529
Thermoplast with Vo behaviour
according to UL subject 94
Amplitude 0.35 mm ,
frequency 10 ... 55 Hz IEC/EN 60 068-2-6 humid heat IEC/EN 60 068-2-30 EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4
Flat terminals with self lifting
clamping piece IEC/EN 60 999-1 2 clamps with screws 300 g

Dimensions

Width x height x depth:
Front panel cut-out:
\(96 \times 96 \times 129 \mathrm{~mm}\)
Diameter \(91^{+1} \mathrm{~mm}\)
\begin{tabular}{llll}
\hline Standard Type & & \\
\hline EH 9997.11 AC \(220 \ldots 240 \mathrm{~V}\) & \(50 / 60 \mathrm{~Hz}\) & AC/DC \(160 \ldots 300 \mathrm{~V}\) \\
Article number: & 0013214 & \\
- Output: & 1 changeover contact & \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}:\) & AC \(220 \ldots 240 \mathrm{~V}\) & \\
- Inputs: & AC/DC \(160 \ldots 300 \mathrm{~V}\)
\end{tabular}

\section*{Variants}

EH 9997/013:
EH 9997/074:
EH 9997/075:
During function test, common signal will not be operated
Open circuit operation
8 signals; all stored, indicated and switching common output

\section*{Ordering example for variants}

Function Diagram
fault signal 1
fault lamp 1

\section*{Circuit Diagram}

- According to IEC/EN 60 255, DIN VDE 0435-303
- Common alarm annunciator for 12 signals
- 1 relay for common signal and horn
- Inputs up to AC/DC 230 V
- 1 connection for acknowledgement button of horn and lamp test
- Width: 45 mm

\section*{Approvals and Markings}

\section*{C}

\section*{Application}

Monitoring of industrial plants and buildings

\section*{Notes}

The inputs and the lamp test input "LT" are to be controlled with the same phase voltage. In case of connection of different phases the fault annunciator can be destroyed. The fault annunciator AD 5960 is not suitable for the use of lamps with transformers. If the fault annunciator lamps should be controlled with another voltage than that of the inputs, we recommend our fault annunciators AN 5969 or EP 9969, which have relay outputs.
By shock or vibration during transportation the relay contacts may switch to the wrong state. This is typical when bistable relays are used. By connecting nominal voltage to one of the inputs the contacts are brought into right state to achieve a safe switching, the inputs \(S_{1} \ldots S_{12}\) have to be activated at least 60 ms

\section*{Technical Data}

\section*{Input}

Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :

\section*{Voltage range:}

Nominal frequency:
Fault signal current per input
Voltage AC/DC:
Current \(\hat{l}_{s}\) :
Input current load* at input of lamp test Voltage AC/DC:
Current î:

\section*{Output}

Contacts:
Operate time of
Relay "Horn":
Recovery time "Horn":

Operate time of common alarm relay:

\section*{Actuation time for} lamp test input:
Switching capacity: Loading:

Thermal current \(\mathrm{t}_{\mathrm{th}}\) :

AC/DC 24, 42, 110, 230 V
0.8 ... 1.1 U
\(50 / 60 \mathrm{~Hz}\)
\(2442 \quad 110 \quad 230 \mathrm{~V}\)
\(\begin{array}{llll}440 & 280 & 180 & 150 \mathrm{~mA}\end{array}\)
\(2442 \quad 110 \quad 230 \mathrm{~V}\)
\(\begin{array}{llll}5.3 & 3.4 & 2.2 & 1.8 \mathrm{~A}\end{array}\)
Current shape see caracteristic
* without connection of the external signal lamp

1 NO contact each for common alarm and audible alarm
approx. 20 ms
approx. 5 s
(min. necessary time between the occurance of a fault and the acknowledgement of the audible alarm)
\(\leq 1\) s
\(\geq 2\) s
AC \(250 \mathrm{~V} / 5 \mathrm{~A}\)
1 A per external signal lamp, however totally max. 5 A
8 A

General Data

Operating mode:
Temperature range:
Clearance and creepage

\section*{distances}
rated impulse voltage / pollution degree:
EMC
HF-irradiation:
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation: Wire connection:

Wire fixing:
Mounting:
Weight:

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

4 kV / 2
\(10 \mathrm{~V} / \mathrm{m}\)
2 kV

2 kV
4 kV
Limit value class B
1 000-4-5 IEC/EN 61 000-4-5
IP \(40 \quad\) IEC/EN 60529

IP 20 IEC/EN 60529
Thermoplast with Vo-behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... \(55 \mathrm{HzIEC} / E N 60\) 068-2-6 20 / 060 / 04

IEC/EN 60 068-1
EN 50005
\(2 \times 2.5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4
Flat terminal with self-lifting
clamping piece IEC/EN 60 999-1 DIN rail IEC/EN 60715
200 g
IEC 60 664-1
EC/EN 61 000-4-3 IEC/EN 61 000-4-4

Dimensions
Width x height x depth:

\section*{Standard Type}

AD 5960 AC/DC \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz}\)
Article number: 0028134 stock item
- Output: 1 NO contact each
for common alarm and audible alarm
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) : \(\quad \mathrm{AC} / \mathrm{DC} 230 \mathrm{~V}\)
- Inputs: AC/DC 230 V

\section*{Ordering Example}

\section*{Characteristic}

Current curve of the inputs and of the lamp test inputs

\section*{Function Diagram}

\section*{Circuit Diagrams}

IL 5990, SL 5990

IL 5991, SL 5991

\section*{Connection Terminals}
\begin{tabular}{|l|l|}
\hline Terminal designation & Signal designation \\
\hline A1 & + / L \\
\hline A2 & \(-/ \mathrm{N}\) \\
\hline S1, S2, S3, S4 & Measuring input for alarm \\
\hline X1, X2 & \begin{tabular}{l}
Control input for \\
closed - / open circuit operation
\end{tabular} \\
\hline QH & \begin{tabular}{l}
Control input for \\
acknowledgement audible alarm
\end{tabular} \\
\hline 13,14 & Relay output for audible alarm \\
\hline 23,24 & Relay output for common alarm \\
\hline H & Bus leads audible alarm \\
\hline S & Bus leads common signal \\
\hline
\end{tabular}

Technical Data
Input
Nominal voltage A1-A2 and
inputs S1-S4:
Voltage range: \(\quad 0,8 \ldots 1,1 \cup_{N}\)
Nominal consumption:
Nominal frequency:
Min. time for input signal:
Min. time for
acknowledgement: \(\quad \geq 200 \mathrm{~ms}\)
Operate delay: \(\quad 1 \mathrm{~s}, 3 \mathrm{~s}, 10 \mathrm{~s}\)

\section*{Output}

Contacts:
Thermal current \(\mathrm{t}_{\mathrm{tn}}\) :
Switching capacity
to AC 15:
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
max. fuse rating:
Mechanical life:

\section*{General Data}

Operating mode:
Temperature range:
Clearance and creepage distances
rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge:
HF-irradiation
\(80 \mathrm{MHz} . . .1 \mathrm{GHz}:\)
1 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Terminal designation:

Wire connection:

\section*{Fixing torque:}

Mounting:
Weight
IL 5990:
IL 5991:
SL 5990:
SL 5991:

\section*{Dimensions}

\section*{Width x height x depth}

IL 5990, IL 5991:
SL 5990, SL 5991:
\(35 \times 90 \times 61 \mathrm{~mm}\)
\(35 \times 90 \times 100 \mathrm{~mm}\)

1 NO contact for common signal and audible alarm 5 A
1 A / 230 V
IEC/EN 60 947-5-1 IEC/EN 60 947-5-1
\(\geq 1,5 \times 10^{5}\) switching cycles
4 AgL
IEC/EN 60 947-5-1
\(\geq 30 \times 10^{6}\) switching cycles

Continuous operation
\(-20 \ldots+60^{\circ} \mathrm{C}\)

4 kV / 2
IEC 60 664-1
8 kV (air)
\(10 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3
\(3 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3

2 kV
IEC/EN 61 000-4-4
\(1 \mathrm{kV} \quad\) IEC/EN 61 000-4-5
2 kV
Limit value class B IEC/EN 61 000-4-5
IP \(40 \quad\) IEC/EN 60529

IP 20 IEC/EN 60529
Thermoplast with V0 behaviour according to UL subject 94
\(0,35 \mathrm{~mm}\) Amplitude,
frequency 10 ... 55 Hz IEC/EN 60 068-2-6
20/060/04 IEC/EN 60 068-1
EN 50005
\(2 \times 2,5 \mathrm{~mm}^{2}\) solid or
\(2 \times 1,5 \mathrm{~mm}^{2}\) stranded ferruled
DIN 46 228-1/-2/-3/-4
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1
0,8 Nm IEC/EN 60 999-1

DIN rail
IEC/EN 60715
approx. 140 g
approx. 120 g
approx. 170 g
approx. 150 g

\section*{Standard Types}

IL 5990 AC \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 1 \mathrm{~s}\)
Article number: 0049188
SL5990 AC \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 1 \mathrm{~s}\)
Article number: 0051721
- Nominal voltage \(U_{N}\) : AC 230 V
- Operate delay: 1 s
- Width: 35 mm

IL 5991 AC \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 1 \mathrm{~s}\)
Article number: 0049189
SL 5991 AC 230 V \(50 / 60 \mathrm{~Hz} 1 \mathrm{~s}\)
Article number:
- Nominal voltage \(U_{N}\) : AC 230 V
- Operate delay:

1 s
- Width:

35 mm

\section*{Ordering example}

\section*{Accessories}

Buzzer IK 8832, SK 8832: Article number: 0049528

Continuous current-limit curve

\section*{Connection Example}

\section*{Compact fault monitoring system with bus}
for intelligent, fast and cost saving failure diagnostics.
Available as common alarm system or system with programmable function new signal -, first signal -, and common alarm annunciator

Your Advantage
- cost saving: Reduction of standstill times in production
- expandable: up to 88 inputs decentralised via bus
- flexible: usage as new- / first- / common signal annunciator
- all in one: external buzzer and display units are available as accessoires
- Far away but easy to reach: with the GSM-Module you receive fault messages and acknowledge them by SMS using your mobile phone.

\section*{Additional Information about this topic}
- Informations about the additional Base module, Extension module and Display unit see datasheet RP 5990, RP 5991 and RP 5994, RP 5995
- Information about the additional text display unit see data sheet EH 5996
- Informations about the additional GSM-module for alarm and reset via SMS see datasheet RP 5810

\section*{Approvals and Markings}

\section*{Application}
- In building applications, e.g. heating, air conditioning, elevators, escalators, doors, Gates, etc.
- In machines and plants, e.g. process monitoring, emergency power supplies, pumping stations, water treatment, sewage water treatment

\section*{Description}

The main feature of the modular fault annunciator system INFOMASTER B is the bus structure. It allows easy expansion of the system and adoption to new application requirements.

If INFOMASTERB is used only as common alarm annunciator system the RP 5990 is the base unit.
For flexible use with first-, new signal or common alarm monitoring the RP 5994 is the base unit.

On both modules the number of inputs can be expanded by adding up to 10 extension modules and up to 10 indicator modules.

When using the base module RP 59944 text display modules EH5996 can be integrated.

The EH 5996 includes a RS232 interface to connect a GSM module RP 5810. This allows to communicate coming and going fault signal messages to predefined receivers.
for new- /first- and common alarm

only for common alarm

RP 5990

M9384_a

Common Alarm Annunciator RP 5990, RP 5991
- Fast localisation of failures and their causes
- Reduction of standstill times in production
- Common alarm annunciator with manual or auto reset of faults
- Expandable from 8 to 88 fault signals
- Open or closed circuit operation settable with rotational switch on base unit and with link X1/X2 on extension units
- Adjustable on delay for input signals 0 to 10 sec
- Reset buttons for audible alarm and common alarm on front side
- Connection for external reset of audible alarm
- Galvanic separation to bus RS485 (optional)
- Accessories: buzzer RK 8832, display unit EH 5990, EH 5991
- Width: 70 mm
- Base Module RP 5990:
- 8 fault signal inputs with indicator LED on the unit
- One relay output each for audible alarm and common alarm
- Reset buttons for audible alarm and common alarm
- Connection for external reset of audible alarm
- Extension Module RP 5991:
- 8 fault signal inputs with indicator LED on the unit
- As option one relay output each for audible alarm and common alarm
- As option reset buttons for audible alarm and common alarm

Display Unit EH 5990, EH 5991
- Exchangable front label for individual legending
- As option galvanic separated RS458 bus
- Protection degree for front side IP64
- Enclosure for flush mounting \(96 \times 96 \mathrm{~mm}\)
- Display Unit EH 5990:
- 8 fault signal LEDs on the unit
- Reset buttons for audible alarm and common alarm
- Display Unit EH 5991:
- 8 fault signal LEDs on the unit
- Without reset buttons

\section*{Additional Information about this topic}

General Information for INFOMASTER B see data sheet
INFOMASTER B, Systemoverview

\section*{Approvals and Markings}

\section*{Circuit Diagram}

Function Diagram (Faults with Manual Reset)

\section*{Indication}

LED green „, \(\mathrm{ON}^{\prime}\) :
LED red "CA":
LED yellow „BUS":
LEDs red S1 ... S8
on when supply connected
on when output common alarm active on when bus active
on when fault annunciator active

Function Diagram (Faults with Auto Reset)

\section*{Setting and Adjustment}

\section*{Wiring}

Devices with DC 24 V auxiliary supply have to be operated on a galvanic separated power supply.

\section*{Configuration Cycle}
1.) Wire the system
2.) Adjust module address on extension modules with switch "ADR" (different addresses for all modules)
2.1) When display units are integrated into the annunciator system the address setting of each display unit has to be done as follows
- if the display unit should display the state of the base module (RP 5990) set "MODE" switch on back of the unit to position "Basismodul" and adjust an address that is not used by any other display unit.
- if the display unit should display the state of an extension module (RP 5991) set "MODE" switch on back of the unit to position "Erw.modul" and adjust the same address as on the extension module (RP 5991) of which the status should be displayed.
3.) Set "MODE" switch on base module to position "Config"
4.) Choose input mode on extension modules:

Terminals X1/X2 open = open circuit operation
Terminals X1/X2 linked = closed circuit operation
5.) Set delay on switch, „td" \(0 \ldots 10 \mathrm{~s}\)
6.) Power up the system
7.) Fault signal LEDs of the base module are flashing for some time
8.) On the detected extension modules the fault signal LEDs are now flashing
9.) Fault signal LEDs change to continuous state and indicate number of detected extension modules in binary code
10.) The detected modules are stored no voltage safe in the base module memory. The fault annunciator only works with the detected modules. If a new module is added, the configuration cycle has to be run again.
11.) Select the required alarm function with switch "MODE" on the base module
12.) Press push buttons QH and QHC to leave the configuration mode.

\section*{Setting and Adjustment}

Functions of Switch „MODE＂
\begin{tabular}{l|l}
\begin{tabular}{r}
Switch \\
„MODE＂
\end{tabular} & description \\
\hline 0 & \begin{tabular}{l}
Common alarm annunciator alarm manual reset， \\
inputs open circuit operation \\
Common alarm annunciator alarm auto reset，
\end{tabular} \\
1 & \begin{tabular}{l}
inputs open circuit operation \\
Common alarm annunciator alarm manual reset， \\
inputs closed circuit operation \\
Common alarm annunciator alarm auto reset， \\
inputs closed circuit operation \\
Configuration
\end{tabular} \\
3 &
\end{tabular}

\section*{Lamp Test}

Pressing the pushbuttons QH and QCA simultaneously during normal operation will force a lamp test function（LT）．During lamp test all fault signal LEDs are switched on．

\section*{Fault Diagnostics}

To indicate failures of the system the unit generates a flash code on the Bus LED．When a failure code 1 to 3 is displayed，the contacts of the common alarm relay switch off．

LED continuously on：
Failure \(1 \Omega\) ：

Failure 2 〕ک \(\qquad\) －：

System has no failure
Configuration failure．One ore more extension modules，that have been detected during configuration do not exist anymore．The address of the first missing extension module is displayed as binary code on the fault signal LEDs．

The base module cannot communicate with the extension modules．The address of the first extension module that cannot communicate with the base module is displayed as binary code on the fault signal LEDs．

Failure \(3 \Omega \curvearrowleft\) \(\qquad\) ：The bus wire is interrupted or the bus is not terminated correctly．The base module does not find any extension modules to communicate with．

Failure \(4 \Omega \Omega \Omega\) \(\qquad\) ：In normal operation：the configuration data has been found faulty．A new configuration cycles has to be run．
During configuration：the detected configuration data could not be stored．

Failure 5 凡几んに
：New modules unknown to the device software of the base module have to be implemented by a firmware update of the base module．

Remark：Different types of devices（device classes）can be connected to the annunciator bus e．g．extension modules RP 5990，display units EH 5990，EH 5991 etc．The base module detects the different module types and adds a device specific number to the adjusted bus module address（address offset）．In the case of failure this added number is indicated as binary code on the LEDs of the base module．
\begin{tabular}{l|l|l}
Device class & address offset & modules \\
\hline Extension modules & +0 & RP 5991 \\
\hline Display unit & +10 & EH 5990，EH 5991
\end{tabular}

\section*{Technical Data}

Input
\begin{tabular}{ll}
Nominal voltage A1－A2： & AC \(230 \mathrm{~V}, \mathrm{DC} 24 \mathrm{~V}\) \\
Voltage range： & \(0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\) \\
Nominal consumption A1－A2 & \\
\begin{tabular}{ll}
at AC 230 V ： & 3.4 VA \\
at DC 24 V ： & 1.1 W \\
Nominal frequency A1－A2 & \\
at AC 230 V ： & 50 Hz
\end{tabular},\(l\)
\end{tabular}

Fault Signal Inputs（only for RP 5990，RP 5991）
Fault signal inputs S1．．．S8：AC／DC \(24 \ldots 230\) V
Min．time for input signal：\(\quad \geq 70 \mathrm{~ms}\)
Min．time for
acknowledgement：\(\quad \geq 70 \mathrm{~ms}\)
Operate delay setting with potentiometer \(0 \ldots 10 \mathrm{~s}\)

\section*{Output（only for RP 5990，RP 5991）}
\begin{tabular}{|c|c|}
\hline Contacts： & 1 NO contact each for output common alarm and horn \\
\hline Thermal current \(I_{\text {th }}\) ： & 2 A \\
\hline Switching capacity & \\
\hline according to AC 15： & 3 A／AC 230 V IEC／EN 60 947－5－1 \\
\hline Electrical life & \\
\hline to AC 15 at 1 A，AC 230 V ： & \(\geq 1.5 \times 10^{5}\) sw．cydes IEC／EN 60 947－5－1 \\
\hline Short circuit strength & \\
\hline Max．fuse rating： & 4 AgL IEC／EN 60 947－5－1 \\
\hline Mechanical life： & \(\geq 30 \times 10^{6}\) switching cycles \\
\hline RS485 Bus & \\
\hline
\end{tabular}

RP 599＿，EH 599＿：
RP 599＿／1＿＿，EH 599／1＿
Bus wire：
Data transmission rate：

\section*{General Data}

\section*{Nominal operating mode：}

Temperature range：
clearance and creepage

\section*{distance}
rated impulse voltage／
pollution degree
relay output：\(\quad 4 \mathrm{kV} / 2 \quad\) IEC 60 664－1
input： \(4 \mathrm{kV} / 2 \quad\) IEC 60 664－1

EMC
Electrostatic discharge（ESD）： 8 kV （air）IEC／EN 61 000－4－2
HF irradiation：\(\quad 10 \mathrm{~V} / \mathrm{m} \quad\) IEC／EN 61 000－4－3
Fast transients： \(2 \mathrm{kV} \quad\) IEC／EN 61 000－4－4
Surge voltage
between
\begin{tabular}{llr}
wires for power supply： & 1 kV & IEC／EN 61 000－4－5 \\
between wire and ground： & 2 kV & IEC／EN 61 000－4－5 \\
Interference suppression： & Limit value class B & EN 55 011
\end{tabular}
\(\begin{array}{llr}\text { Interference suppression：} \quad \text { Limit value class B } & \text { EN } 55011 \\ \text { Degree of protection RP 5990，RP } 5991 & \text { IEC／EN } 60529\end{array}\)
Housing
\begin{tabular}{ll}
Cover： & IP 40 \\
Base： & IP 30
\end{tabular}

Base：IP 30
Terminals：
IP 20
Degree of protection EH 5990，EH 5991
IEC／EN 60529
Front：
Enclosure：IP 20
Enclosure：thermoplastic with VO behaviour
according to UL Subjekt 94
Vibration resistance：\(\quad 0.35 \mathrm{~mm}\) amplitude，
Climate resistance：
Terminal designation：
not isolated
isolated（1KV）
screened twisted pair
115.2 KB／s

Attention：both ends of the twisted pair have to be terminated by inserting the links \(A / R a\) and \(B / R b\) ！
\(20 / 055\)／ \(04 . \ldots 55 \mathrm{~Hz}\) ，IEC／EN \(60068-2-6\) EN 50005
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Technical Data} \\
\hline Wire connection & DIN 46 228/1-/-2/-3/-4 \\
\hline fixed screw terminal (S): & \(0.2 \ldots 4 \mathrm{~mm}^{2}\) solid or \\
\hline & \(0.2 \ldots 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve \\
\hline plug-in screw terminal (PS): & 0.1 ... \(2.5 \mathrm{~mm}^{2}\) solid or \\
\hline & 0.1 ... \(1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve \\
\hline \multicolumn{2}{|l|}{plug-in cage clamp} \\
\hline terminals (PC): & 0.2 ... \(2.5 \mathrm{~mm}^{2}\) solid or \\
\hline & 0.2 ... \(1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve \\
\hline \multicolumn{2}{|l|}{Wire fixing} \\
\hline \multicolumn{2}{|l|}{fixed screw terminals (S),} \\
\hline & M2.5 with self raising terminal box \\
\hline \multicolumn{2}{|l|}{plug-in cage clamp} \\
\hline terminals (PC): & cage clamp terminals for directely plug-in of conductors \\
\hline & Screwdriver \(0.6 \times 3.5\) for removing of the cage-clamp \\
\hline Mounting: & DIN-rail IEC/EN 60715 \\
\hline \multicolumn{2}{|l|}{Weight} \\
\hline RP 5990 S: & 260 g \\
\hline RP 5991 S: & 240 g \\
\hline \multicolumn{2}{|l|}{EH 5990, EH 5991} \\
\hline AC 230 V -version: & 285 g \\
\hline DC 24 V-version: & 210 g \\
\hline \multicolumn{2}{|l|}{Dimensions} \\
\hline \multicolumn{2}{|l|}{Width x height x depth:} \\
\hline RP 5990, RP 5991: & \(70 \times 90 \times 71 \mathrm{~mm}\) \\
\hline EH 5990, EH 5991: & \(96 \times 96 \times 60.5 \mathrm{~mm}\) \\
\hline \multicolumn{2}{|l|}{Standard Types} \\
\hline \multicolumn{2}{|l|}{RP 5990 S AC 230 V 50 Hz} \\
\hline Article number: & 0059452 \\
\hline \multicolumn{2}{|l|}{RP 5991 S AC 230 V 50 Hz} \\
\hline Article number: & 0059456 \\
\hline - Nominal voltage \(U_{N}\) : & AC 230 V \\
\hline - Width: & 70 mm \\
\hline \multicolumn{2}{|l|}{EH 5990 AC 230 V 50 Hz} \\
\hline Article number: & 0060581 \\
\hline - Nominal voltage \(U_{N}\) : & AC 230 V \\
\hline \begin{tabular}{l}
- Reset buttons for audible ala \\
- Width:
\end{tabular} & Acm and common alarmon front side 96 mm \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{EH 5991 AC \(230 \mathrm{~V} 50 \mathrm{~Hz}{ }^{\text {a }}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : \\
AC 230 V \\
- Without reset buttons
\end{tabular}}} \\
\hline & \\
\hline & 96 mm \\
\hline
\end{tabular}

\section*{Odering Example for RP 599_}
RP 599 (

\section*{Accessories}

Buzzer RK 8832
Article number: 0059906

\section*{Circuit Diagrams}

New- / First- /Common Signal Annunciator RP 5994, RP 5995
- Fast localisation of failures and their causes
- Reduction of standstill times in production
- Adjustable operating modes:

New- / First signal annunciator according to DIN 19 235, common alarm annunciator manual reset / auto reset settable
- Expandable from 8 to 88 fault signals
- Open or closed circuit operation settable
- Adjustable on delay for input signals 0 to 10 sec
- Reset buttons for audible alarm and common alarm on front side
- Connection for external reset of audible alarm, common alarm and single alarm according to setting
- Galvanic separation to bus RS485 (optional)
- Accessories: buzzer RK 8832, display unit EH 5994, EH 5995 text display unit EH 5996, GMS-module RP 5810
- Width: 70 mm

\section*{Base module RP 5994}
- 8 fault signal inputs with indicator LED on the unit
- One relay output each for audible alarm and common alarm
- Reset buttons for audible alarm, common alarm, and single alarm
- Connection of remote reset button. Function according to setting

Extension module RP 5995:
- 8 fault signal inputs with indicator LED on the unit
- One relay output each for audible alarm and common alarm (on request)
- Reset buttons for audible alarm, common alarm, and single alarm
- Connection of remote reset button. Function according to setting

Display unit EH 5994, EH 5995
- Exchangable front label for individual legending
- As option galvanic separated RS458 bus
- Protection degree for front side IP 64
- Enclosure for flush mounting \(96 \times 96 \mathrm{~mm}\)
- Display unit EH 5994:
- 8 fault signal LEDs on the unit
- Reset buttons for audible alarm, common alarm and alarm signal
- Display unit EH 5995:
- 8 fault signal LEDs on the unit
- Without reset buttons

\section*{Additional Information about this topic}
- General information for INFOMASTERB see data sheet INFOMASTER B, System overview
- Information about the additional text display unit see data sheet EH 5996
- Information about the additional GSM-module for alarm and acknowledgement per SMS see data sheet RP 5810

Approvals and Markings
c

EH 5994, EH 5995

Function Diagram (New Signal Alarm Annunciator)

Function Diagram (Common Alarm Annunciator, Auto Reset)

Function Diagram (Common Alarm Annunciator Manual Reset)

\section*{Setting and Adjustment}

\section*{Wiring}

Devices with DC 24 V auxiliary supply have to be operated on a galvanic separated power supply.

\section*{Configuration Cycle}
1.) Wire the system
2.) Adjust module address on extension modules with switch "ADR" (different addresses for all modules)
2.1) When display units are integrated into the annunciator system the address setting of each display unit has to be done as follows
- if the display unit should display the state of the base module (RP 5994) set "MODE" switch on back of the unit to position "Basismodul" and adjust an address that is not used by any other display unit.
- if the display unit should display the state of an extension module (RP 5995) set "MODE" switch on back of the unit to position "Erw.modul" and adjust the same address as on the extension module (RP 5995) of which the status should be displayed.
3.) Set "MODE" switch on base module to position "Config"
4.) Choose input mode on extension modules:

Terminals X1/X2 open = open circuit operation
Terminals X1/X2 linked = closed circuit operation
5.) Set delay on switch, „td" \(0 \ldots 10 \mathrm{~s}\)
6.) Power up the system
7.) Fault signal LEDs of the base module are flashing for some time
8.) On the detected extension modules the fault signal LEDs are now flashing
9.) Fault signal LEDs change to continuous state and indicate number of detected extension modules in binary code
10.) The detected modules are stored no voltage safe in the base module memory. The fault annunciator only works with the detected modules. If a new module is added, the configuration cycle has to be run again.
11.) Select the required alarm function with switch "MODE" on the base module
12.) Press push buttons QH and QHC to leave the configuration mode.

\section*{Function Switch „MODE"}
\begin{tabular}{c|l}
\begin{tabular}{l}
switch \\
„MODE"
\end{tabular} & description \\
\hline & First fault signal \\
0 & New fault signal \\
1 & Common alarm manual reset \\
2 & Common alarm auto reset \\
3 & Config. \\
Configuration
\end{tabular}

Function Switch „Set"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Function of QX1 / QX2} & \multicolumn{2}{|l|}{Function principle of fault signal inputs} \\
\hline Switch "Set" & & & & & & \\
\hline 0 & \(\checkmark\) & - & - & - & \(\checkmark\) & - \\
\hline 1 & - & \(\checkmark\) & - & - & \(\checkmark\) & - \\
\hline 2 & - & - & \(\checkmark\) & - & \(\checkmark\) & - \\
\hline 3 & - & - & - & \(\checkmark\) & \(\checkmark\) & - \\
\hline 4 & \(\checkmark\) & - & - & - & - & \(\checkmark\) \\
\hline 5 & - & \(\checkmark\) & - & - & - & \(\checkmark\) \\
\hline 6 & - & - & \(\checkmark\) & - & - & \(\checkmark\) \\
\hline 7 & - & - & - & \(\checkmark\) & - & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Setting and Adjustment}

\section*{Possible Alarm Modes:}
\begin{tabular}{|c|c|c|c|}
\hline Alarm annunciator & & & \\
\hline New signal alarm annunciator & \(\checkmark\) & \(\checkmark\) & - \\
\hline First signal annunciator & \(\checkmark\) & \(\checkmark\) & - \\
\hline Common alarm annunciator manual reset & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Common alarm annunciator auto reset & - & \(\checkmark\) & - \\
\hline
\end{tabular}

\section*{- : this setting ist not supported by the module}

\section*{Lamp Test}

Pressing the pushbuttons QH and QCA simultaneously during normal operation will force a lamp test function (LT). During lamp test all fault signal LEDs are switched on.
The lamp test function can also be operated by bridging the terminal QX1/ QX2 (connection remote reset) if this function is selected on switch "Set" for QX1/QX2

\section*{Fault Diagnostics}

To indicate failures of the system the unit generates a flash code on the Bus LED. When a failure code 1 to 3 is displayed, the contacts of the common alarm relay switch off.

\section*{LED continuously on:}

Failure \(1 \Omega \square\) :

Failure 2\(\rfloor \Omega\) \(\qquad\) - :
\(\qquad\) - :

The bus wire is interrupted or the bus is not terminated correctly. The base module does not find any extension modules to communicate with.

Failure \(4 \leadsto \sqcap \sqcap \sqcap\) \(\qquad\) : In normal operation:the configuration data has been found faulty. A new configuration cycles has to be run.
During configuration: the detected configuration data could not be stored.

Failure \(5 \hookrightarrow 凸 \sqcap \sqcap\) \(\qquad\) : New modules unknown to the device software of the base module have to be implemented by a firmware update of the base module.

Remark: Different types of devices (device classes) can be connected to the annunciator bus e.g. extension modules RP 5995, display units EH 5994, EH 5995 etc. The base module detects the different module types and adds a device specific number to the adjusted bus module address (address offset). In the case of failure this added number is indicated as binary code on the LEDs of the base module.
Max. 4 text display units EH 5996 can be connected to the Base module RP 5994.
These 4 units has to be designation by adresse 0 up to 3
\begin{tabular}{l|l|l}
Device class & adress offset & modules \\
\hline Extension modules & +0 & RP 5995 \\
\hline Display unit & +10 & EH 5994, EH 5995 \\
\hline Textdisplay unit & +20 & EH 5996
\end{tabular}

\section*{Technical Data}

\section*{Input}

Nominal voltage A1-A2: \(\quad\) AC 230 V, DC 24 V
Voltage range: \(\quad 0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\)
Nominal consumption A1-A2
at AC 230 V : 3.4 VA
\(\begin{array}{ll}\text { at DC } 24 \mathrm{~V} \text { : } & 1.1 \mathrm{~W}\end{array}\)
Nominal frequency A1-A2
at AC 230 V:
Fault Signal Inputs (only for RP 5994, RP 5995)
Fault signal inputs S1...S8: AC/DC \(24 \ldots 230\) V
Min. time for input signal: \(\quad \geq 70 \mathrm{~ms}\)
Min. time for
acknowledgement: \(\quad \geq 70 \mathrm{~ms}\)
Operate delay setting with poti \(0 \ldots 10 \mathrm{~s}\)
Output (only for RP 5994, RP 5995)

Contacts:
Thermal current \(I_{t h}\) :
Switching capacity
according to AC 15:
Electrical life
to AC 15 at \(1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}\) :
Short circuit strength
Max. fuse rating:
Mechanical life:

\section*{RS485 Bus}
\begin{tabular}{ll}
RP 599_EH 599_: & not isolated \\
RP 599_1__, EH 599/1__: & isolated (1KV) \\
Bus wire: & screened twisted pair \\
Data transmission rate: & \begin{tabular}{l}
\(115.2 \mathrm{~KB} / \mathrm{s}\) \\
\\
\\
\\
\\
\\
Attention: both ends of the twisted \\
pair have to be terminated by \\
inserting the links A/Ra and B/Rb!
\end{tabular} \\
General Data &
\end{tabular}

Nominal operating mode
Temperature range:
clearance and creepage

\section*{distance}
rated impulse voltage /
pollution degree
\begin{tabular}{lll}
relay output: & \(4 \mathrm{kV} / 2\) & IEC 60 664-1 \\
input: & \(4 \mathrm{kV} / 2\) & IEC \(60664-1\)
\end{tabular}

EMC
Electrostatic discharge (ESD):
Fast transients: \(10 \mathrm{~V} / \mathrm{m}\)
2 kV
Surge voltage
between
\begin{tabular}{ll}
wires for power supply: & 1 kV \\
between wire and ground: & 2 kV \\
Interference suppression: & Limit value class B
\end{tabular}

Degree of protection RP 5994, RP 5995:
Housing
\begin{tabular}{ll}
Cover: & IP 40 \\
Base: & IP 30 \\
Terminals: & IP 20
\end{tabular}

Terminals:
IP 30
Degree of protection EH 5994, EH 5995:
continuous operation
\(-20 \ldots+55^{\circ} \mathrm{C}\)

Front:
IP 64
Enclosure:
IP 20
Enclosure:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
fixed screw terminal (S):
plug-in screw terminal (PS):
plug-in cage clamp terminals (PC):

\section*{Wire fixing}
fixed screw terminals (S),
plug-in screw terminals (PS):

1 NO contact each
for output common alarm and horn 2 A

3 A / AC \(230 \mathrm{~V} \quad\) IEC/EN 60 947-5-1
\(\geq 1.5 \times 10^{5}\) sw.cydes IEC/EN 60 947-5-1
4 AgL
IEC/EN 60 947-5-1
\(\geq 30 \times 10^{6}\) switching cycles

\section*{System Overview}

In one fault monitoring system INFOMASTER B with one base module RP 5994 up to 4 text displays EH 5996 can be operated. In addition it is possible to connect 10 extension modules RP 5995 and 10 Display units EH 5994 or EH 5995. Via the RS230 interface on EH 5996 a GSM Module RP 5810 can be controlled, that transfers SMS on coming or going fault signals to pre-defined receivers.

\section*{Your Advantages}
- Easy to extend up to 10 displays because of bus connection
- Easy to change the operating language for menus and failure text

\section*{Features}
- Text display for DOLD fault annunciator system INFOMASTER B with base module RP 5994
- To display up to 88 fault messages with 80,40 or 20 characters each
- Operating mode adjustable on base module RP 5994 for new, first or common alarm
- Reset buttons for individual alarm signal, audible alarm and common alarm on front side
- RS 485 bus connection, as option with galvanic separation
- Alarms and resets can be transmitted by SMS via GSM module RP 5810
- SMS communication is possible with up to 16 receivers
- Configuration of the text display via USB-Stick (acceccories OA 5996 Article-No. 0065659), therefore no laptop on site is necessary
- Real time clock
- Operating language for menus and failure text in English, German and French
- Up to 3 variable parameters in one message text
- 2 password levels for device configuration

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Additional Information about this topic}
- General information for INFOMASTER B see datasheet INFOMASTER B, systemoverview
- Informations about the additional Base module, Extension module and Display unit see datasheet RP 5994, RP 5995
- Informations about the additional GSM-module for alarm and reset via SMS see datasheet RP 5810

\section*{Application}
- To monitor industrial plants and buildings
- For fast localisation of failures and their causes
- For reduction of standstill times in production
\begin{tabular}{ll}
\hline Indication & \\
green LED "ON": & \begin{tabular}{l}
on when supply connected \\
on, when output common alarm \\
red LED "CA":
\end{tabular} \\
yellow LED "BUS": & \begin{tabular}{l}
on, when bus is active
\end{tabular}
\end{tabular}

\section*{Setting and Adjustment}

\section*{Wiring}

Devices with DC 24 V auxiliary supply have to be operated on a galvanic separated power supply.

\section*{Configuration cycle}
1.) Wire the system
2.) Adjust module address on all connected modules with switch "ADR" (different addresses for all modules)
3.) Set "MODE" switch on base module to position "Config"
4.) Power up the system
5.) While fault signal LEDs of the base module are flashing
6.) the text display Eh 5996 detected by the base module RP 5994 shows the following text:
"System is in configuration mode module has been detected on bus"
7.) Fault signal LEDs change to continuous state and indicate number of detected extension modules in binary code
8.) The detected modules are stored no voltage safe in the base module memory. The fault annunciator only works with the detected modules. If a new module is added, the configuration cycle has to be run again.
9.) Configuration of the text display unit (see user manual)

\section*{Operation of Text Display Unit}

The text display is either in annunciator or configuration mode. A symbol in the status line of the display indicates the mode (see table and drawing and picture below). Depending on the actual mode the pushbuttons on the front have a different function. In annunciator mode the orange legend is valid and in configuration the grey legend.
\begin{tabular}{|c|c|}
\cline { 2 - 2 } \multicolumn{1}{c|}{} & Symbols in status line \\
\hline C & GSM module is initialised and ready \\
\hline B & Annunciator mode \\
\hline\(\square\) & Configuration mode \\
\hline 뇨 & Reading from or writing to USB-memory device \\
\hline D & Simulation mode \\
\hline
\end{tabular}

\section*{Description text display unit EH 5996}

\section*{Operation of Text Display Unit}

Function of Push Buttons
\begin{tabular}{|c|c|c|}
\hline & @Annunciator mode & \(\square\) Configuration mode \\
\hline & Previous active fault message & one menu item up or increase value in data entry field \\
\hline & Next active fault message & one menu item down or decrease value in data entry field \\
\hline Posi & Beginning of active messages list & one character to the left in data entry field \\
\hline \(\xrightarrow{\text { QH }}\) & Acknowledging the audible alarm & one character to the right in data entry field \\
\hline QCA & Acknowledging the common alarm & select menu item or confirm entered data \\
\hline (QA & Acknowledging alarm message & cancel changes and leave data entry field \\
\hline QcA \({ }_{\text {Q }}^{\text {Q }}\) & Change into configuration mode & \\
\hline
\end{tabular}

\section*{SMS Function}

In conjunction with the GSM module RP 5810 the text display can transmit SMS on coming and going alarm messages. For each alarm message an SMS text each for coming and going can be defined together with max. 16 possible receivers. Also it is possible to enable receivers out of the possible 16 to acknowledge alarms.

\section*{Technical Data}

Input
Nominal voltage A1-A2: \(\quad\) AC 230 V, DC 24 V
Voltage range: \(\quad 0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}}\)
Nominal consumption A1-A2
at AC 230 V : \(\quad 2.5 \mathrm{VA}\)
at DC 24 V : \(\quad 1.9 \mathrm{~W}\)
Nominal frequency A1-A2
at AC 230 V :
50 Hz

\section*{Output}

RS485 Bus
EH 5996:
not isolated
EH 5996/1_ _
Bus wire:
Data transmission rate: isolated (1 KV) screened twisted pair 115.2 KB/s

Attention: both ends of the twisted pair have to be terminated by inserting the links \(A / R a\) and \(B / R b\) !

\section*{General Data}

Nominal operating mode:
Temperature range:
Clearance and creepage distance
rated impulse voltage /
pollution degree
EMC
Electrostatic discharge (ESD):
HF irradiation:
Fast transients:
Surge voltage
between
wires for power supply:
between wire and ground:
Interference suppression:
Degree of protection:
Front:
Enclosure:
Enclosure:

\section*{continuous operation}
\(-20 \ldots+55^{\circ} \mathrm{C}\)

4 kV / 2
IEC 60 664-1

IEC/EN 61 000-4-2
IEC/EN 61 000-4-3
IEC/EN 61 000-4-4

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
EN 55011
IEC/EN 60529
P 64
IP 20
thermoplastic with VO behaviour according to UL Subjekt 94
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Technical Data} \\
\hline Vibration resistance: & 0.35 mm amplitude, frequency 10 ... 55 Hz , IEC/EN 60 068-2-6 \\
\hline Climate resistance: & 20/055/04 IEC/EN 60 068-1 \\
\hline Terminal designation: & EN 50005 \\
\hline Wire connection plug-in screw terminal: & DIN 46 228/1-/-2/-3/-4
\[
0.1 \ldots 2.5 \mathrm{~mm}^{2} \text { solid or }
\] \\
\hline & \(0.1 \ldots 1.5 \mathrm{~mm}^{2}\) stranded wire with sleeve \\
\hline Wire fixing: & Captive plus-minus-terminal screws \\
\hline & M2.5 with self raising terminal box \\
\hline Mounting: & DIN-rail IEC/EN 60715 \\
\hline Weight: & 260 g \\
\hline \multicolumn{2}{|l|}{Dimensions} \\
\hline
\end{tabular}

Width \(\mathbf{x}\) height \(\mathbf{x}\) depth: \(\quad 96 \times 96 \times 123 \mathrm{~mm}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Standard Types} \\
\hline \begin{tabular}{l}
EH 5996 AC 230 V 50 Hz \\
Article number: \\
EH 5996 DC 24 V \\
Article number: \\
- Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : \\
- fixed screw terminals \\
- Width:
\end{tabular} & \begin{tabular}{l}
0061784 \\
0061813 \\
AC 230 V or DC 24 V \\
96 mm
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Odering example} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Accessories} \\
\hline \begin{tabular}{l}
Base module RP 5994 \\
Extension module RP 5995 \\
Display unit EH 5994 \\
Display unit EH 5995 \\
Buzzer RK 8832 \\
GSM-Module RP 5810 \\
USB-Stick OA 5996 \\
(FAT 16 formated):
\end{tabular} & \begin{tabular}{l}
Article number: 0060029 \\
Article number: 0060034 \\
Article number: 0060589 \\
Article number: 0060593 \\
Article number: 0059906 \\
Article number: 0065146 \\
Article number: 0065659
\end{tabular} \\
\hline
\end{tabular}

Function Diagram

\section*{Circuit Diagrams}

M7444_a

M7445_a
- New fault annunciation with single frequency flashlight according to DIN 19235
- Expandable from 16 up to 160 inputs
- in 2 groups of 8 inputs selectable: - open circuit operation - closed circuit operation
- Input voltage up to max. AC/DC 240 V
- Delayed inputs
- Exchangable front for individual scale
- Removable terminals
- Flush mounting
- Frame \(72 \times 144 \mathrm{~mm}\)

EP 5966:
- 16 inputs in control unit
- Output relay for common signal and audible alarm
- Built in and external connected pushbuttons for lamp test (LT), acknowledgement of horn (QH) and of alarm (QS)
- Extension module with 16 inputs

\section*{Approvals and Markings}

\section*{Applications}

Monitoring of industrial plants and buildings

\section*{Function}

The unit EP 5966 controls the system and includes the common alarm output for all connected extension modules EP 5967.
For audible alarm as well as for common alarm 2 relay outputs (NO) are available. The acknowledgement (QH and QS), as well as the lamp test (LT) can be effected through built in and external pushbuttons. The pushbutton lamp test (LT) is for the checking of the LED's in the control unit and the supsequent extension modules. The associated common alarm output contact 23-24 will be closed.

OnEP 5966 and 5967 open circuit operation or closed circuit operation can be selected by bridging terminals \(\mathrm{X} 3 / \mathrm{X} 4\) or \(\mathrm{X} 5 / \mathrm{X} 6\) for 2 groups of 8 inputs.
To avoid unnecessary fault signalling an operate delay of \(1 \mathrm{~s}, 3 \mathrm{~s}\) or 10 s to the inputs is available.
The fault annunciator lamps can be marked by the customer on an attached label. Spare labels for EP 5966 and EP 5967 are available.
Extension modules can be mounted in neighbour cabinets. The distances of the panels should not be bigger than 10 m . In this case the connection cable must be screened. The screen has to be grounded on both sides.

\section*{Indication}

One LED for each signal
EP 5966 with additional LED for common alarm

\section*{Notes}

The inputs for the control signals as well as the inputs for programming (open circuit / closed circuit) are not protected against false connection to mains voltage.
The inputs are not galvanic separated from the supply voltage. At DC units 0 V must always be connected to A2.
When configured for NC signal inputs, the inputs not used, must be connected to high level.

\section*{Technical Data}

\section*{Input}
\begin{tabular}{lll}
Auxiliary voltage \(\mathbf{U}_{\mathbf{H}}(\mathbf{A} 1\), A2): & AC \(24,42,110,127,230 \mathrm{~V}\) \\
& DC 24 V & \\
Special voltages \({ }^{1)}:\) & EP 5966 & EP 5967 \\
DC \(48 \mathrm{~V}:\) & \(270 \Omega / 8 \mathrm{~W}\) & \(330 \Omega / 8 \mathrm{~W}\) \\
DC \(60 \mathrm{~V}:\) & \(390 \Omega / 8 \mathrm{~W}\) & \(510 \Omega / 8 \mathrm{~W}\) \\
DC \(110 \mathrm{~V}:\) & \(1.0 \mathrm{k} \Omega / 20 \mathrm{~W}\) & \(1.2 \mathrm{k} \Omega / 20 \mathrm{~W}\) \\
DC \(127 \mathrm{~V}:\) & \(1.2 \mathrm{k} \Omega / 20 \mathrm{~W}\) & \(1.5 \mathrm{k} \Omega / 20 \mathrm{~W}\) \\
DC \(220 \mathrm{~V}:\) & \(2.4 \mathrm{k} \Omega / 35 \mathrm{~W}\) & \(2.7 \mathrm{k} \Omega / 35 \mathrm{~W}\)
\end{tabular}
\({ }^{1)}\) Special voltages with series dropresistor (5\%) on terminal A1. The fault annunciators are made for the special voltage and cannot be adapted to other voltages by changing series resistors.

Voltage range: Nominal consumptions
EP 5966:
EP 5967:
Nominal frequency:
Min. time for input signal:
Min. time for
acknowlegement:
Input voltage (S1 ... S16):
\(0.8 \ldots 1.1 U_{N}\)
approx. 5 VA
approx. 5 VA
\(50 / 60 \mathrm{~Hz}\)
\(\geq 100 \mathrm{~ms}+\) operate delay
\(\geq 200 \mathrm{~ms}\)
AC/DC \(24 \ldots 60 \mathrm{~V}\)
AC/DC 110 ... 240 V
AC/DC \(12 \ldots 30 \mathrm{~V}\) (only at \(U_{H}=D C 12 \mathrm{~V}\))
Output

\section*{Operate delay \(t_{v}\) : \\ Thermal current \(I_{t h}\) :}

Switching capacity
to AC 15:
Electrical life
to AC 15 at 3 A, AC 230 V :

\section*{General Data}

Operating mode:
Temperature range:
Clearance and creepage

\section*{distances}
rated impulse voltage /
pollution degree:
4 kV / 2
Continuous operation
\(-20 \ldots+50^{\circ} \mathrm{C}\)

EMC
Electrostatic discharge:
HF-irradiation:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Wire connection:

Wire fixing:
Mounting:
Weight
EP 5966:
EP 5967:
\(1 \mathrm{~s}, 3 \mathrm{~s}, 10 \mathrm{~s}\)
3 A
3 A; AC 230 V
IEC/EN 60 947-5-1 IEC/EN 60 947-5-1
\(5 \times 10^{5}\) switching cycles

4 kV (air) IEC/EN 61 000-4-2
\(10 \mathrm{~V} / \mathrm{m} \quad\) IEC/EN 61 000-4-3
2 kV

2 kV
4 kV
Limit value class B
IP \(40 \quad\) IEC/EN 60529
IP 20 IEC/EN 60529
Thermoplastic with V0-behaviour according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency \(10 \ldots 55 \mathrm{~Hz}\)
\(20 / 050\) / \(04 \quad\) IEC/EN 60 068-1
\(2 \times 1.5 \mathrm{~mm}^{2}\) solid DIN 46 228-1/-2/-3/-4
\(1 \times 1.5 \mathrm{~mm}^{2}\) or \(2 \times 0.75 \mathrm{~mm}^{2}\)
stranded wire with sleeve
DIN 46 228-1/-2/-3/-4
Box terminals with self-lifting wire protection, removable
flush mounting
520 g
approx. 480 g

IEC/EN 61 000-4-5 IEC/EN 61 000-4-5 EN 55011

\section*{Dimensions}

Width x heigth x depth:
Front panel cut-out:

\section*{Accessories}

Spare indication label: EP 5966-0-1, Art.-No.: 0048909
EP 5967-0-1, Art.-No.: 0050771
EP 5966-10, Art.-No.: 0048738
Spare transparent front sheet:

\section*{Standard Types}
\begin{tabular}{ll}
EP 5966 AC/DC \(24 \ldots 60 \mathrm{~V}\) & \(\mathrm{U}_{\mathrm{H}} \mathrm{DC} 24 \mathrm{~V} 1 \mathrm{~s}\) \\
Article number: & 0041660 \\
- Input voltage: & AC/DC \(24 \ldots 60 \mathrm{~V}\) \\
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}:\) & DC 24 V \\
- Operate delay: & 1 s \\
- Frame: & \(72 \times 144 \mathrm{~mm}\) \\
- & \\
EP 5967 AC/DC \(24 \ldots 60 \mathrm{~V}\) & \(\mathrm{U}_{\mathrm{H}} \mathrm{DC} 24 \mathrm{~V} \quad 1 \mathrm{~s}\) \\
Article number: & 0041662 \\
- Input voltage: & \(\mathrm{AC} / \mathrm{DC} 24 \ldots 60 \mathrm{~V}\) \\
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}:\) & DC 24 V \\
- Operate delay: & 1 s \\
- Frame: & \(72 \times 144 \mathrm{~mm}\)
\end{tabular}

\section*{Ordering examples}

\section*{Connection Example}

Function Diagram

\section*{Circuit Diagrams}

AD 5998

AD 5992
- New fault annunciation according to DIN 19235
- Expandable from 3 up to 303 inputs
- Width 45 mm

Fault annunciator AD 5998:
- 3 inputs
- Pushbutton connection possible for light signal acknowledgement, horn acknowledgement and lamp test
- 1 relay for common alarm and 1 for horn

Extension unit AD 5992:
- 6 inputs

\section*{Approvals and Markings}

\section*{C \(\epsilon\)}

\section*{Application}

Monitoring of industrial plants and buildings

\section*{Notes}

The connections A1, inputs S1-S3 and S1-S6, lampt test input LT and acknowledgement input \(Q\) have to be connected to the same phase.

Even if no common signal light will be connected, the nominal voltage is to be connected to terminal 27.

The bus-lines H and S have alow voltage and are not allowed to be connected to any external voltage. If inductive or capacitive superimposed voltages are expected, it is recommened to use screened cables for these lines.

The flash impulse via flash line BS will be generated by an internal contact. The maximum load of this contact must be observed (technical data).

It is not allowed to connect lamps with transformers on the outputs. This would cause unintentional fault signals at the lamp test.

In case of units with AC -voltage, the signal lights during the lamp test are lighting dim, as the test will be effected only with a half-wave. The half-wave voltage is also applied at terminals S1-S3 and S1-S6 during the lamp test.

If other lamps, except for the fault signal lamps, should be tested via the lamp test pushbutton T1, it is necessary to use a lamp tester, whose diode configuration is identically to the diode configuration of the fault annunciator. In case of AC-voltage operation this ist the lamp tester AI 990/04, in case of DC-voltage operation the lamp tester Al 990 or Al 990.10.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Technical Data} \\
\hline \multicolumn{4}{|l|}{Input} \\
\hline \multicolumn{2}{|l|}{Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) :} & \multicolumn{2}{|l|}{AC 24, 230, 240 V , DC 24 V with polarity protection AC 42, 110, 127 V on demand with additional resistors (see connection example)} \\
\hline \multicolumn{3}{|r|}{AD 5998} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { AD } 5992 \\
\text { R2 }
\end{gathered}
\]} \\
\hline & RV & R1 & \\
\hline \(\overline{\text { DC } 48 \mathrm{~V} \text { : }}\) & ZWS 8 sl \(390 \Omega\) & ZWS 8 sl \(2.7 \mathrm{k} \Omega\) & ZWS 8 sl \(430 \Omega\) \\
\hline DC 60 V : & ZWS 8 sl \(640 \Omega\) & ZWS 20 sl \(4.7 \mathrm{k} \Omega\) & ZWS 8 sl \(640 \Omega\) \\
\hline DC 110 V : & ZWS 20 sl \(1.5 \mathrm{k} \Omega\) & ZWS \(20 \mathrm{sl} 10 \mathrm{k} \Omega\) & ZWS 20 sl \(1.5 \mathrm{k} \Omega\) \\
\hline \(\overline{\text { DC } 125 \mathrm{~V} \text { : }}\) & ZWS 20 sl \(1.8 \mathrm{k} \Omega\) & ZWS \(20 \mathrm{sl} 12 \mathrm{k} \Omega\) & ZWS 20 sl \(1.8 \mathrm{k} \Omega\) \\
\hline \(\overline{\text { DC } 230 \mathrm{~V} \text { : }}\) & ZWS 20 sl 3.3 k ת & ZWS 20 sl \(24 \mathrm{k} \Omega\) & ZWS 20 sl \(3.3 \mathrm{k} \Omega\) \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Voltage range: \\
Nominal consumption:
\end{tabular}} & \[
\begin{gathered}
0.8 \ldots 1.1 \mathrm{U}_{\mathrm{N}} \\
\mathrm{AC} 230 \mathrm{~V} \\
6 \mathrm{VA}
\end{gathered}
\] & \[
\begin{array}{r}
\text { DC } 24 \mathrm{~V} \\
1.5 \mathrm{~W}
\end{array}
\] \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Nominal frequency: Fault impulse time: Acknowledgement impulse time:}} & \multicolumn{2}{|l|}{} \\
\hline & & \[
\geq 100 \mathrm{~ms}
\] & \\
\hline & & > 200 ms & \\
\hline \multicolumn{4}{|l|}{Output} \\
\hline \begin{tabular}{l}
Loading: \\
AD 5992 / \\
signal light \\
(terminals \\
L5, L6 bzw
\end{tabular} & \[
\begin{aligned}
& \text { D } 5998 \\
& \text { each: } \\
& 1, \mathrm{~L} 2, \mathrm{~L}, \mathrm{~L}, \mathrm{~L}, \\
& \mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3)
\end{aligned}
\] & AC 230 V 1 A max. & \\
\hline \multicolumn{4}{|l|}{AD 5998} \\
\hline \multicolumn{2}{|l|}{Audible-alarm output (terminal 14):} & \multicolumn{2}{|l|}{AC 230 V 3 A max.} \\
\hline \multicolumn{2}{|l|}{Common alarm output (terminal 28) and lamp signal via flash line BS totally:} & & \\
\hline & & \multicolumn{2}{|l|}{\begin{tabular}{l}
DC 24 V 2 A max. \\
for higher switching capacity
\end{tabular}} \\
\hline Lamp test & (pushbutton 1): & \multicolumn{2}{|l|}{Sum of the currents of all lamp signals L} \\
\hline \multicolumn{4}{|l|}{General Data} \\
\hline \multicolumn{2}{|l|}{Operation mode:} & \multicolumn{2}{|l|}{Continuous operation} \\
\hline \multicolumn{2}{|l|}{Temperature range:} & \multicolumn{2}{|l|}{\(-20 \ldots+60^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{4}{|l|}{Clearance and creepage distances} \\
\hline \multicolumn{4}{|l|}{EMC} \\
\hline \multicolumn{2}{|l|}{Electrostatic discharge:} & 6 kV (contact) & IEC/EN 61 000-4-2 \\
\hline \multicolumn{2}{|l|}{HF-irradiation:} & \(10 \mathrm{~V} / \mathrm{m}\) & IEC/EN 61 000-4-3 \\
\hline \multicolumn{2}{|l|}{Fast transients:} & 2 kV & IEC/EN 61 000-4-4 \\
\hline \multicolumn{2}{|l|}{Surge voltages:} & 1 kV & IEC/EN 61 000-4-5 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Interference suppression:
Degree of protection:}} & \multicolumn{2}{|l|}{Limit value class B EN 5501} \\
\hline & & \multirow[t]{2}{*}{Housing: IP 40
Terminals: IP 20} & IEC/EN 60529 \\
\hline \multicolumn{2}{|l|}{Degree of protection:} & & IEC/EN 60529 \\
\hline \multicolumn{2}{|l|}{Housing:} & \multicolumn{2}{|l|}{Thermoplast with Vo behaviour according to UL subject 94} \\
\hline \multicolumn{2}{|l|}{Vibration resistance:} & Amplitude 0.35 mm , frequency \(10 \ldots . .55 \mathrm{~Hz}\) & IEC/EN 60 068-2-6 \\
\hline \multicolumn{2}{|l|}{Climate resistance:} & 20 / 060 / 04 & IEC/EN 60 068-1 \\
\hline \multicolumn{2}{|l|}{Terminal designation:} & \multicolumn{2}{|l|}{EN 50005} \\
\hline \multicolumn{2}{|l|}{Wire connection:} & \(2 \times 2.5 \mathrm{~mm}^{2}\) solid or \(2 \times 1.5 \mathrm{~mm}^{2}\) strande DIN 46228 & wire with sleeve \\
\hline \multicolumn{2}{|l|}{Wire fixing:} & \multicolumn{2}{|l|}{Flat terminals with self lifting} \\
\hline \multicolumn{2}{|l|}{Mounting:} & DIN rail & IEC/EN 60715 \\
\hline \multicolumn{2}{|l|}{Weight} & AC 230 V DC & 24 V \\
\hline AD 5998: & & \multirow[t]{2}{*}{\(\begin{array}{ll}380 \mathrm{~g} \\ 360 \mathrm{~g} & 220\end{array}\)} & 0 g \\
\hline \multicolumn{2}{|l|}{AD 5992:} & & \\
\hline \multicolumn{4}{|l|}{Dimensions} \\
\hline
\end{tabular}

\section*{Dimensions}

Width x height x depth:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Standard Types} \\
\hline AD 5998 AC \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz}\) & & \\
\hline Article number: & 0032367 & stock item \\
\hline - Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & AC 230 V & \\
\hline - Width: & 45 mm & \\
\hline \multicolumn{3}{|l|}{AD 5992 AC \(230 \mathrm{~V} 50 / 60 \mathrm{~Hz}\)} \\
\hline Article number: & 0032361 & stock item \\
\hline - Nominal voltage \(\mathrm{U}_{\mathrm{N}}\) : & AC 230 V & \\
\hline - Width: & 45 mm & \\
\hline
\end{tabular}

\section*{Ordering Example}

Connection diagram AD 5998 - AD 5992 for operation at DC-voltage with additional almp tester AI 990 or AI 990.10 Lamp tester AI 990 is only required if additional lamps in the system need to be tested.

Connection Examples

Connection diagram AD 5998 - AD 5992 for operation at AC-voltage with additional lamp texter AI 990.04 or AI 990.12 Lamp tester AI 990 is only required if additional lamps in the system need to be tested.

\section*{Circuit Diagrams}

RP 5812S, RP 5812PS, RP 5812PC

RP 5812S/001, RP 5812PS/001, RP 5812PC/001

\section*{Your Advantage}
- Easy remote control of unit via mobile phone
- Easy configuration of unit via mobile phone
- SMS-status request of all i/p's - and o/p's via configurable shortcuts
- SMS text messages via customers SIM card
- Cyclic SMS message with configurable time interval (watchdog function)

Features
- According to directive 1999/5/EC (RTTE) for radio equipment and telecommunications terminal equipment
- 4 digital inputs and 4 relay outputs
- Variant RP 5812/001 with 2 digital and 2 analogue inputs and 1 analogue - and 2 relay outputs
- Auxiliary voltage DC 24 V
- DC 24 V digital inputs
- Automatic SMS messages for status changes
- Quad-Band GSM-Module for 850, 900, 1800 and 1900 MHz GSM = Global System for Mobile)
- Pin protection of SIM card
- Caller password protection against unauthorised access
- User Dialogue language for: German, English or French
- Configurable authorization levels for up to 16 users
- Assignment of different I/O's to different users
- Automatic sending of SMS when digital inputs change state l.e. come on or go off or both (on rising edge or falling edge)
- Automatic sending of SMS when analogue inputs
- exceed preset lower and upper limits or
- when signal is within the preset window
- and when the signal returns to good state
- Adjustable
- Hysteresis for analogue inputs
- Time delay for each input
- Repeat time for SMS-transmitting
- Time delay for output status after starting the unit
- Time delay for activation of the output
- SMS for device status to the system administrators
- SMS-counter to monitor the remaining account
- No interruption of operation after Voltage failure due to integrated Li-Ion battery backup 24Hours
- Compact width: 70 mm

\section*{Approvals and Markings}

\section*{Application}
- Remote monitoring control and operation of
- Machinery and installations for industry and building automation.
- Small power plants
- Remote buildings
- Unmanned production plants
- Air-conditioning and refrigeration systems
- Heating systems
- Elevators and escalators
- Alarm systems, burglar alarms
- Smoke, fire and gas warning systems
- Doors, gates and windows
- Flood warning systems
- Level alarm in pumping stations
- Remote shut down of rental equipment when payment overdue
- Level monitoring in silos, tanks, etc.
\begin{tabular}{ll}
\multicolumn{1}{c|}{ Indication } & \\
\begin{tabular}{l}
green LED "U ": \\
yellow LED "GSM" \\
off:
\end{tabular} & on when supply connected \\
flashes 600 ms on / 600 ms off: \\
SMS-Telecontrol module is off \\
Slashes 75 ms on / 3s off: \\
available network and logs on \\
SMS-Telecontrol module is registered on \\
GSM network.
\end{tabular}

\section*{Settings}

\section*{Safety remarks}
- The SMS-Telecontrol module must not be used for safety relevant control functions due to signal availability.
- The use of the SMS-Telecontrol module in medical rooms must be evaluated thoroughly as medical equipment such as pacemakers etc may react to the radiofrequency of the SMS-Telecontrol module. Also be aware that the radio frequency of the SMS-Telecontrol module may disturb the function of insufficiently protected PCs, monitors and other electronic equipment.
- Delays in the transmission of I/O status may take place due to network problems.

\section*{General settings}
- If the SMS-Telecontrol module is disconnected for a long period, (e.g. as when delivered) the battery must be charged. To do this the SMS-Telecontrol module needs to be connected to the supply Voltage for up to 6 h . Only after this time is correct operation is possible.

\section*{Attention}

On delivery the battery is disconnected. Before the batteries can be charged the connection has to be made by changing the slide switch at the bottom edge of the unit to the ON position.
- On first activation a SIM card with a pin code of 1234 has to be inserted. This pin can then be changed by an SMS command. After pin change only the SIM card with the changed pin can to be used. If the pin number on the SIM card is different to the one in the configuration the SIM card may be locked when connecting to the GSM network. A locked SIM card can be unlocked by placing it in a mobile Phone and entering the PUK or Master pin.
- If the Reset/Default Konf. button on the front of the unit is pressed for 3-4 seconds while the unit is powered up, the SMS-Telecontrol module is reset. This means, that the any connection to an SMS network is disconnected and reconnected. If the reset button is pressed for more than 5 sec the configuration is reset to default and the unit makes a factory reset.
- Due to the internal battery back up, the function of the SMS-Telecontrol module is still available even if the power supply is disconnected for up to 24 hours.

\section*{Attention}

It is your responsibility as an end user to dispose old batteries correctly. Of course, you may return replaced batteries to us.

\section*{Settings}

\section*{Set up procedure of SMS-Telecontrol module}
- Wire the i/p's- o/p's and the auxiliary supply connections
- Press the SIM eject button (use pen tip), insert the SIM-card with the Preconfigured pin 1234 into the SMS-Telecontrol module
- Power up the SMS-Telecontrol module
- Send the necessary configuration commands via text to the SMS-Telecontrol module (see manual)

Examples for configuration and communication of the SMS module via SMS:

\section*{Demand:}

The SMS module located in the pump station, should be named
"Pump station" and then answer with this name.
The following SMS is created and sent:
CFGDN§Pump station\#

\section*{Demand:}

Input IO shall send an SMS on the negative edge (turning off) of the input signal
The following SMS is created and sent:

\section*{DISEND§0§FE\#}

\section*{Demand:}

Input IO shall be named „Pump"
The following SMS is created and sent:
DISYMB§0§Pump\#

\section*{Demand:}

The status „0" of input 10 shall be named „Pump stopped"
The following SMS is created and sent:
DITXTLO§O§Pump stopped\#
An SMS is generated and sent by the SMS module caused by a defective Pump,it appears as follows:
Answer: „Pump station:Pump stopped"

\section*{Demand:}

The current status of the (2 or 4) digital inputs can be called up.
The following SMS is created and sent:
?DIALL\#
Answer: „Pump station:Pump stopped; Level to high" and for the 2 analogue inputs:
and to call up the 2 analogue inputs if previously configured for level and motor temperature
?AIALL\#
Answer: „Pump station: Level:180cm; pump temp: \(85^{\circ} \mathrm{C}\) "

\section*{Safety notes}

Attention: - It is important, that the connected voltage of the analogue inputs and tha analogue outputs of the variant /001 are no larger that are spezified in the Technical Data.
- The Li-lon battery can not be changed by the user. Is there a need to replaced the battery please send the device back to the manufacturer.
- Please note, before using, the other safety instructions of the manual INFOMASTER SMS-Telecontrol module RP 5812.

\section*{Technical Data}

\section*{Input}

Auxiliary Voltage A1-A2 (\(\mathbf{U}_{\mathrm{H}}\)): DC 24 V ,
Nominal consumption A1-A2: max. 4.5 W at DC 24 V
Inputs (digital)
RP 5812:
RP 5812/001:

Inputs (analogue)
RP 5812/001:
\(4 \times \mathrm{i} / \mathrm{p}\); \(10 \ldots\)... 3
DC 24 V with galvanic separation
2 x i/p; IO ... I1
DC 24 V with galvanic separation
\(2 \times \mathrm{i} / \mathrm{p} ; \mathrm{AlO}\)... Al1
DC 0 .. 10 V resolution 100 mV

\section*{Technial Data}

\section*{Outputs}

Contacts:
RP 5812:
RP 5812/001:
Thermal current \(t_{t h}\) :
Switching capacity
to AC 15:
Electrical life
to AC15 at 1A / 230V:
Max. fuse rating:
Mechanical life:
Output (analogue)
RP 5812/001:

4 N/O contacts
2 N/O contacts 2A

3 A / AC 230 V (secondary voltage)
\(\geq 1,5 \times 10^{6}\) switch. cycl. IEC/EN 60 947-5-1 4 A gL

EC/EN 60947-5-1
\(\geq 30 \times 10^{6}\) switching cycles
AOO
DC \(0 . .10 \mathrm{~V}\) resolution 100 mV

Frequency band:
Power class:
SIM-card:
Aerial jack:

850 / 900 / 1800 / 1900 MHz
GSM 850 / \(900 \mathrm{MHz}: 4\) (2 W)
GSM 1800 / \(1900 \mathrm{MHz}: 1\) (1 W)
1.8 V and 3 V SIM cards are supported SMA (male)

General Data

Nominal operating mode:
Temperature range:
continuous operation
\(0 \ldots+40^{\circ} \mathrm{C}\)

Clearance and creepage distance:
Rated impulse Voltage /

\section*{Wire fixing:}
fixed screw terminal (S),
plug in screw terminal (PS): Captive plus-minus-terminal screws M2,5 with self raising terminal box
plug in cage clamp terminals (PC): spring terminal for direct plug in of wires, screw driver \(0,6 \times 3,5\) for spring releasing
Mounting:
DIN rail 216 g

Dimensions
Width x height x depth: \(70 \times 95 \times 80 \mathrm{~mm}\)

\section*{Standard Types}

\section*{RP 5812S DC 24 V}

Article number: 0065147
- Auxiliary Voltage \(\mathrm{U}_{\mathrm{H}}\) : DC 24 V
- Inputs:

4 digital inputs DC 24 V
- Outputs: 4 relay outputs N/O contacts
- Width: 70 mm

RP 5812S/001 DC 24 V
Article number:
- Auxiliary voltage \(U_{H}\)
- Inputs:

0065148
DC 24 V
2 digital inputs DC 24 V
2 analogue inputs \(0 \ldots 10 \mathrm{~V}\)
2 relay outputs N/O contacts
1 analogue output \(0 \ldots 10 \mathrm{~V}\)
70 mm

\section*{Ordering Example}

Inputs / Outputs
4 digital inputs,
4 relay outputs
1: 2 digital inputs, 2 analogue inputs 2 relay outputs, 1 analogue outputs
Type of Terminals
S: Terminal blocks fixed, with screw terminals
PC (plug in cage clamp): Plug in terminal blocks with cage clamp terminals
PS (plug in screw): Plug in terminal blocks with screw terminals
\begin{tabular}{lll}
& plug in of wires, \\
& \\
& screw driver \(0,6 \times 3,5\) for & \\
& spring releasing & \\
Mounting: & DIN rail & \\
Weight: & 216 g & \\
Dimensions & &
\end{tabular}

\section*{Accessories}
\begin{tabular}{ll}
OA 5810/900: & GSM-aerial, \(90^{\circ}\) angle \\
OA 5810/901: & \begin{tabular}{l}
Article number: 0062212 \\
GSM magnetic foot areal with \(2,5 \mathrm{~m}\) \\
connecting lead \\
Article number: 0062213
\end{tabular}
\end{tabular}

\section*{Fault indicated by Flashing Code}

The current state of the SMS-Telecontrol module is indicated by the flashing code on the status LED. The number of flashing pulses followed by a longer space relates to the failure code in the following table. After the longer space the flashing cycle is repeated until the state on the unit changes.
\begin{tabular}{|c|l|}
\hline State LED & Description \\
\hline OFF & No status for indication, normal operation \\
\hline ON & SMS transmission \\
\hline 2 * flashes & \begin{tabular}{l}
Internal system failure, \\
please contact the manufacturer
\end{tabular} \\
\hline \(3^{*}\) flashes & \begin{tabular}{l}
Invalid configuration. When this failure occurs, the unit \\
tries to reset the configuration to factory settings followed \\
by a device test. If the failure remains, please contact \\
manufacturer.
\end{tabular} \\
\hline \(4^{*}\) flashes & \begin{tabular}{l}
No access on SIM-card \\
Cause: \\
no SIM-card inserted or \\
invalid PIN for inserted SIM card
\end{tabular} \\
\hline 6 * flashes & \begin{tabular}{l}
No GSM network available \\
Cause: insufficient radio signal, aerial placed \\
in a poor location.
\end{tabular} \\
\hline 7 * flashes & \begin{tabular}{l}
In the configuration, the service centre for SMS transmis- \\
sion is not yet defined. \\
Cause: The CFGINT command sequence SMS has not \\
been sent to the module
\end{tabular} \\
\hline \begin{tabular}{l}
No administrator for using are defined. \\
Cause: The CFGINT command sequence SMS has not \\
been sent to the module
\end{tabular} \\
\hline
\end{tabular}

LEDs for each I/O on the front of the unit indicate the status of the in- and outputs.

Monitoring Technique
INFOMASTER
Lamp Tester
MK 9994, MK 9995

\begin{tabular}{ll}
\hline Standard Types & \\
MK 9994 & \\
Article number: & 0012938 \\
MK 9995 & 0015889 \\
Article number: & 22.5 mm \\
- Width: &
\end{tabular}

\section*{Ordering example for variants}

- For max. 11 indicator lamps
- Width 22.5 mm

\section*{Approvals and Markings}

\section*{Application}

The lamp tester contains a diode group with either common anode or cathode. It blocks one lamp from the other in order to avoid influence. On AC-operation the lamps are only half illuminated.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Technical Data} \\
\hline Nominal voltage: & AC 250 V \\
\hline \multicolumn{2}{|l|}{Data of diods} \\
\hline Current per output: & 0.6 A at \(100 \%\) ED 1 A max. 3 min. \\
\hline Periodical peak reverse & 1000 V \\
\hline Peak surge voltage: & 1200 V \\
\hline Peak surege voltage power dissipation: & 1.0 kW for 10 us \\
\hline Max. peak current: & 50 A for 10 ms \\
\hline Periodical peak voltage: & 1100 V \\
\hline \multicolumn{2}{|l|}{General Data} \\
\hline Operating mode: & Continuous operation \\
\hline Temperature range: & - \(20 . . .+60^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Degree of protection} \\
\hline Housing: & IP 40 IEC/EN 60529 \\
\hline Terminals: & IP 20 IEC/EN 60529 \\
\hline Housing: & Thermoplastic with Vo behaviour to UL subject 94 \\
\hline Vibration resistance: & \(0,35 \mathrm{~mm}\) Amplitude, frequency 10 ... \(55 \mathrm{HzIEC} / E N 60\) 068-2-6 \\
\hline Climate resistance: & 20/060/04 IEC/EN 60 068-1 \\
\hline Terminal designation: & EN 50005 \\
\hline Wire connection: & \(2 \times 1.5 \mathrm{~mm}^{2}\) solid or \\
\hline & \(2 \times 1.0 \mathrm{~mm}^{2}\) stranded wire with sleeve DIN 46 228-1/-2/-3/-4 \\
\hline Wire fixing: & Flat terminals with self lifting \\
\hline & clamping piece IEC/EN 60 999-1 \\
\hline Mounting: & DIN rail IEC/EN 60715 \\
\hline Weight: & 80 g \\
\hline \multicolumn{2}{|l|}{Dimensions} \\
\hline Width x heigth x depth: & \(22.5 \times 82 \times 99 \mathrm{~mm}\) \\
\hline
\end{tabular}

\section*{Cover K 70-34}

For Timers: AA 9943, AA 9050, AI 942,

Mounting kit for surface mounting KU 4087-100

\section*{External potentiometer AD 3}

The external potentiometer is used for remote setting of the time delay. The internal potentiometer of the timer must be set to min. time delay.

Degree of protection front side: IP 60

\section*{Front frame ET 4048-3}
\(48 \times 48\) with clamp screws.

\section*{Test and indicator panel UP 5862}

For insulation monitors in medically used rooms according to IEC 60 364-7-710, DIN VDE 0100-710
- to mount in flush device boxes
ø \(60 \mathrm{~mm}, 35 \mathrm{~mm}\) deep;
- test button to check the function of the device
- with green LED to indicate operation
- reset button for audible alarm
- with yellow LED to monitor insulation failure

Max. wire length to IN / IP 5880
at wire cross section \(A=0.5 \mathrm{~mm}^{2}: 500 \mathrm{~m}\) at wire cross section \(A=1.5 \mathrm{~mm}^{2}: 1000 \mathrm{~m}\)

Dimensions (width \(x\) height): \(80 \times 80 \mathrm{~mm}\)
Article number: 0041706

\section*{Accessories}

Flush mounting kit
Order reference: KU 4087-150/0056598

Standard probe OA 5640

Probe made of stainless steel,
Cable entry PG 9,
Temperature range \(0 \ldots+60^{\circ} \mathrm{C}\),
Weight approx. 0.1 kg
Wire connection \(2.5 \mathrm{~mm}^{2}\) stranded wire with sleeve

\section*{Plug in adaptor ET 4048-13}

11-pole, from PC
For installation into control panel.

\footnotetext{
Version with flat-pin plug on request.
}

AA / AI - Enclosure

AD - Enclosure

AG - Enclosure

\section*{AK - Enclosure}

\section*{AN - Enclosure}

AR - Enclosure

BA - Enclosure

BA - Enclosure

BD - Enclosure

\section*{BE - Enclosure}

BF - Enclosure

BG - Enclosure BA - Enclosure

IEC/EN 60715

\section*{BH - Enclosure}

\section*{BI - Enclosure}

\section*{BL - Enclosure}

BN / BO - Enclosure

\section*{CA - Enclosure BA - Enclosure}

CB - Enclosure

CC - Enclosure

\section*{CD - Enclosure}

\section*{EB - Enclosure}

EC - Enclosure BA - Enclosure

\section*{EF - Enclosure}

EH - Enclosure

EP - Enclosure

GA - Enclosure

\section*{IK - Enclosure}

IL - Enclosure

\section*{IN - Enclosure}

\section*{IP - Enclosure}

IR - Enclosure

IS - Enclosure

LG - Enclosure

LN - Enclosure

LK - Enclosure

MH - Enclosure

MK - Enclosure

MKN - Enclosure

ML - Enclosure

OA - Enclosure

Enclosure OA 8823 / 8824

PH - Enclosure

RK - Enclosure

DIN rail
IEC/EN 60715

DIN rail
IEC/EN 60715

\section*{RN - Enclosure}

RP - Enclosure

DIN rail
IEC/EN 60715

SK - Enclosure

SL - Enclosure

\section*{SX - Enclosure}

UG - Enclosure

\section*{SN - Enclosure}

UH - Enclosure

\section*{General technical definitions}

\section*{Open-circuit mode (normally de-energized mode)}

Contact switches to operated condition when the operate condition is met.

\section*{Limiting continuous current \(\mathrm{I}_{\text {th }}\)}

This is the current that a relay contact may permanently carry without exceeding its permissible heating related to defined environmental conditions.

\section*{Accuracy (repeat accuracy)}

This is the difference between the smallest and largest measured values of constant influence quantities related to the max. value (full scale value).

\section*{Equipment service life}

Mechanical service life indicating the permissible number of operations for de-energized relay contacts.

\section*{Hysteresis}

Hysteresis is generally known as maintaining an effect although the physical quantity that has caused it is no longer effective. For relays, magnetic hysteresis causes the difference between pick-up and drop-out values. In case of measuring relays the drop-out value is determined by an adjustable hysteresis.

\section*{Climate resistance / humidity class}

Electromechanical equipment:
The standard DIN EN 60068-2-78 describes the tests for the environmental conditions of steady state damp heat, for example.

Electronic equipment:
Theindicationofclimateresistanceforelectronicequipmentisgivenasfollows: Climate resistance: 15 / 55 / 04 IEC/EN 60068-1

\section*{Contact service life}

Electrical service life indicating the number of operating cycles to be expected at a defined load, e.g. AC 15 (see the definition for switching capacity).

\section*{Creeping distance}

This is the shortest distance along the surface of an insulating material between two conductive parts.

\section*{Clearance in air}

This is the shortest distance in air between two conductive parts.

\section*{Nominal voltage}

The nominal voltage of a relay is that voltage for which the winding including additional built-in components is designed and to which other characteristics are related to.

Devices that are rated for \(230 \mathrm{~V} \pm 10 \%\) can only be operated on a 220 V or 240 V system with restricted tolerances. For these devices, the restricted tolerance is indicated on the nameplate.

\section*{Protective separation}

A protective separation of circuits is present when a single fault does not cause the voltage from being transferred to another circuit. The definition of "protective separation" is based on the standards DIN EN 61140, DIN EN 60947-1 in conjunction with the standard DIN EN 60664-1 and is specified as rated impulse withstand voltage related to the pollution severity. The rated impulse withstand voltage is the voltage level according to which clearance and creeping distances are rated. It is determined as a function of the overvoltage category to which the electrical equipment is to be assigned to.

A specification of \(4 \mathrm{kV} / 2\) means: Rated impulse withstand voltage 4 kV related to the pollution severity 2.

\section*{Test voltage}

The test voltage specifies the dielectric strength between coil and contact, e.g. 4 kV .

\section*{Closed-circuit mode (normally energized mode)}

With the closed-circuit principle, the contact falls back in its normal position when the operate condition is met.

\section*{Degree of protection}

Standardized classification of the protection of equipment against accidental contact, foreign bodies and water. According to IEC/EN 60529, the degree of protection is indicated by the code letters IP and two code numbers. The first code number describes the protection against accidental contact and foreign bodies, the second number the protection against water.

Degrees of protection against solid foreign bodies designated by the first code number.
\begin{tabular}{|c|c|c|}
\hline First & \multicolumn{2}{|c|}{Degree of protection} \\
\hline code no. & Short description & Definition \\
\hline 0 & Not protected & - \\
\hline 1 & Protected against solid foreign objects, diameter 50 mm and larger & The object probe, a ball with a diameter of 50 mm , must not enter fully. \({ }^{*}\)) \\
\hline 2 & Protected against solid foreign objects, diameter 12.5 mm and larger & The object probe, a ball with a diameter of 12.5 mm , must not enter fully.*) \\
\hline 3 & Protected against solid foreign objects, diameter 2.5 mm and larger & The object probe with a diameter of 2.5 mm must not penetrate at all.*) \\
\hline 4 & Protected against solid foreign objects, diameter 1.0 mm and larger & The object probe with a diameter of 1.0 mm must not penetrate at all.*) \\
\hline 5 & Protected against dust & The penetration of dust is not completely prevented, but dust must not enter in an amount that impairs the satisfactory functioning of the equipment or the safety. \\
\hline 6 & Dust-proof & No penetration of dust is allowed. \\
\hline
\end{tabular}

Degrees of protection against water designated by the second code number
\begin{tabular}{|c|c|c|}
\hline Second & \multicolumn{2}{|c|}{Degree of protection} \\
\hline code no. & Short description & Definition \\
\hline 0 & Not protected & - \\
\hline 1 & Protected from drip water. & Drops which fall vertically must not have any harmful effect. \\
\hline 2 & Protected against drip water when the enclosure is inclined at an angle up to \(15 \%\). & Drops which fall vertically must not have any harmful effect when the enclosure is inclined at an angle up to \(15 \%\) of either side of the vertical. \\
\hline 3 & Protected against spray water. & Water which is sprayed at an angle of up to \(60 \%\) of either side of the perpendicular must not have any harmful effects. \\
\hline 4 & Protected against spray water & Water splashing against the enclosure from all directions must not have any harmful effects. \\
\hline 5 & Protected against water jets. & Water jets against the enclosure from all directions must not have any harmful effects. \\
\hline 6 & Protected against strong jets of water. & Strong water jets against the enclosure from all directions must not have any harmful effects. \\
\hline 7 & Protected against the effects of temporary flooding. & Water must not enter the enclosure in any harmful quantity when the enclosure is temporarily submerged in water under standard conditions of pressure and time. \\
\hline 8 & Protected against the effects of permanent flooding. & Water must not enter the enclosure in any harmful quantity when the enclosure is permanently submerged in water under conditions to be agreed between manufacturer and user. However, the conditions must be more stringent than those for code number 7 . \\
\hline
\end{tabular}

\section*{General technical definitions}

Switching capacity
Unaffected electric current a switching device or fuse can make/interrupt at a defined voltage under specified conditions.

\section*{Extract from IEC/EN 60 947-5-1}

Table 1: Utilization categories for switching elements
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Type of \\
current
\end{tabular} & \begin{tabular}{l}
Utilization \\
category
\end{tabular} & Typical applications \\
\hline \begin{tabular}{l}
Alternating \\
voltage
\end{tabular} & AC-12 & \begin{tabular}{l}
Control of ohmic and semicoductor loads in input \\
circuits of optocouplers \\
Control of semiconductor loads with transformer separation \\
AC-14 \\
AC-15 \\
Control of small electromagnetic loads (max. 72 VA)
\end{tabular} \\
\hline \begin{tabular}{l}
Direct \\
voltage
\end{tabular} & \begin{tabular}{l}
DC-12 \\
DC-13
\end{tabular} & \begin{tabular}{l}
Control of ohmic and semiconductor loads in input \\
circuits of optocouplers \\
Control of electromagnetic loads \\
Control of electromagnetic loads with auto-resistors in the circuit
\end{tabular} \\
\hline
\end{tabular}

The rated operational current and the rated operational voltage are determined according to the values defined in the tables 2 and 3 for usual and unusual conditions depending on the utilization category.

Table 2: Proof of the making and breaking capacity of switching elements under usual conditions by utilization categories
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Utilization category} & \multicolumn{3}{|l|}{Making} & \multicolumn{3}{|l|}{Breaking} & \multirow[t]{2}{*}{Min. ONduration} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Number of making and breaking operations and switching rate}} \\
\hline & I/ le & U/Ue & & 1/le & \(\mathrm{U} / \mathrm{Ue}\) & & & & & \\
\hline AC & & & \(\cos \varphi\) & & & \(\cos \varphi\) & \[
\begin{gathered}
\text { Cycles } \\
\text { (at } 50 \mathrm{~Hz} \\
\text { or } 60 \mathrm{~Hz} \text {) }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Se- } \\
\text { quence }
\end{array}
\] & Number & Cycles per min. \\
\hline AC-12 & 1 & 1 & 0,9 & 1 & 1 & 0,9 & 2 & 1 & \(50^{4}\)) & 6 \\
\hline AC-13 & 2 & 1 & 0,65 & 1 & 1 & 0,65 & \(2^{3}\)) & 2 & 10 & fast \({ }^{5}\)) \\
\hline AC-14 & 6 & 1 & 0,3 & 1 & 1 & 0,3 & \(2^{3}\)) & 3 & 990 & 60 \\
\hline AC-15 & 10 & 1 & 0,3 & 1 & 1 & 0,3 & \(2^{3}\)) & 4 & 5000 & 6 \\
\hline DC & & & \[
\begin{array}{|c|}
\hline \mathrm{T} 0,95 \\
\mathrm{~ms}
\end{array}
\] & & & \[
\begin{gathered}
\mathrm{T} 0,95 \\
\mathrm{~ms}
\end{gathered}
\] & Time ms & & & \\
\hline DC-12 & 1 & 1 & 1 & 1 & 1 & 1 & 25 & & & \\
\hline DC-13 & 1 & 1 & \(6 \times \mathrm{P}^{6}\)) & 1 & 1 & \(6 \times P^{6}\)) & T0,95 & & & \\
\hline DC-14 & 10 & 1 & 15 & 1 & 1 & 15 & 253) & & & \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Ie & Rated operational current & I & Making or breaking current \\
Ue & Rated operational voltage & U & Voltage before making \\
\(\mathrm{P}=\) Ue l le & Steady-state power in Watt & T0.95 & \begin{tabular}{l}
Time until \(95 \%\) of the steady- \\
\\
\end{tabular} \\
& & state current is reached
\end{tabular}
3) Both ON-duration values (for Imaking and for Ibreaking) must be at least 2 cycles (or 25 ms for DC-14).
4) The first 50 switching cycles must be carried out with test voltage Ue \(\times 1.1\), with the test current le is firstly set at Ue.
5) As fast as possible, but full closing and opening of the contacts must be ensured.
6) The value " \(6 \times \mathrm{P}\) " results from an empirical ratio that corresponds to most d.c. magnet loads up to an upper limit \(P=50 \mathrm{~W}\), with \(6 \times \mathrm{P}=300 \mathrm{~ms}\). Loads with a rated power above 50 W are composed from small paralle loads. Therefore, 300 ms is an upper limit independent of the power magnitude.
7) For all utilization categories the test sequences must be performed in the specified order.

Table 3: Proof of the making and breaking capacity of switching elements under unusual conditions by utilization categories')
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Utilization category} & \multicolumn{3}{|l|}{Making} & \multicolumn{3}{|l|}{Breaking} & \multirow[t]{2}{*}{Min. \(\mathrm{ON}-\) duration} & \multicolumn{2}{|l|}{Making and breaking} \\
\hline & \(1 / \mathrm{e}\) & \(\mathrm{U} / \mathrm{U}_{\mathrm{e}}\) & & \(1 / \mathrm{l}\) & \(\mathrm{U} / \mathrm{U}_{\mathrm{e}}\) & & & Number & switching cycles/min \\
\hline AC & & & \(\cos \varphi\) & & & \(\cos \varphi\) & \begin{tabular}{l}
Cycles \\
(at 50 Hz \\
or 60 Hz)
\end{tabular} & & \\
\hline AC-12 & - & - & - & - & - & - & - & - & - \\
\hline AC-13 \({ }^{3}\)) & 10 & 1,1 & 0,65 & 1,1 & 1,1 & 0,65 & \(\left.2^{4}\right)\) & 10 & 6 \\
\hline AC-14 & 6 & 1,1 & 0,7 & 6 & 1,1 & 0,7 & 2 & 10 & 6 \\
\hline AC-15 & 10 & 1,1 & 0,3 & 10 & 1,1 & 0,3 & 2 & 10 & 6 \\
\hline DC & & & \[
\begin{gathered}
\mathrm{T} 0,95 \\
\mathrm{~ms}
\end{gathered}
\] & & & \[
\begin{array}{|c}
\mathrm{T} 0,95 \\
\mathrm{~ms}
\end{array}
\] & Time ms & & \\
\hline DC-12 & - & - & - & - & - & - & - & - & - \\
\hline DC-13 \({ }^{3}\)) & 1,1 & 1,1 & 6xP \({ }^{5}\)) & 1,1 & 1,1 & 6xP \({ }^{5}\)) & T0,95 & 10 & 6 \\
\hline DC-14 & 10 & 1,1 & 15 & 10 & 1,1 & 15 & \(25^{4}\)) & 10 & 6 \\
\hline le & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{Rated operational current Rated operational voltage Steady-state power in Watt}} & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \text { I } \\
& \text { U } \\
& \text { T0.95 }
\end{aligned}
\]}} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Making or breaking current Voltage before making Time until 95 \% of the steadystate current is reached}} \\
\hline Ue & & & & & & & & & \\
\hline \(\mathrm{P}=\mathrm{Ue} \times \mathrm{le}\) & & & & & & & & & \\
\hline
\end{tabular}
1) The unusual condition must simulate an electromagnet blocked in open position.
3) For semiconductor switching elements an overload protection specified by the manufacturer should be used for testing under unusual conditions.
4) Both ON-duration values (for Imaking and for Ibreaking) must be at least 2 cycles (or 25 ms for DC-14).
5) The value " \(6 \times \mathrm{P}\) " results from an empirical ratio that corresponds to most d.c. magnet loads up to an upper limit \(P=50 \mathrm{~W}\), with \(6 \times \mathrm{P}=300 \mathrm{~ms}\). Loads having a rated power above 50 W are composed of small parallel loads. Therefore, 300 ms is an upper limit independent of the power magnitude.
For semiconductor switching elements the largest time constant must be 60 ms so that T0.95 \(=180 \mathrm{~ms}(3 \times\) time constant \()\).

\section*{Electrical life}

The electrical life of a control unit is defined by the number of switching cycles under load that is reached or exceeded by \(90 \%\) of all devices under test without any repair or replacement of any part.

\section*{Extract from IEC/EN 60 947-5-1}

Table 4: Making and breaking capacity for testing the electrical service life
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type of current & Utilization category & \multicolumn{3}{|c|}{Making} & \multicolumn{3}{|c|}{Breaking} \\
\hline \multirow[t]{2}{*}{Alternating current} & \multirow[t]{2}{*}{AC-15} & I & U & \(\cos \varphi\) & 1 & U & \(\cos \varphi\) \\
\hline & & 10 le & Ue & 0,71) & le & Ue & 0,41) \\
\hline \multirow[t]{2}{*}{Direct current} & \multirow[t]{2}{*}{AC-15} & I & U & T0,95 & 1 & U & T0,95 \\
\hline & & \(l e\) & Ue & \(\left.6 \times P^{3}\right)\) & le & Ue & \(\left.6 \times P^{3}\right)\) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{ll}
le & Rated operational current \\
Ue & Rated operational voltage \\
\(\mathrm{P}=\) Ue \(x\) le & Steady-state power in Watt
\end{tabular}}} & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\[
\begin{array}{ll}
\text { I } & \text { Mz } \\
\text { U } & \text { Vo } \\
\text { T0.95 } & \text { Tir } \\
& \text { sta }
\end{array}
\]}} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Making or breaking current Voltage before making Time until \(95 \%\) of the steadystate current is reached (in ms)}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
1) The indicated power factors are conventional values and are only indicated for test circuits where electrical characteristics of coils are simulated.
It is pointed out that for circuits with a power factor 0.4 shunt resistors are used in the tes circuit to simulate the dampening effect by eddy-current losses.
2) In case of magnetic loads for direct current that are equipped with switching devices for starting an auto-resistor the rated operational current must be at least the highest inrush current.
3) The value " \(6 \times \mathrm{P}\) " results from an empirical ratio that corresponds to most d.c. magnet loads up to an upper limit \(\mathrm{P}=50 \mathrm{~W}\). Loads having a power above 50 W are composed of small parallel loads. Therefore, 300 ms is an upper limit independent of the power.

Function
Type
\begin{tabular}{|c|c|}
\hline Current relay & 9701 \\
\hline Insulation monitor & Al 897 \\
\hline Insulation monitor & AI 898 \\
\hline Insulation monitor & EH 5878 \\
\hline Lamp tester & AI 990 \\
\hline line breakage relay & AI 940 \\
\hline Overvoltage relay & IL 9070 \\
\hline Test and indication panel & UP 5864 \\
\hline
\end{tabular}

The data sheets are available at www.dold.com
Function Type Page
Accessories
Accessories 443 443
Alphabetical index 16
Asymmetry relay AK 9840 297
Asymmetry relay BA 9040, MK 9040N 299
Asymmetry relay BA 9042, AI 942 302
Battery symmetry monitor BA 9054/331, BA 9054/332. 196 C
bus connection RP 5990, RP 5991 421
Current asymmetry relay IP 9278, SP 9278CT 242
Current monitor IK 8839, IL 8839 240
Current relay BA 9053, MK 9053N 206
D
Dimensions 447
Display unit with bus connection for fault annunciator system.......EH 5990, EH 5991 421
Display unit with bus connection for fault annunciator system.......EH 5994, EH 5995 426
Fault annunciator system.............AD 5960................................... 413
Fault annunciator system.........AD 5998, AD 5992............. 437
Fault annunciator system EH 9997 411
Fault annunciator system. IL 5990, IL 5991,
SL 5990, SL 5991 415
Frequency relay AA 9838 304
Frequency relay
IK 9143, SK 9143 323
Frequency relay MK 9837N, MH 9837 325
Frequency relay MK 9837N/500,
MH 9837/500 330
Further available devices 456
Fuse monitor IL 9075, IP 9075,
SL 9075, SP 9075 316
Fuse monitor UG 9075 320
G
General conditions 459
General technical definitions 454
INFOMASTER_B, System Overwiev 419
Insulation fault locator RR 5887 106
Insulation monitor IL 5880, IP 5880, SL 5880, SP 5880 81
Insulation monitor IL 5881, SL 5881 98
Function Type Page
Insulation monitor IN 5880/710, IN 5880/711 IP 5880/711 94
Insulation monitor MK 5880N, MH 5880 85
Insulation monitor LK 5894 71
Insulation monitor LK 5895 66
Insulation monitor LK 5896 59
Insulation monitor RN 5897/010 39
Insulation monitor RN 5897/300 51
Insulation monitor UH 5892 77
Insulation monitor RP 5888 90
Lamp tester MK 9994, MK 9995 444
Level sensing relay IL 9151, SL 9151, MK 9151N 387
Locating current injector RR 5886 102
M
Mains frequency monitor MK 9143N, MH 9143 335
Motor load monitor BH 9097 248
Motor load monitor MK 9397N, MH 9837 244
Motor load transmitter BH 9098 254
Multifuction measuring relay......MK 9300N,
MH 9300 126
N
Neutral monitor IL 9069, SL 9069 311
New-/ First signal annunciator ...RP 5994, RP 5995 426
Noise Filter MK 5130N, LG 5130 409
OOvercurrent relayIK 9270, IL 9270,IP 9270, SK 9270,SL 9270, SP 9270 220
Overcurrent relay IK 9272, SK 9272 226
Overcurrent relay IL 5201/20007, SL 5201/20007CT 229
Over- and undercurrent relay.
SL 9277, SP 9277 214
Overvoltage relay IK 9170, SK 9170 179
Overvoltage relay IK 9172, SK 9172 181
Over- and undervoltage relay ...IL 9077, IP 9077,
SL 9077, SP 9077 149
P
Phase indicator IK 9168, SK 9168 279
Phase monitor BD 9080 141
Phase monitor IK 9169, RK 9169, SK 9169 284
Phase monitor IL 9086, SL 9086 144
Phase monitor IL 9087, SL 9087 147
Phase monitor RK 9872 281

for commercial transactions between businesses
recommended by ZVEI-Zentralverband Elektrotechnik- und Elektronikindustrie e. V. as of June 2011

\section*{Article I: General Provisions}
1. Legal relations between Supplier and Purchaser in connection with supplies and/or services of the Supplier (hereinafter referred to as "Supplies") shall be solely governed by the present GL. The Purchaser's general terms and conditions shall apply only if expressly accepted by the Supplier in writing. The scope of delivery shall be determined by the congruent mutual written declarations.
2. The Supplier herewith reserves any industrial property rights and/or copyrights pertaining to its cost estimates, drawings and other documents (hereinafter referred to as "Documents"). The Documents shall not be made accessible to third parties without the Supplier's prior consent and shall, upon request, be returned without undue delay to the Supplier if the contract is not awarded to the Supplier. Sentences 1 and 2 shall apply mutatis mutandis to the Purchaser's Documents; these may, however, be made accessible to those third parties to whom the Supplier has rightfully subcontracted Supplies.
3. The Purchaser has the non-exclusive right to use standard software and firmware, provided that it remains unchanged, is used within the agreed performance parameters, and on the agreed equipment. Without express agreement the Purchaser may make one back-up copy of standard software.
4. Partial deliveries are allowed, unless they are unreasonable to accept for the Purchaser.
5. The term „claim for damages" used in the present GL also includes claims for indemnification for useless expenditure.

\section*{Article II: Prices, Terms of Payment, and Set-Off}
1. Prices are ex works and excluding packaging; value added tax shall be added at the then applicable rate.
2. If the Supplier is also responsible for assembly or erection and unless otherwise agreed, the Purchaser shall pay the agreed remuneration and any incidental costs required, e. g. for traveling and transport as well as allowances.
3. Payments shall be made free Supplier's paying office.
4. The Purchaser may set off only those claims which are undisputed or non- appealable.

\section*{Article III: Retention of Title}
1. The items pertaining to the Supplies ("Retained Goods") shall remain the Supplier's property until each and every claim the Supplier has against the Purchaser on account of the business relationship has been fulfilled. If the combined value of the Supplier's security interests exceeds the value of all secured claims by more than \(20 \%\), the Supplier shall release a corresponding part of the security interest if so requested by the Purchaser; the Supplier shall be entitled to choose which security interest it wishes to release.
2. For the duration of the retention of title, the Purchaser may not pledge the Retained Goods or use them as security, and resale shall be possible only for resellers in the ordinary
course of their business and only on condition that the reseller receives payment from its customer or makes the transfer of property to the customer dependent upon the customer fulfilling its obligation to effect payment.
3. Should Purchaser resell Retained Goods, it assigns to the Supplier, already today, all claims it will have against its customers out of the resale, including any collateral rights and all balance claims, as security, without any subsequent declarations to this effect being necessary. If the Retained Goods are sold on together with other items and no individual price has been agreed with respect to the Retained Goods, Purchaser shall assign to the Supplier such fraction of the total price claim as is attributable to the price of the Retained Goods invoiced by Supplier.
4. (a) Purchaser may process, amalgamate or combine Retained Goods with other items. Processing is made for Supplier. Purchaser shall store the new item thus created for Supplier, exercising the due care of a diligent business person. The new items are considered as Retained Goods.
(b) Already today, Supplier and Purchaser agree that if Retained Goods are combined or amalgamated with other items that are not the property of Supplier, Supplier shall acquire co-ownership in the new item in proportion of the value of the Retained Goods combined or amalgamated to the other items at the time of combination or amalgamation. In this respect, the new items are considered as Retained Goods.
(c) The provisions on the assignment of claims according to No. 3 above shall also apply to the new item. The assignment, however, shall only apply to the amount corresponding to the value invoiced by Supplier for the Retained Goods that have been processed, combined or amalgamated.
(d) Where Purchaser combines Retained Goods with real estate or movable goods, it shall, without any further declaration being necessary to this effect, also assign to Supplier as security its claim to consideration for the combination, including all collateral rights for the prorata amount of the value the combined Retained Goods have on the other combined items at the time of the combination.
5. Until further notice, Purchaser may collect assigned claims relating to the resale. Supplier is entitled to withdraw Purchaser's permission to collect funds for good reason, including, but not limited to delayed payment, suspension of payments, start of insolvency proceedings, protest or justified indications for overindebtedness or pending insolvency of Purchaser. In addition, Supplier may, upon expiry of an adequate period of notice disclose the assignment, realize the claims assigned and demand that Purchaser informs its customer of the assignment.
6. The Purchaser shall inform the Supplier forthwith of any seizure or other act of intervention by third parties. If a reasonable interest can be proven, Purchaser shall, without undue delay, provide Supplier with the information and/or Documents necessary to assert the claims it has against its customers.

\footnotetext{
* Keg original German text shall be the governing version.
}
7. Where the Purchaser fails to fulfill its duties, fails to make payment due, or otherwise violates its obligations the Supplier shall be entitled to rescind the contract and take back the Retained Goods in the case of continued failure following expiry of a reasonable remedy period set by the Supplier; the statutory provisions providing that a remedy period is not needed shall be unaffected. The Purchaser shall be obliged to return the Retained Goods. The fact that the Supplier takes back Retained Goods and/or exercises the retention of title, or has the Retained Goods seized, shall not be construed to constitute a rescission of the contract, unless the Supplier so expressly declares.

\section*{Article IV: Time for Supplies; Delay}
1. Times set for Supplies shall only be binding if all Documents to be furnished by the Purchaser, necessary permits and approvals, especially concerning plans, are received in time and if agreed terms of payment and other obligations of the Purchaser are fulfilled. If these conditions are not fulfilled in time, times set shall be extended reasonably; this shall not apply if the Supplier is responsible for the delay.
2. If non-observance of the times set is due to:
(a) force majeure, such as mobilization, war, terror attacks, rebellion or similar events (e. g. strike or lockout);
(b) virus attacks or other attacks on the Supplier's IT systems occurring despite protective measures were in place that complied with the principles of proper care;
(c) hindrances attributable to German, US or otherwise applicable national, EU or international rules of foreign trade law or to other circumstances for which Supplier is not responsible; or
(d) the fact that Supplier does not receive its own supplies in due time or in due form
such times shall be extended accordingly.
3. If the Supplier is responsible for the delay (hereinafter referred to as "Delay") and the Purchaser has demonstrably suffered a loss therefrom, the Purchaser may claim a compensation as liquidated damages of \(0.5 \%\) for every completed week of Delay, but in no case more than a total of \(5 \%\) of the price of that part of the Supplies which due to the Delay could not be put to the intended use.
4. Purchaser's claims for damages due to delayed Supplies as well as claims for damages in lieu of performance exceeding the limits specified in No. 3 above are excluded in all cases of delayed Supplies, even upon expiry of a time set to the Supplier to effect the Supplies. This shall not apply in cases of liability based on intent, gross negligence, or due to loss of life, bodily injury or damage to health. Rescission of the contract by the Purchaser based on statute is limited to cases where the Supplier is responsible for the delay. The above provisions do not imply a change in the burden of proof to the detriment of the Purchaser.
5. At the Supplier's request, the Purchaser shall declare within a reasonable period of time whether it, due to the delayed Supplies, rescinds the contract or insists on the delivery of the Supplies.
6. If dispatch or delivery, due to Purchaser's request, is delayed by more than one month after notification of the readiness for dispatch was given, the Purchaser may be charged, for every additional month commenced, storage costs of \(0.5 \%\)
of the price of the items of the Supplies, but in no case more than a total of \(5 \%\). The parties to the contract may prove that higher or, as the case may be, lower storage costs have been incurred.

\section*{Article V: Passing of Risk}
1. Even where delivery has been agreed freight free, the risk shall pass to the Purchaser as follows:
(a) if the delivery does not include assembly or erection, at the time when it is shipped or picked up by the carrier. Upon the Purchaser's request, the Supplier shall insure the delivery against the usual risks of transport at the Purchaser's expense;
(b) if the delivery includes assembly or erection, at the day of taking over in the Purchaser's own works or, if so agreed, after a successful trial run.
2. The risk shall pass to the Purchaser if dispatch, delivery, the start or performance of assembly or erection, the taking over in the Purchaser's own works, or the trial run is delayed for reasons for which the Purchaser is responsible or if the Purchaser has otherwise failed to accept the Supplies.

\section*{Article VI: Assembly and Erection}

Unless otherwise agreed in written form, assembly and erection shall be subject to the following provisions:
1. Purchaser shall provide at its own expense and in due time:
(a) all earth and construction work and other ancillary work outside the Supplier's scope, including the necessary skilled and unskilled labor, construction materials and tools;
(b) the equipment and materials necessary for assembly and commissioning such as scaffolds, lifting equipment and other devices as well as fuels and lubricants;
(c) energy and water at the point of use including connections, heating and lighting;
(d) suitable dry and lockable rooms of sufficient size adjacent to the site for the storage of machine parts, apparatus, materials, tools, etc. and adequate working and recreation rooms for the erection personnel, including sanitary facilities as are appropriate in the specific circumstances; furthermore, the Purchaser shall take all measures it would take for the protection of its own possessions to protect the possessions of the Supplier and of the erection personnel at the site;
(e) protective clothing and protective devices needed due to particular conditions prevailing on the specific site.
2. Before the erection work starts, the Purchaser shall unsolicitedly make available any information required concerning the location of concealed electric power, gas and water lines or of similar installations as well as the necessary structural data.
3. Prior to assembly or erection, the materials and equipment necessary for the work to start must be available on the site of assembly or erection and any preparatory work must have advanced to such a degree that assembly or erection can be started as agreed and carried out without interruption. Access roads and the site of assembly or erection must be level and clear.
4. If assembly, erection or commissioning is delayed due to circumstances for which the Supplier is not responsible, the Purchaser shall bear the reasonable costs incurred for idle times and any additional traveling expenditure of the Supplier or the erection personnel.
5. The Purchaser shall attest to the hours worked by the erection personnel towards the Supplier at weekly intervals and the Purchaser shall immediately confirm in written form if assembly, erection or commissioning has been completed.
6. If, after completion, the Supplier demands acceptance of the Supplies, the Purchaser shall comply therewith within a period of two weeks. The same consequences as upon acceptance arise if and when the Purchaser lets the twoweek period expire or the Supplies are put to use after completion of agreed test phases, if any.

\section*{Article VII: Receiving Supplies}

The Purchaser shall not refuse to receive Supplies due to minor defects.

\section*{Article VIII: Defects as to Quality}

The Supplier shall be liable for defects as to quality ("Sachmängel", hereinafter referred to as "Defects",) as follows:
1. Defective parts or defective services shall be, at the Supplier's discretion, repaired, replaced or provided again free of charge, provided that the reason for the Defect had already existed at the time when the risk passed.
2. Claims for repair or replacement are subject to a statute of limitations of 12 months calculated from the start of the statutory statute of limitations; the same shall apply mutatis mutandis in the case of rescission and reduction. This shall not apply where longer periods are prescribed by law according to Sec. 438 para. 1 No. 2 (buildings and things used for a building), Sec. 479 para. 1 (right of recourse), and Sec. 634a para. 1 No. 2 (defects of a building) German Civil Code ("Bürgerliches Gesetzbuch"), in the case of intent, fraudulent concealment of the Defect or non-compliance with guaranteed characteristics ("Beschaffenheitsgarantie"). The legal provisions regarding suspension of the statute of limitations ("Ablaufhemmung", "Hemmung") and recommencement of limitation periods shall be unaffected.
3. Notifications of Defect by the Purchaser shall be given in written form without undue delay.
4. In the case of notification of a Defect, the Purchaser may withhold payments to an amount that is in a reasonable proportion to the Defect. The Purchaser, however, may withhold payments only if the subject-matter of the notification of the Defect involved is justified and incontestable. The Purchaser has no right to withhold payments to the extent that its claim of a Defect is time-barred. Unjustified notifications of Defect shall entitle the Supplier to demand reimbursement of its expenses by the Purchaser.
5. The Supplier shall be given the opportunity to repair or to replace the defective good ("Nacherfüllung") within a reasonable period of time.
6. If repair or replacement is unsuccessful, the Purchaser is entitled to rescind the contract or reduce the remuneration; any claims for damages the Purchaser may have according to No. 10 shall be unaffected.
7. There shall be no claims based on Defect in cases of insignificant deviations from the agreed quality, of only minor impairment of usability, of natural wear and tear, or damage arising after the passing of risk from faulty or negligent handling, excessive strain, unsuitable equipment, defective civil works, inappropriate foundation soil, or claims based on particular external influences not assumed under the contract, or from non-reproducible software errors. Claims based on defects attributable to improper modifications or repair work carried out by the Purchaser or third parties and the consequences thereof are likewise excluded.
8. The Purchaser shall have no claim with respect to expenses incurred in the course of supplementary performance, including costs of travel, transport, labor, and material, to the extent that expenses are increased because the subjectmatter of the Supplies has subsequently been brought to another location than the Purchaser's branch office, unless doing so complies with the normal use of the Supplies.
9. The Purchaser's right of recourse against the Supplier pursuant to Sec. 478 BGB is limited to cases where the Purchaser has not concluded an agreement with its customers exceeding the scope of the statutory provisions governing claims based on Defects. Moreover, No. 8 above shall apply mutatis mutandis to the scope of the right of recourse the Purchaser has against the Supplier pursuant to Sec. 478 para. 2 BGB.
10. The Purchaser shall have no claim for damages based on Defects. This shall not apply to the extent that a Defect has been fraudulently concealed, the guaranteed characteristics are not complied with, in the case of loss of life, bodily injury or damage to health, and/or intentionally or grossly negligent breach of contract on the part of the Supplier. The above provisions do not imply a change in the burden of proof to the detriment of the Purchaser. Any other or additional claims of the Purchaser exceeding the claims provided for in this Article VIII, based on a Defect, are excluded.

\section*{Article IX: Industrial Property Rights and Copyrights; Defects in Title}
1. Unless otherwise agreed, the Supplier shall provide the Supplies free from third parties' industrial property rights and copyrights (hereinafter referred to as "IPR") with respect to the country of the place of delivery only. If a third party asserts a justified claim against the Purchaser based on an infringement of an IPR by the Supplies made by the Supplier and used in conformity with the contract, the Supplier shall be liable to the Purchaser within the time period stipulated in Article VIII No. 2 as follows:
(a) The Supplier shall choose whether to acquire, at its own expense, the right to use the IPR with respect to the Supplies concerned or whether to modify the Supplies such that they no longer infringe the IPR or replace them. If this would be impossible for the Supplier under reasonable conditions, the Purchaser may rescind the contract or reduce the remuneration pursuant to the applicable statutory provisions;
(b) The Supplier's liability to pay damages is governed by Article XII;
(c) The above obligations of the Supplier shall apply only if the Purchaser (i) immediately notifies the Supplier of any such claim asserted by the third party in written form, (ii) does not concede the existence of an infringement and (iii) leaves any protective measures and settlement negotiations to the Supplier's discretion. If the Purchaser
stops using the Supplies in order to reduce the damage or for other good reason, it shall be obliged to point out to the third party that no acknowledgement of the alleged infringement may be inferred from the fact that the use has been discontinued.
2. Claims of the Purchaser shall be excluded if it is responsible for the infringement of an IPR.
3. Claims of the Purchaser are also excluded if the infringement of the IPR is caused by specifications made by the Purchaser, by a type of use not foreseeable by the Supplier or by the Supplies being modified by the Purchaser or being used together with products not provided by the Supplier.
4. In addition, with respect to claims by the Purchaser pursuant to No. 1 a) above, Article VIII Nos. 4, 5, and 9 shall apply mutatis mutandis in the event of an infringement of an IPR.
5. Where other defects in title occur, Article VIII shall apply mutatis mutandis.
6. Any other claims of the Purchaser against the Supplier or its agents or any such claims exceeding the claims provided for in this Article IX, based on a defect in title, are excluded.

\section*{Article X: Conditional Performance}
1. The performance of this contract is conditional upon that no hindrances attributable to German, US or otherwise applicable national, EU or international rules of foreign trade law or any embargos or other sanctions exist.
2. The Purchaser shall provide any information and Documents required for export, transport and import purposes.

\section*{Article XI: Impossibility of Performance; Adaptation of Contract}
1. To the extent that delivery is impossible, the Purchaser is entitled to claim damages, unless the Supplier is not responsible for the impossibility. The Purchaser's claim for damages is, however, limited to an amount of \(10 \%\) of the value of the part of the Supplies which, owing to the impossibility, cannot be put to the intended use. This limitation shall not apply in the case of liability based on intent, gross negligence or loss of life, bodily injury or damage to health; this does not imply a change in the burden of proof to the detriment of the Purchaser. The Purchaser's right to rescind the contract shall be unaffected.
2. Where events within the meaning of Article IV No. 2 (a) to (c) substantially change the economic importance or the contents of the Supplies or considerably affect the Supplier's business, the contract shall be adapted taking into account the principles of reasonableness and good faith. To the extent this is not justifiable for economic reasons, the Supplier shall have the right to rescind the contract. The same applies if required export permits are not granted or cannot be used. If the Supplier intends to exercise its right to rescind the contract, it shall notify the Purchaser thereof without undue
delay after having realized the repercussions of the event; this shall also apply even where an extension of the delivery period has previously been agreed with the Purchaser.

\section*{Article XII: Other Claims for Damages}
1. Unless otherwise provided for in the present GL, the Purchaser has no claim for damages based on whatever legal reason, including infringement of duties arising in connection with the contract or tort.
2. This does not apply if liability is based on:
(a) the German Product Liability Act ("Produkthaftungsgesetz");
(b) intent;
(c) gross negligence on the part of the owners, legal representatives or executives;
(d) fraud;
(e) failure to comply with a guarantee granted;
(f) negligent injury to life, limb or health; or
(g) negligent breach of a fundamental condition of contract ("wesentliche Vertragspflichten").

However, claims for damages arising from a breach of a fundamental condition of contract shall be limited to the foreseeable damage which is intrinsic to the contract, provided that no other of the above case applies.
3. The above provision does not imply a change in the burden of proof to the detriment of the Purchaser.

\section*{ArtikeI XIII: Venue and Applicable law}
1. If the Purchaser is a businessman, sole venue for all disputes arising directly or indirectly out of the contract shall be the Supplier's place of business. However, the Supplier may also bring an action at the Purchaser's place of business.
2. This contract and its interpretation shall be governed by German law, to the exclusion of the United Nations Convention on contracts for the International Sale of Goods (CISG).

\section*{Article XIV: Severability Clause}

The legal invalidity of one or more provisions of this Agreement in no way affects the validity of the remaining provisions. This shall not apply if it would be unreasonably onerous for one of the parties to be obligated to continue the contract.```

